Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

New dimeric 5-hydroxy-2-hexenoic acid isolated from culture broth of Clonostachys rogersoniana

Abstract

A new dimeric 5-hydroxy-2-hexenoic acid, clonohexenoic acid (1), a known 14-membered macrolide, acremodiol B (2), and two known benzochromenone derivatives, alternariol (3) and 2-hydroxyalternariol (4), were isolated from a culture broth of Clonostachys rogersoniana. The structures of these isolated compounds were determined using spectroscopic methods. Antimicrobial and cytotoxic activities of these compounds were then assessed. Compounds 1‒4 exhibited antimicrobial activities against Bacillus subtilis and Propionibacterium acnes. In addition, compounds 3 and 4 showed antibacterial activities against B. cereus and cytotoxic activities against three human cancer cell lines, A549, HCT-116, and Mia Paca-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Schroers HJ. A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Stud Mycol. 2001;46:1–214.

    Google Scholar 

  2. Chen WH, Han YF, Liang JD, Zou X, Liang ZQ, Jin DC. A new araneogenous fungus of the genus Clonostachys. Mycosystema. 2016;35:1061–9.

    Google Scholar 

  3. Torcato C, Gonçalves MF, Rodríguez-Gálvez E, Alves A. Clonostachys viticola sp. nov., a novel species isolated from Vitis vinifera. Int J Syst Evol Microbiol. 2020;70:4321–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol. 2020;129:486–95.

    Article  PubMed  Google Scholar 

  5. Cota LV, Maffia LA, Mizubuti ES, Macedo PE, Antunes RF. Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biol Control. 2008;46:515–22.

    Article  Google Scholar 

  6. Cruz LJ, Insua MM, Baz JP, Trujillo M, Rodriguez-Mias RA, Oliveira E, et al. IB-01212, a new cytotoxic cyclodepsipeptide isolated from the marine fungus Clonostachys sp. ESNA-A009. J Org Chem. 2006;71:3335–8.

    Article  CAS  PubMed  Google Scholar 

  7. Abdel-Wahab NM, Harwoko H, Müller WE, Hamacher A, Kassack MU, Fouad MA, et al. Cyclic heptapeptides from the soil-derived fungus Clonostachys rosea. Bioorg Med Chem. 2019;27:3954–9.

    Article  CAS  PubMed  Google Scholar 

  8. Zhai MM, Qi FM, Li J, Jiang CX, Hou Y, Shi YP, et al. Isolation of secondary metabolites from the soil-derived fungus Clonostachys rosea YRS-06, a biological control agent, and evaluation of antibacterial activity. J Agric Food Chem. 2016;64:2298–306.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu S, Ren F, Guo Z, Liu J, Liu X, Liu G, et al. Rogersonins A and B, imidazolone N-oxide-incorporating indole alkaloids from a verG disruption mutant of Clonostachys rogersoniana. J Nat Prod. 2018;82:462–8.

    Article  PubMed  Google Scholar 

  10. Ariefta NR, Kristiana P, Nurjanto HH, Momma H, Kwon E, Ashitani T, et al. Nectrianolins A, B, and C, new metabolites produced by endophytic fungus Nectria pseudotrichia 120-1NP. Tetrahedron Lett. 2017;58:4082–6.

    Article  CAS  Google Scholar 

  11. Song H, Shen W, Dong J. Nematicidal metabolites from Gliocladium roseum YMF1. 00133. Appl Biochem Microbiol. 2016;52:324–30.

    Article  CAS  Google Scholar 

  12. Yamada T, Yoshida K, Kikuchi T, Hirano T. Isolation and structure elucidation of new cytotoxic macrolides halosmysins b and c from the fungus Halosphaeriaceae sp. associated with a marine alga. Mar Drugs. 2022;20:226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Knowles SL, Roberts CD, Augustinovic M, Flores-Bocanegra L, Raja HA, Heath-Borrero KN, et al. Opportunities and limitations for assigning relative configurations of antibacterial bislactones using GIAO NMR shift calculations. J Nat Prod. 2021;84:1254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koch K, Podlech J, Pfeiffer E, Metzler M. Total synthesis of alternariol. J Org Chem. 2005;70:3275–6.

    Article  CAS  PubMed  Google Scholar 

  15. Chapla VM, Zeraik ML, Ximenes VF, Zanardi LM, Lopes MN, Cavalheiro AJ, et al. Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis. Molecules. 2014;19:6597–608.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li R, Su Z, Sun C, Wu S. Antibacterial insights into alternariol and its derivative alternariol monomethyl ether produced by a marine fungus. Appl Environ Microbiol. 2024;90:e00058–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schreck I, Deigendesch U, Burkhardt B, Marko D, Weiss C. The Alternaria mycotoxins alternariol and alternariol methyl ether induce cytochrome P4501A1 and apoptosis in murine hepatoma cells dependent on the aryl hydrocarbonreceptor. Arch Toxicol. 2012;86:625–32.

    Article  CAS  PubMed  Google Scholar 

  18. Bensassi F, Gallerne C, Sharaf El Dein O, Hajlaoui MR, Bacha H, Lemaire C. Cell death induced by the Alternaria mycotoxin Alternariol. Toxicol Vitr. 2012;26:915–23.

    Article  CAS  Google Scholar 

  19. Zhang N, Zhang C, Xiao X, Zhang Q, Huang B. New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.) Vent. Fitoterpia. 2016;110:173–80.

    Article  CAS  Google Scholar 

  20. Zaidan M, Noor Rain A, Badrul A, Adlin A, Norazah A, Zakiah I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed. 2005;22:165–70.

    CAS  PubMed  Google Scholar 

  21. Woo EE, Ha LS, Kim JY, Lee IK, Yun BS. Rhizophins A and B, new sesquiterpenes from the culture broth of Coprinus rhizophorus. J Antibiot. 2020;73:175–8.

    Article  CAS  Google Scholar 

  22. Lim HJ, Bae J, Bak SG, Chandimali N, Park EH, Park SI, et al. Limocitrin suppresses breast cancer through inducing apoptotic-cell death signaling and inhibiting the PI3K/AKT/mTOR/S6K cell survival signaling. J Med Food. 2023;26:749–59.

    Article  CAS  Google Scholar 

  23. Ki DW, Choi DC, Won YS, Lee SJ, Kim YH, Lee IK, et al. Three new phthalide derivatives from culture broth of Dentipellis fragilis and their cytotoxic activities. J Antibiot. 2024;77:338–44.

    Article  CAS  Google Scholar 

  24. Kim YH, Choi DC, Ki DW, Won YS, Lee SJ, Kim JY, et al. Three new nonenes from culture broth of marine-derived fungus Albifimbria verrucaria and their cytotoxic and anti-viral activities. J Antibiot. 2024;77:466–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Base Construction Fund Support Program funded by Jeonbuk National University in 2025. The authors thank Ms. Ji-Young Oh (Center for University-wide Research Facilities (CURF) at Jeonbuk National University) for performing NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Sik Yun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, DC., Ki, DW., Kim, Y.H. et al. New dimeric 5-hydroxy-2-hexenoic acid isolated from culture broth of Clonostachys rogersoniana. J Antibiot 78, 380–383 (2025). https://doi.org/10.1038/s41429-025-00824-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00824-9

Search

Quick links