Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Streptomyces cyclosori sp. nov., a novel actinobacterium from the rhizosphere soil of Cyclosorus parasiticus (L.) Farw

Abstract

A novel actinobacterium strain cg36T, from the rhizosphere of Cyclosorus parasiticus, was subjected to a polyphasic taxonomic study. 16S rRNA gene sequence analysis showed that strain cg36T shared the highest 16S rRNA gene sequence similarity to Streptomyces lavendofoliae NBRC 12882T. Phylogenetic analysis of 16S rRNA gene sequence indicated that strain cg36T formed a distinct branch within the genus Streptomyces. Phylogenetic analysis of five housekeeping gene and whole genome sequences showed that strain cg36T was closely related to Streptomyces crystallinus JCM 5067T and Streptomyces noboritoensis JCM 4557T. But, overall genome related index (OGRI) and multilocus sequence analysis (MLSA) confirmed that strain cg36T was clearly different from them. A comparison of differential features among strain cg36T, S. crystallinus CGMCC 4.1600T and S. noboritoensis CGMCC 4.1457T provided, at least to some extent, some useful information for strain cg36T as an independent species. In addition, OGRI values and MLSA evolutionary distance between strain cg36T and other strains, which had 16S rRNA gene sequence similarity of >98.65% to strain cg36T, further demonstrated that strain cg36T was a new species. Whole-cell hydrolysates of strain cg36T contained ll-diaminopimelic acid and whole-cell sugars contain glucose. The predominant cellular fatty acids (>10%) were anteiso-C15:0, iso-C15:0 and C16:0. The DNA G + C content of the genome sequence, consisting of 9,022,416 bp, was 72.5%. All these data indicated that strain cg36T represents a novel Streptomyces species, for which the name Streptomyces cyclosori sp. nov. is proposed. The type strain is strain cg36T (=MCCC 1K09286T = JCM 37520T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404:1199–226.

    Article  Google Scholar 

  2. Genilloud O. The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek. 2014;106:173–88.

    Article  CAS  PubMed  Google Scholar 

  3. Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev. 2017;117:12415–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moloney MG. Natural products as a source for novel antibiotics. Trends Pharm Sci. 2016;37:689–701.

    Article  CAS  PubMed  Google Scholar 

  5. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 2014;169:262–78.

    Article  CAS  PubMed  Google Scholar 

  6. Waksman SA, Henrici AT. The nomenclature and classification of the Actinomycetes. J Bacteriol. 1943;46:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol. 2020;70:5607–12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol. 2020;18:546–58.

    Article  PubMed  Google Scholar 

  9. Ramarajan M, Devilla R, Dow L, Walsh N, Mead O, Zakeel MCM, Gallart M, Richardson AE, Thatcher LF. Genomic and untargeted metabolomic analysis of secondary metabolites in the Streptomyces griseoaurantiacus strain MH191 shows media-based dependency for the production of bioactive compounds with potential antifungal activity. J Agric Food Chem. 2024;72:24432–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sriragavi G, Sangeetha M, Santhakumar M, Lokesh E, Nithyalakshmi M, Saleel CA, Balagurunathan R. Exploring antibacterial properties of bioactive compounds isolated from Streptomyces sp. in bamboo rhizosphere soil. ACS Omega. 2023;8:36333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou B, Hu ZJ, Zhang HJ, Li JQ, Ding WJ, Ma ZJ. Bioactive staurosporine derivatives from the Streptomyces sp. NB-A13. Bioorganic Chem. 2019;82:33–40.

    Article  CAS  Google Scholar 

  12. Gencbay T, Saygin H, Guven K, Topkara AR, Saricaoglu S, Sahin N, Isik K. Streptomyces scabichelini sp. nov., isolated from soil. Int J Syst Evol Microbiol. 2021;71:004639.

    Article  CAS  Google Scholar 

  13. Atlas RM. Handbook of microbiological media. Boca Raton: CRC Press; 1993.

  14. Jiang CR, Ruan JS. Two new species and a new variety of Ampullarella. Acta Microbiol Sin. 1982;22:207–11.

    Google Scholar 

  15. Shirling EB, Gottlieb D. Methods for characterisation of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Article  Google Scholar 

  16. Ridgway R. Color standards and color nomenclature. Washington, DC. 1912. pp.1–43.

  17. Saimee Y, Duangmal K. Streptomyces spirodelae sp. nov., isolated from duckweed. Int J Syst Evol Microbiol. 2021;71:005106.

