Abstract
Klebsiella pneumoniae is a ubiquitous Gram-negative pathogen in clinical settings, responsible for pulmonary infections, urinary tract infections, septicemia, and other severe diseases.Over recent years, widespread use of aminoglycosides, quinolones, and β-lactams has driven a marked increase in antimicrobial resistance, compromising treatment efficacy. Here, we review the molecular bases of K. pneumoniae drug resistance, focusing on β-lactamase production, efflux-pump overexpression, target-site modifications, and reduced membrane permeability. We also examine the horizontal spread of resistance determinants via plasmids, integrons, and transposons. By integrating these mechanisms with their transmission pathways, this review provides a comprehensive framework to inform rational antibiotic selection, guide infection-control policies, and support the development of novel anti-resistance strategies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Calfee DP. Recent advances in the understanding and management of Klebsiella pneumoniae. F1000Res. 2017;6:1760.
Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:4.
Huang M, Liu L, Li X, Shi Y, Zhang H, Lu T, et al. Heterogeneity and clinical genomics of blaKPC-2-producing, carbapenem-resistant Pseudomonas aeruginosa. hLife. 2024;2:314–9.
Li D, Huang X, Rao H, Yu H, Long S, Li Y, et al. Klebsiella pneumoniae bacteremia mortality: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2023;13:1157010.
Liu Y, Liu Y, Dai J, Liu A, Li Y, Xu J, et al. Klebsiella pneumoniae pneumonia in patients with rheumatic autoimmune diseases: clinical characteristics, antimicrobial resistance and factors associated with extended-spectrum β-lactamase production. BMC Infect Dis. 2021;21:366.
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics (Basel). 2023;12:234.
Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80:629–61.
Pu D, Zhao J, Chang K, Zhuo X, Cao B. Superbugs” with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing). 2023;68:2658–70.
Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, et al. Antimicrobial resistance of hypervirulent klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol. 2017;7:483.
Soliman EA, Saad A, Abd El Tawab AA, Elhofy FI, Rizk AM, Elkhayat M, et al. Exploring AMR and virulence in Klebsiella pneumoniae isolated from humans and pet animals: A complement of phenotype by WGS-derived profiles in a One Health study in Egypt. One Health. 2024;19:100904.
Wang YC, Lu MC, Li YT, Tang HL, Hsiao PY, Chen BH, et al. Microevolution of CG23-I Hypervirulent Klebsiella pneumoniae during Recurrent Infections in a Single Patient. Microbiol Spectr. 2022;10:e0207722.
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43:123–44.
Arato V, Raso MM, Gasperini G, Berlanda Scorza F, Micoli F. Prophylaxis and treatment against Klebsiella pneumoniae: current insights on this emerging anti-microbial resistant global threat. Int J Mol Sci. 2021;22:4042.
Girmenia C, Serrao A, Canichella M. Epidemiology of carbapenem resistant Klebsiella pneumoniae infections in mediterranean countries. Mediterr J Hematol Infect Dis. 2016;8:e2016032.
Qin X, Ding L, Hao M, Li P, Hu F, Wang M. Antimicrobial resistance of clinical bacterial isolates in China: current status and trends. JAC Antimicrob Resist. 2024;6:dlae052.
Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16:18.
Rada Ana M, De La Cadena E, Agudelo C, Capataz C, Orozco N, Pallares C, et al. Dynamics of blaKPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrob Agents Chemother 2020;64:e01743-20.
Li C, Jiang X, Yang T, Ju Y, Yin Z, Yue L, et al. Genomic epidemiology of carbapenemase-producing Klebsiella pneumoniae in China. Genomics Proteom Bioinforma. 2022;20:1154–67.
Liu L, Lou N, Liang Q, Xiao W, Teng G, Ma J, et al. Chasing the landscape for intrahospital transmission and evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Sci Bull (Beijing). 2023;68:3027–47.
