Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mechanisms of antibiotic resistance and drug resistance transmission of Klebsiella pneumoniae

Abstract

Klebsiella pneumoniae is a ubiquitous Gram-negative pathogen in clinical settings, responsible for pulmonary infections, urinary tract infections, septicemia, and other severe diseases.Over recent years, widespread use of aminoglycosides, quinolones, and β-lactams has driven a marked increase in antimicrobial resistance, compromising treatment efficacy. Here, we review the molecular bases of K. pneumoniae drug resistance, focusing on β-lactamase production, efflux-pump overexpression, target-site modifications, and reduced membrane permeability. We also examine the horizontal spread of resistance determinants via plasmids, integrons, and transposons. By integrating these mechanisms with their transmission pathways, this review provides a comprehensive framework to inform rational antibiotic selection, guide infection-control policies, and support the development of novel anti-resistance strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calfee DP. Recent advances in the understanding and management of Klebsiella pneumoniae. F1000Res. 2017;6:1760.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang M, Liu L, Li X, Shi Y, Zhang H, Lu T, et al. Heterogeneity and clinical genomics of blaKPC-2-producing, carbapenem-resistant Pseudomonas aeruginosa. hLife. 2024;2:314–9.

    Article  Google Scholar 

  4. Li D, Huang X, Rao H, Yu H, Long S, Li Y, et al. Klebsiella pneumoniae bacteremia mortality: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2023;13:1157010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu Y, Liu Y, Dai J, Liu A, Li Y, Xu J, et al. Klebsiella pneumoniae pneumonia in patients with rheumatic autoimmune diseases: clinical characteristics, antimicrobial resistance and factors associated with extended-spectrum β-lactamase production. BMC Infect Dis. 2021;21:366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics (Basel). 2023;12:234.

  7. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80:629–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pu D, Zhao J, Chang K, Zhuo X, Cao B. Superbugs” with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing). 2023;68:2658–70.

    Article  CAS  PubMed  Google Scholar 

  9. Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, et al. Antimicrobial resistance of hypervirulent klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol. 2017;7:483.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Soliman EA, Saad A, Abd El Tawab AA, Elhofy FI, Rizk AM, Elkhayat M, et al. Exploring AMR and virulence in Klebsiella pneumoniae isolated from humans and pet animals: A complement of phenotype by WGS-derived profiles in a One Health study in Egypt. One Health. 2024;19:100904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang YC, Lu MC, Li YT, Tang HL, Hsiao PY, Chen BH, et al. Microevolution of CG23-I Hypervirulent Klebsiella pneumoniae during Recurrent Infections in a Single Patient. Microbiol Spectr. 2022;10:e0207722.

    Article  PubMed  Google Scholar 

  12. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43:123–44.

    Article  CAS  PubMed  Google Scholar 

  13. Arato V, Raso MM, Gasperini G, Berlanda Scorza F, Micoli F. Prophylaxis and treatment against Klebsiella pneumoniae: current insights on this emerging anti-microbial resistant global threat. Int J Mol Sci. 2021;22:4042.

  14. Girmenia C, Serrao A, Canichella M. Epidemiology of carbapenem resistant Klebsiella pneumoniae infections in mediterranean countries. Mediterr J Hematol Infect Dis. 2016;8:e2016032.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qin X, Ding L, Hao M, Li P, Hu F, Wang M. Antimicrobial resistance of clinical bacterial isolates in China: current status and trends. JAC Antimicrob Resist. 2024;6:dlae052.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16:18.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rada Ana M, De La Cadena E, Agudelo C, Capataz C, Orozco N, Pallares C, et al. Dynamics of blaKPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrob Agents Chemother 2020;64:e01743-20.

  18. Li C, Jiang X, Yang T, Ju Y, Yin Z, Yue L, et al. Genomic epidemiology of carbapenemase-producing Klebsiella pneumoniae in China. Genomics Proteom Bioinforma. 2022;20:1154–67.

    Article  CAS  Google Scholar 

  19. Liu L, Lou N, Liang Q, Xiao W, Teng G, Ma J, et al. Chasing the landscape for intrahospital transmission and evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Sci Bull (Beijing). 2023;68:3027–47.

    Article  PubMed  Google Scholar 

  20. Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic treatment of infections caused by AmpC-producing enterobacterales. Pharmacy (Basel). 2024;12:142.

