Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-canonical thioesterases in bacterial non-ribosomal peptide biosynthesis

Abstract

α/β hydrolase fold thioesterases (TEs) play fundamentally important roles in polyketide and non-ribosomal peptide biosynthesis. Type-I TEs, fused at the C-terminus of multi-modular enzymatic assembly lines, dictate the overall molecular shapes of assembly-line products, while standalone type-II TEs maintain assembly-line activity through proofreading functions. Beyond these established roles, recent studies have elucidated several distinct TE functions that expand the functional versatility of these enzymes. This review summarizes recently discovered non-canonical functions of TEs in bacterial non-ribosomal peptide biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Süssmuth RD, Mainz A. Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl. 2017;56:3770–821.

    Article  PubMed  Google Scholar 

  2. Caswell BT, de Carvalho CC, Nguyen H, Roy M, Nguyen T, Cantu DC. Thioesterase enzyme families: functions, structures, and mechanisms. Protein Sci. 2022;31:652–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozhelvaci F, Steczkiewicz K. α/β Hydrolases: toward unraveling entangled classification. Proteins. 2025;93:855–70.

    Article  CAS  PubMed  Google Scholar 

  4. Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep. 2022;39:163–205.

    Article  CAS  PubMed  Google Scholar 

  5. Adrover-Castellano ML, Schmidt JJ, Sherman DH. Biosynthetic cyclization catalysts for the assembly of peptide and polyketide natural products. ChemCatChem. 2021;13:2095–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kotowska M, Pawlik K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl Microbiol Biotechnol. 2014;98:7735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horsman ME, Hari TP, Boddy CN. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? Nat Prod Rep. 2016;33:183–202.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuda K, Wakimoto T. Penicillin-binding protein-type thioesterases: an emerging family of non-ribosomal peptide cyclases with biocatalytic potentials. Curr Opin Chem Biol. 2024;80:102465.

    Article  CAS  PubMed  Google Scholar 

  9. Rauwerdink A, Kazlauskas RJ. How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal. 2015;5:6153–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nardini M, Dijkstra BW. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol. 1999;9:732–7.

    Article  CAS  PubMed  Google Scholar 

  11. Frueh DP, Arthanari H, Koglin A, Vosburg DA, Bennett AE, Walsh CT et al. Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature. 2008;454:903–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel KD, Oliver RA, Lichstrahl MS, Li R, Townsend CA, Gulick AM. The structure of the monobactam-producing thioesterase domain of SulM forms a unique complex with the upstream carrier protein domain. J Biol Chem. 2024;300:107489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maruyama H, Yamada Y, Igarashi Y, Matsuda K, Wakimoto T. Enzymatic peptide macrocyclization via indole-N-acylation. Chem Sci. 2025;16:3872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep. 2024;41:1180–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol. 2007;7:78.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xiang C, Yao S, Wang R, Zhang L. Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain. Beilstein J Org Chem. 2024;20:1476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirsch M, Fitzgerald BJ, Keatinge-Clay AT. How cis-acyltransferase assembly-line ketosynthases gatekeep for processed polyketide intermediates. ACS Chem Biol. 2021;16:2515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keatinge-Clay AT. Stereocontrol within polyketide assembly lines. Nat Prod Rep. 2016;33:141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hari TP, Labana P, Boileau M, Boddy CN. An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases. Chembiochem. 2014;15:2656–61.

    Article  CAS  PubMed  Google Scholar 

  20. Imada A, Kitano K, Kintaka K, Muroi M, Asai M. Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin. Nature. 1981;289:590–1.

    Article  CAS  PubMed  Google Scholar 

  21. Li R, Oliver RA, Townsend CA. Identification and characterization of the sulfazecin monobactam biosynthetic gene cluster. Cell Chem Biol. 2017;24:24–34.

    Article  PubMed  Google Scholar 

  22. Oliver RA, Li R, Townsend CA. Monobactam formation in sulfazecin by a nonribosomal peptide synthetase thioesterase. Nat Chem Biol. 2018;14:5–7.

    Article  CAS  PubMed  Google Scholar 

  23. Wells JS, Trejo WH, Principe PA, Sykes RB. Obafluorin, a novel beta-lactone produced by Pseudomonas fluorescens. Taxonomy, fermentation and biological properties. J Antibiot (Tokyo). 1984;37:802–3.

    Article  CAS  PubMed  Google Scholar 

  24. Schaffer JE, Reck MR, Prasad NK, Wencewicz TA. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat Chem Biol. 2017;13:737–44.

    Article  CAS  PubMed  Google Scholar 

  25. Kreitler DF, Gemmell EM, Schaffer JE, Wencewicz TA, Gulick AM. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Nat Commun. 2019;10:3432.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma Z, Huang Z, Liao Y, et al. Deciphering the δ-Lactam Formation and lron-Reducing Activity of Spinactins from Saccharopolyspora spinosa. Org Lett. 2025;27:565–70.