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic treatment of infections caused by AmpC-producing enterobacterales. Pharmacy (Basel). 2024;12:142.
Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med. 2017;24:S44–51.
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res. 2024;288:127839.
Sayed MG, Mansy MS, El Borhamy MI, Elsherif HM. Exploring virulence factors, virulome, and multidrug resistance of Klebsiella pneumoniae strains isolated from patients with central Line-associated bloodstream infections. Sci Rep. 2025;15:20230.
El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris). 2013;61:209–16.
Aguilar-Ancori EG, Marin-Carrasco M, Campo-Pfuyo LI, Muñiz-Duran JG, Espinoza-Culupú A. Identification of pandemic ST147, ESBL-type β-lactamases, carbapenemases, and virulence factors in Klebsiella pneumoniae isolated from southern Peru. Sci Rep. 2025;15:14870.
Abo Basha J, Kiel M, Görlich D, Schütte-Nütgen K, Witten A, Pavenstädt H, et al. Phenotypic and genotypic characterization of escherichia coli causing urinary tract infections in kidney-transplanted patients. J Clin Med. 2019;8:988.
Szczepankowska A. Role of CRISPR/cas system in the development of bacteriophage resistance. Adv Virus Res. 2012;82:289–338.
Anyanwu MU, Jaja IF, Nwobi OC. Occurrence and characteristics of mobile colistin resistance (mcr) gene-containing isolates from the environment: a review. Int J Environ Res Public Health. 2020;17:1028.
Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA. 1998;95:10306–11.
Akintoyese TO, Alao JO, Oladipo EK, Oyedemi OT, Oyawoye OM. Antimicrobial resistance and virulence in Klebsiella pneumoniae: a four-month study in Osogbo, Nigeria. Antimicrob Steward Health Epidemiol. 2025;5:e64.
Abe R, Akeda Y, Takeuchi D, Sakamoto N, Sugawara Y, Yamamoto N, et al. Clonal dissemination of carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-232 in Thailand. JAC Antimicrob Resist. 2022;4:dlac084.
Feng Y. Transferability of MCR-1/2 polymyxin resistance: complex dissemination and genetic mechanism. ACS Infect Dis. 2018;4:291–300.
Sun J, Li XP, Fang LX, Sun RY, He YZ, Lin J, et al. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: persistence of colistin resistance in Escherichia coli. Int J Antimicrob Agents. 2018;51:842–7.
Su Z, Zhang W, Shi Y, Cui T, Xu Y, Yang R, et al. A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway. Sci Adv. 2024;10:eadp3954.
Xu Y, Zhou S, Cui T, Qu J, Zhang H, Huang M, et al. Programming BioZ, a promiscuous enzyme in bacterial biotin synthesis. Sci Bull (Beijing). 2025: in press. https://doi.org/10.1016/j.scib.2025.03.049.
Huang H, Wang C, Chang S, Cui T, Xu Y, Huang M, et al. Structure and catalytic mechanism of exogenous fatty acid recycling by AasS, a versatile acyl-ACP synthetase. Nat Struct Mol Biol. 2025;32:802–17.
Huang H, Chang S, Cui T, Huang M, Qu J, Zhang H, et al. An inhibitory mechanism of AasS, an exogenous fatty acid scavenger: Implications for re-sensitization of FAS II antimicrobials. PLoS Pathog. 2024;20:e1012376.
Chen H, Shi Y, Huang M, Lu T, Zhang H, Zhou C, et al. Recognition and acquisition of FakB2-loaded exogenous fatty acid (eFA) by a streptococcal FakA kinase. Sci Bull (Beijing). 2024;69:3355–60.
Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020;19:1.
Ramatla T, Mafokwane T, Lekota K, Monyama M, Khasapane G, Serage N, et al. One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: a comprehensive systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2023;22:88.