    Article  CAS  Google Scholar 

  18. Xu LH, Li WJ, Liu ZH, Jiang CL. Actinomycete systematics: principle, methods and practice. Beijing: Science Press; 2007.

  19. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article  CAS  Google Scholar 

  20. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–43.

    Article  CAS  Google Scholar 

  21. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol. 1996;46:1088–92.

    Article  CAS  PubMed  Google Scholar 

  22. Mo P, Li K, Zhou J, Zhou F, He J, Zou WS, Gao J. Nocardiopsis changdeensis sp. nov., an endophytic actinomycete isolated from the roots of Eucommia ulmoides Oliv. J Antibiot. 2023;76:191–7.

    Article  CAS  Google Scholar 

  23. Chalita M, Kim YO, Park S, Oh HS, Cho JH, Moon J, Baek N, Moon C, Lee K, Yang J, et al. EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. Int J Syst Evol Microbiol. 2024;74:006421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol. 2012;35:7–18.

    Article  CAS  PubMed  Google Scholar 

  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article  CAS  PubMed  Google Scholar 

  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol. 1992;9:945–67.

    CAS  Google Scholar 

  28. Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. MEGA12: Molecular Evolutionary Genetics Analysis version 12 for adaptive and green computing. Mol Biol Evol. 2024;41:1–9.

    Article  CAS  Google Scholar 

  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

    Article  CAS  PubMed  Google Scholar 

  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–14.

    Article  CAS  PubMed  Google Scholar 

  31. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualization. Nucleic Acid Res. 2023;51:W46–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, Edalatmand A, Petkau A, Syed SA, Tsang KK, et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acid Res. 2023;5:D690–9.

    Article  Google Scholar 

  33. Meier-Kolthoff JP, Sardà Carbasse J, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acid Res. 2022;50:D801–7.

    Article  CAS  PubMed  Google Scholar 

  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meier-Kolthof JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.

    Article  Google Scholar 

  36. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.

    Article  CAS  PubMed  Google Scholar 

  37. Vandamme P, Sutcliffe I. Out with the old and in with the new: time to rethink twentieth century chemotaxonomic practices in bacterial taxonomy. Int J Syst Evol Microbiol. 2021;71:005127.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hu SR, Li KQ, Zhang YF, Wang YF, Li Fu, Xiao Y, Tang XK, Gao J. New insights into the threshold values of multilocus sequence analysis, average nucleotide identity and digital DNA–DNA hybridization in delineating Streptomyces species. Front Microbiol. 2022;13:910277.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Auch AF, Jan MV, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genom Sci. 2010;2:117–34.

    Article  Google Scholar 

  40. Riesco R, Carro L, Román-Ponce B, Prieto C, Blom J, et al. Defining the species Micromonospora saelicesensis and Micromonospora noduli under the framework of genomics. Front Microbiol. 2018;9:1360.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–5.

    Google Scholar 

  42. Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR, Ju KS, et al. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek. 2017;110:563–83.

    Article  CAS  PubMed  Google Scholar 

  43. Xie JJ, Zhang HY, Xu X, Yang KX, Ou JC, Yang DF, Jiang Y, Jiang MG, Shen NK. Streptomyces fuscus sp. nov., a brown-black pigment producing actinomycete isolated from dry mudflat sand. Int J Syst Evol Microbiol. 2023;73:0.006047.

    Article  Google Scholar 

  44. Qi DF, Liu Q, Zou LP, Zhang MY, Li K, Zhao YK, Chen YF, Feng JT, Zhou DB, Wei YZ, Wang W, Zhang L, Xie JH. Taxonomic identification and antagonistic activity of Streptomyces luomodiensis sp. nov. against phytopathogenic fungi. Front Microbiol. 2024;15:1402653 27.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express appreciation to Prof. Aharon Oren (Department of Plant and Environmental Sciences and the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem) for his assistance with the etymology check.

Funding

This work was supported by the Hunan Provincial Natural Science Foundation of China and Xiangtan Science and Technology Bureau (2022JJ50125).

Author information

Authors and Affiliations

Authors

Contributions

RJG and YZC conducted experiments, prepared figures and tables. RJG and YX purchased type strains. RJG and YZC wrote the main manuscript text. JG corrected and reviewed the paper.

Corresponding author

Correspondence to Jian Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Chen, Y., Xiao, Y. et al. Streptomyces cyclosori sp. nov., a novel actinobacterium from the rhizosphere soil of Cyclosorus parasiticus (L.) Farw. J Antibiot 78, 666–673 (2025). https://doi.org/10.1038/s41429-025-00857-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00857-0

Search

Quick links