    Article  CAS  PubMed  Google Scholar 

  27. Huang S, Tabudravu J, Elsayed SS, et al. Discovery of a single monooxygenase that catalyzes carbamate formation and ring contraction in the biosynthesis of the legonmycins. Angew Chem Int Ed Engl. 2015;54:12697–701.

    Article  CAS  PubMed  Google Scholar 

  28. Wang S, Brittain WDG, Zhang Q, et al. Aminoacyl chain translocation catalysed by a type II thioesterase domain in an unusual non-ribosomal peptide synthetase. Nat Commun. 2022;13:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Planckaert S, Deflandre B, de Vries AM, Ameye M, Martins JC, Audenaert K, Rigali S, Devreese B. Identification of novel rotihibin analogues in streptomyces scabies, including discovery of its biosynthetic gene cluster. Microbiol Spectr. 2021;9:e0057121.

    Article  PubMed  Google Scholar 

  30. Kim MS, Bae M, Jung YE, et al. Unprecedented noncanonical features of the nonlinear nonribosomal peptide synthetase assembly line for WS9326A biosynthesis. Angew Chem Int Ed Engl. 2021;60:19766–73.

    Article  CAS  PubMed  Google Scholar 

  31. Trischman JA, Tapiolas DM, Jensen PR, et. al., Salinamides A and B: anti-inflammatory depsipeptides from a marine streptomycete. J Am Chem Soc. 1994;116:757–58.

    Article  CAS  Google Scholar 

  32. Ray L, Yamanaka K, Moore BS. A peptidyl-transesterifying type I thioesterase in salinamide biosynthesis. Angew Chem Int Ed Engl. 2016;55:364–7.

    Article  CAS  PubMed  Google Scholar 

  33. Fujioka M, Koda S, Morimoto Y, Biemann K. Structure of FR900359, a cyclic depsipeptide from Ardisia crenata sims. J Org Chem. 1988;53:2820–5.

    Article  CAS  Google Scholar 

  34. Hermes C, Richarz R, Wirtz DA, et al. Thioesterase-mediated side chain transesterification generates potent Gq signaling inhibitor FR900359. Nat Commun. 2021;12:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niu W, Liu J, Duan Y, et al. Biosynthesis of Nonribosomal Peptides Chitinimides Reveal a Special Type of Thioesterase Domains. Chemistry. 2024;30:e202402763.

    Article  CAS  PubMed  Google Scholar 

  36. Thongkongkaew T, Ding W, Bratovanov E, Oueis E, Garcı A-Altares MA, Zaburannyi N, Harmrolfs K, Zhang Y, Scherlach K, Müller R, Hertweck C. Two types of threonine-tagged lipopeptides synergize in host colonization by pathogenic burkholderia species. ACS Chem Biol. 2018;13:1370–9.

    Article  CAS  PubMed  Google Scholar 

  37. Strobel G, Li JY, Sugawara F, Koshino H, Harper J, Hess WM. Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology. 1999;145:3557–64.

    Article  CAS  PubMed  Google Scholar 

  38. Hemmerling F, Meoded RA, Fraley AE, et al. Modular halogenation, α-hydroxylation, and acylation by a remarkably versatile polyketide synthase. Angew Chem Int Ed Engl. 2022;61:e202116614.

    Article  CAS  PubMed  Google Scholar 

  39. Fraley AE, Dieterich CL, Mabesoone MFJ, et al. Structure of a promiscuous thioesterase domain responsible for branching acylation in polyketide biosynthesis. Angew Chem Int Ed Engl. 2022;61:e202206385.

    Article  CAS  PubMed  Google Scholar 

  40. Hoyer KM, Mahlert C, Marahiel MA. The iterative gramicidin s thioesterase catalyzes peptide ligation and cyclization. Chem Biol. 2007;14:13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Little R, Trottmann F, Preissler M, Hertweck C. An intramodular thioesterase domain catalyses chain release in the biosynthesis of a cytotoxic virulence factor. RSC Chem Biol. 2022;3:1121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hashimoto M, Komori T, Kamiya T, Nocardicin A. A new monocyclic beta-lactam antibiotic II. Structure Determ Nocardicins A B J Antibiot. 1976;29:890–901.

    Article  CAS  Google Scholar 

  43. Gaudelli NM, Townsend CA. Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis. Nat Chem Biol. 2014;10:251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel KD, d’Andrea FB, Gaudelli NM, Buller AR, Townsend CA, Gulick AM. Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions. Nat Commun. 2019;10:3868.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Toki S, Agatsuma T, Ochiai K, Saitoh Y, Ando K, Nakanishi S, et al. RP-1776, a novel cyclic peptide produced by Streptomyces sp., inhibits the binding of PDGF to the extracellular domain of its receptor. J Antibiot. 2001;54:405–14.