Ochońska D, Ścibik Ł, Brzychczy-Włoch M. Biofilm formation of clinical Klebsiella pneumoniae strains isolated from tracheostomy tubes and their association with antimicrobial resistance, virulence and genetic diversity. Pathogens. 2021;10:1345.
Zhang Z, Morgan CE, Bonomo RA, Yu EW. Cryo-EM structures of the Klebsiella pneumoniae AcrB multidrug efflux pump. mBio. 2023;14:e0065923.
Li J, Shi Y, Song X, Yin X, Liu H. Mechanisms of antimicrobial resistance in Klebsiella: advances in detection methods and clinical implications. Infect Drug Resist. 2025;18:1339–54.
Bush K, Bradford PA. Epidemiology of β-Lactamase-Producing Pathogens. Clin Microbiol Rev. 2020;33:e4007-19.
Kazemian H, Heidari H, Ghanavati R, Ghafourian S, Yazdani F, Sadeghifard N, et al. Phenotypic and genotypic characterization of ESBL-, AmpC-, and carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates. Med Princ Pr. 2019;28:547–51.
Rao A, Naha S, Bhattacharjee A, Chattopadhyay P, Dutta S, Basu S. Plasmid-mediated AmpC in Klebsiella pneumoniae and Escherichia coli from septicaemic neonates: diversity, transmission and phenotypic detection. J Glob Antimicrob Resist. 2023;34:9–14.
Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161–82.
Findlay J, Poirel L, Juhas M, Nordmann P. KPC-Mediated resistance to ceftazidime-avibactam and collateral effects in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021;65. https://doi.org/10.1128/aac.00890-21.
Zhang Y, Wang X, Wang Q, Chen H, Li H, Wang S, et al. Emergence of tigecycline nonsusceptible and IMP-4 Carbapenemase-Producing K2-ST65 Hypervirulent Klebsiella pneumoniae in China. Microbiol Spectr. 2021;9:e0130521.
Yousefi B, Kashanipoor S, Mazaheri P, Alibabaei F, Babaeizad A, Asli S, et al. Cefiderocol in combating carbapenem-resistant acinetobacter baumannii: action and resistance. Biomedicines. 2024;12:2532.
Salleh MZ. Addressing antimicrobial resistance: Structural insights into cefiderocol’s mode of action and emerging resistance mechanisms. J Infect Public Health. 2025;18:102871.
Dalhoff A, Nasu T, Okamoto K. Target affinities of faropenem to and its impact on the morphology of gram-positive and gram-negative bacteria. Chemotherapy. 2003;49:172–83.
Chen Q, Liu L, Hu X, Jia X, Gong X, Feng Y, et al. A Small KPC-2-producing plasmid in Klebsiella pneumoniae: implications for diversified vehicles of carbapenem resistance. Microbiol Spectr. 2022;10:e0268821.
Mehta SC, Furey IM, Pemberton OA, Boragine DM, Chen Y, Palzkill T. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem. 2021;296:100155.
Ramirez MS, Tolmasky ME. Amikacin: uses, resistance, and prospects for inhibition. Molecules. 2017;22:2267.
Fernández-Martínez M, Ruiz del Castillo B, Lecea-Cuello MJ, Rodríguez-Baño J, Pascual Á, Martínez-Martínez L, et al. Prevalence of aminoglycoside-modifying enzymes in escherichia coli and klebsiella pneumoniae producing extended spectrum β-lactamases collected in two multicenter studies in Spain. Microbial Drug Resistance. 2017;24:367–76.
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist. 2024;6:dlae127.
Swedan S, Alabdallah EA, Ababneh Q. Resistance to aminoglycoside and quinolone drugs among Klebsiella pneumoniae clinical isolates from northern Jordan. Heliyon. 2024;10:e23368.
Hammad HA, Mohamed IS, El-Badawy O, Zakaria AM, Shabaan L, Aly SA. pKpQIL-like plasmid contributes to the dissemination of bla(NDM-1) and plasmid mediated quinolone resistance determinants among multi drug resistant Klebsiella pneumoniae in Assiut university hospital, Egypt. Iran J Microbiol. 2023;15:208–18.
Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol. 2023;14:1238482.
Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, et al. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front Cell Infect Microbiol. 2022;12:877995.
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, et al. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol. 2024;14:1324895.
Sutherland IW. The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9:222–7.
Ma Y, Xu Y, Yestrepsky BD, Sorenson RJ, Chen M, Larsen SD, et al. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One. 2012;7:e47255.
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ Antimicrob Resist. 2024;2:27.
Albarri O, AlMatar M, Öcal MM, Köksal F. Overexpression of Efflux Pumps AcrAB and OqxAB contributes to ciprofloxacin resistance in clinical isolates of K. pneumonia. Curr Protein Pept Sci. 2022;23:356–68.
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, et al. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun. 2025;16:940.
Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52:1701–18.
Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat. 2022;43:1162–82.
Bhowmik P, Bharatham N, Murakami S, Ramachandran V, Datta S. Identification of key amino acid residues in OqxB mediated efflux of fluoroquinolones using site-directed mutagenesis. Res Microbiol. 2023;174:104039.
Xie L, Li J, Peng Q, Liu X, Lin F, Dai X, et al. Contribution of RND superfamily multidrug efflux pumps AdeABC, AdeFGH, and AdeIJK to antimicrobial resistance and virulence factors in multidrug-resistant Acinetobacter baumannii AYE. Antimicrob Agents Chemother. 2025;69:e0185824.
Gual-de-Torrella A, Delgado-Valverde M, Pérez-Palacios P, Oteo-Iglesias J, Pascual Á, Fernández-Cuenca F. In vitro activity of six biocides against carbapenemase-producing Klebsiella pneumoniae and presence of genes encoding efflux pumps. Enferm Infecc Microbiol Clin (Engl Ed). 2021: in press. https://doi.org/10.1016/j.eimc.2021.05.004.
Smith BL, Fernando S, King MD. Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: a molecular dynamics study. Sci Rep. 2024;14:2742.
Goodarzi R, Arabestani M, Alikhani MY, Keramat F, Asghari B. Emergence of tigecycline-resistant Klebsiella pneumoniae ST11 clone in patients without exposure to tigecycline. J Infect Dev Ctries. 2021;15:1677–84.
Zhang Z, Zhao H, Shi C. Clonal spread and genetic mechanisms underpinning ciprofloxacin resistance in Salmonella enteritidis. Foods. 2025;14:289.
Bedenić B, Vranić-Ladavac M, Venditti C, Tambić-Andrašević A, Barišić N, Gužvinec M, et al. Emergence of colistin resistance in Enterobacter aerogenes from Croatia. J Chemother. 2018;30:120–3.
Li Y, Kumar S, Zhang L, Wu H, Wu H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med (Wars). 2023;18:20230707.
Jiang Y, Wang Y, Hua X, Qu Y, Peleg AY, Yu Y. Pooled plasmid sequencing reveals the relationship between mobile genetic elements and antimicrobial resistance genes in clinically isolated Klebsiella pneumoniae. Genomics Proteom Bioinforma. 2020;18:539–48.
Zhang J, Xu Y, Wang M, Li X, Liu Z, Kuang D, et al. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med. 2023;15:106.
Ikhimiukor OO, Zac Soligno NI, Akintayo IJ, Marcovici MM, Souza SSR, Workman A, et al. Clonal background and routes of plasmid transmission underlie antimicrobial resistance features of bloodstream Klebsiella pneumoniae. Nature Commun. 2024;15:6969.
Li P, Liang Q, Liu W, Zheng B, Liu L, Wang W, et al. Convergence of carbapenem resistance and hypervirulence in a highly-transmissible ST11 clone of K. pneumoniae: An epidemiological, genomic and functional study. Virulence. 2021;12:377–88.