    Article  CAS  Google Scholar 

  46. YuJuan J, Changbiao S, Tan C, et al. Functional characterization and crystal structure of the bifunctional thioesterase catalyzing epimerization and cyclization in skyllamycin biosynthesis. ACS Catal. 2021;11:11733–41.

    Article  Google Scholar 

  47. Matsuda K, Zhai R, Mori T, et al. Heterochiral coupling in non-ribosomal peptide macrolactamization. Nat Catal. 2020;3:507–515.

    Article  CAS  Google Scholar 

  48. Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature. 2000;407:215–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kuranaga T, Matsuda K, Sano A, et al. Total synthesis of the nonribosomal peptide surugamide B and identification of a new offloading cyclase family. Angew Chem Int Ed Engl. 2018;57:9447–51.

    Article  CAS  PubMed  Google Scholar 

  50. Ding Y, Perez-Ortiz G, Butulan AG, Sharif H, Barry SM. Characterization of RufT thioesterase domain reveals insights into rufomycin cyclization and the biosynthetic origin of rufomyazine. ACS Chem Biol. 2025;20:573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koketsu K, Oguri H, Watanabe K, Oikawa H. Enzymatic macrolactonization in the presence of DNA leading to triostin A analogs. Chem Biol. 2008;15:818–28.

    Article  CAS  PubMed  Google Scholar 

  52. Huguenin-Dezot N, Alonzo DA, Heberlig GW, et al. Trapping biosynthetic acyl-enzyme intermediates with encoded 2,3-diaminopropionic acid. Nature. 2019;565:112–7.

    Article  CAS  PubMed  Google Scholar 

  53. Heberlig GW, Boddy CN. Thioesterase from cereulide biosynthesis is responsible for oligomerization and macrocyclization of a linear tetradepsipeptide. J Nat Prod. 2020;83:1990–7.

    Article  CAS  PubMed  Google Scholar 

  54. Kim MS, Bae M, Song MC, Hwang S, Oh DC, Yoon YJ. Cyclodimerization of mohangamide A by thioesterase domain is directed by substrates. Org Lett. 2022;24:4444–8.

    Article  CAS  PubMed  Google Scholar 

  55. Bae M, Kim H, Moon K, et al. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org Lett. 2015;17:712–5.

    Article  CAS  PubMed  Google Scholar 

  56. Matsuda K. Macrocyclizing-thioesterases in bacterial non-ribosomal peptide biosynthesis. J Nat Med. 2025;79:1–14.

    Article  CAS  PubMed  Google Scholar 

  57. Zhong W, Budimir ZL, Johnson LO, Parkinson EI, Agarwal V. Activity and biocatalytic potential of an indolylamide generating thioesterase. Org Lett. 2024;26:9378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qiao S, Cheng Z, Li F. Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization. Beilstein J Org Chem. 2024;20:721–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paquette AR, Brazeau-Henrie JT, Boddy CN. Thioesterases as tools for chemoenzymatic synthesis of macrolactones. Chem Commun. 2024;60:3379–88.

    Article  CAS  Google Scholar 

  60. Samel SA, Wagner B, Marahiel MA, Essen LO. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide. J Mol Biol. 2006;359:876–89.

    Article  CAS  PubMed  Google Scholar 

  61. Gilchrist CLM, Mirdita M, Steinegger M Multiple protein structure alignment at scale with foldmason. Biorxiv, https://doi.org/10.1101/2024.08.01.606130.

  62. Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:2461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zdouc MM, Blin K, Louwen NLL, et al. MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration. Nucleic Acids Res. 2025;53:D678–D690.

    Article  PubMed  Google Scholar 

  64. Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge Prof. Toshiyuki Wakimoto (Hokkaido University) and colleagues for their support of this work. This work was partly supported by Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) under “Support Program for Implementation of New Equipment Sharing System”, Global Station for Biosurfaces and Drug Discovery, a project of Global Institution for Collaborative Research and Education in Hokkaido University, the Japan Agency for Medical Research and Development JP25gm1610007, the Japan Science and Technology Agency(JST Grant Number ACT-X JPMJAX201F, FOREST JPMJFR233U), and JSPS KAKENHI (Grant Numbers JP23K17410, JP24K01659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Matsuda.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has received The Society for Actinomycetes Japan Award.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, K. Non-canonical thioesterases in bacterial non-ribosomal peptide biosynthesis. J Antibiot 78, 639–650 (2025). https://doi.org/10.1038/s41429-025-00854-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00854-3

Search

Quick links