Chen H, Tao S, Li N, Wang F, Wang L, Tang Y, et al. Functional comparison of anti-restriction and anti-methylation activities of ArdA, KlcA, and KlcA(HS) from Klebsiella pneumoniae. Front Cell Infect Microbiol. 2022;12:916547.
Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist. 2020;23:174–80.
Xu Y, Zhang J, Wang M, Liu M, Liu G, Qu H, et al. Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae. Genome Med. 2021;13:119.
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31:e00088-17.
Wang X, Zhang H, Yu S, Li D, Gillings MR, Ren H, et al. Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens. ISME J. 2024;18: in press. https://doi.org/10.1093/ismejo/wrad032.
Wang Q, Liu Y, Chen R, Zhang M, Si Z, Wang Y, et al. Genomic insights into the evolution and mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae co-harboring bla(KPC) and bla(NDM): implications for public health threat mitigation. Ann Clin Microbiol Antimicrob. 2024;23:27.
Gu Y, Wang X, Zhang W, Weng R, Shi Q, Hou X, et al. Dissemination of bla(NDM)-harboring plasmids in carbapenem-resistant and hypervirulent Klebsiella pneumoniae. Microbiol Spectr. 2025;13:e0196824.
Hobson CA, Pierrat G, Tenaillon O, Bonacorsi S, Bercot B, Jaouen E, et al. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob Agents Chemother. 2022;66:e0044722.
Li S, Feng X, Li M, Shen Z. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy. Front Microbiol. 2023;14:1159912.
Arcari G, Cecilia F, Oliva A, Polani R, Raponi G, Sacco F, et al. Genotypic Evolution of Klebsiella pneumoniae Sequence Type 512 during Ceftazidime/Avibactam, Meropenem/Vaborbactam, and Cefiderocol Treatment, Italy. Emerg Infect Dis. 2023;29:2266–74.
von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front Microbiol. 2016;7:173.
Comandatore F, Sassera D, Bayliss SC, Scaltriti E, Gaiarsa S, Cao X, et al. Gene composition as a potential barrier to large recombinations in the bacterial pathogen Klebsiella pneumoniae. Genome Biol Evol. 2019;11:3240–51.
David C, Czauderna A, Cheng L, Lagune M, Jung HJ, Kim SG, et al. Intestinal carbapenem-resistant Klebsiella pneumoniae undergoes complex transcriptional reprogramming following immune activation. Gut Microbes. 2024;16:2340486.
Heljanko V, Tyni O, Johansson V, Virtanen JP, Räisänen K, Lehto KM, et al. Clinically relevant sequence types of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae detected in Finnish wastewater in 2021-2022. Antimicrob Resist Infect Control. 2024;13:14.
Bedenić B, Pešorda L, Krilanović M, Beader N, Veir Z, Schoenthaler S, et al. Evolution of Beta-Lactamases in Urinary Klebsiella pneumoniae Isolates from Croatia; from Extended-Spectrum Beta-Lactamases to Carbapenemases and Colistin Resistance. Curr Microbiol. 2022;79:355.
Guan X, Jin L, Zhou H, Chen J, Wan H, Bao Y, et al. Polydatin prevent lung epithelial cell from Carbapenem-resistant Klebsiella pneumoniae injury by inhibiting biofilm formation and oxidative stress. Sci Rep. 2023;13:17736.
Mondol SM, Hossain MA, Haque FKM. Comprehensive genomic insights into a highly pathogenic clone ST656 of mcr8.1 containing multidrug-resistant Klebsiella pneumoniae from Bangladesh. Sci Rep. 2025;15:5909.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zheng, S., Li, S., Zhang, D. et al. The mechanisms of antibiotic resistance and drug resistance transmission of Klebsiella pneumoniae. J Antibiot (2025). https://doi.org/10.1038/s41429-025-00860-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41429-025-00860-5