  21. Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med. 2017;24:S44–51.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res. 2024;288:127839.

    Article  CAS  PubMed  Google Scholar 

  23. Sayed MG, Mansy MS, El Borhamy MI, Elsherif HM. Exploring virulence factors, virulome, and multidrug resistance of Klebsiella pneumoniae strains isolated from patients with central Line-associated bloodstream infections. Sci Rep. 2025;15:20230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris). 2013;61:209–16.

    Article  CAS  PubMed  Google Scholar 

  25. Aguilar-Ancori EG, Marin-Carrasco M, Campo-Pfuyo LI, Muñiz-Duran JG, Espinoza-Culupú A. Identification of pandemic ST147, ESBL-type β-lactamases, carbapenemases, and virulence factors in Klebsiella pneumoniae isolated from southern Peru. Sci Rep. 2025;15:14870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abo Basha J, Kiel M, Görlich D, Schütte-Nütgen K, Witten A, Pavenstädt H, et al. Phenotypic and genotypic characterization of escherichia coli causing urinary tract infections in kidney-transplanted patients. J Clin Med. 2019;8:988.

  27. Szczepankowska A. Role of CRISPR/cas system in the development of bacteriophage resistance. Adv Virus Res. 2012;82:289–338.

    Article  CAS  PubMed  Google Scholar 

  28. Anyanwu MU, Jaja IF, Nwobi OC. Occurrence and characteristics of mobile colistin resistance (mcr) gene-containing isolates from the environment: a review. Int J Environ Res Public Health. 2020;17:1028.

  29. Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA. 1998;95:10306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akintoyese TO, Alao JO, Oladipo EK, Oyedemi OT, Oyawoye OM. Antimicrobial resistance and virulence in Klebsiella pneumoniae: a four-month study in Osogbo, Nigeria. Antimicrob Steward Health Epidemiol. 2025;5:e64.

    Article  Google Scholar 

  31. Abe R, Akeda Y, Takeuchi D, Sakamoto N, Sugawara Y, Yamamoto N, et al. Clonal dissemination of carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-232 in Thailand. JAC Antimicrob Resist. 2022;4:dlac084.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Feng Y. Transferability of MCR-1/2 polymyxin resistance: complex dissemination and genetic mechanism. ACS Infect Dis. 2018;4:291–300.

    Article  CAS  PubMed  Google Scholar 

  33. Sun J, Li XP, Fang LX, Sun RY, He YZ, Lin J, et al. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: persistence of colistin resistance in Escherichia coli. Int J Antimicrob Agents. 2018;51:842–7.

    Article  CAS  PubMed  Google Scholar 

  34. Su Z, Zhang W, Shi Y, Cui T, Xu Y, Yang R, et al. A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway. Sci Adv. 2024;10:eadp3954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Y, Zhou S, Cui T, Qu J, Zhang H, Huang M, et al. Programming BioZ, a promiscuous enzyme in bacterial biotin synthesis. Sci Bull (Beijing). 2025: in press. https://doi.org/10.1016/j.scib.2025.03.049.

  36. Huang H, Wang C, Chang S, Cui T, Xu Y, Huang M, et al. Structure and catalytic mechanism of exogenous fatty acid recycling by AasS, a versatile acyl-ACP synthetase. Nat Struct Mol Biol. 2025;32:802–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang H, Chang S, Cui T, Huang M, Qu J, Zhang H, et al. An inhibitory mechanism of AasS, an exogenous fatty acid scavenger: Implications for re-sensitization of FAS II antimicrobials. PLoS Pathog. 2024;20:e1012376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen H, Shi Y, Huang M, Lu T, Zhang H, Zhou C, et al. Recognition and acquisition of FakB2-loaded exogenous fatty acid (eFA) by a streptococcal FakA kinase. Sci Bull (Beijing). 2024;69:3355–60.

    Article  CAS  PubMed  Google Scholar 

  39. Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020;19:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramatla T, Mafokwane T, Lekota K, Monyama M, Khasapane G, Serage N, et al. One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: a comprehensive systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2023;22:88.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ochońska D, Ścibik Ł, Brzychczy-Włoch M. Biofilm formation of clinical Klebsiella pneumoniae strains isolated from tracheostomy tubes and their association with antimicrobial resistance, virulence and genetic diversity. Pathogens. 2021;10:1345.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang Z, Morgan CE, Bonomo RA, Yu EW. Cryo-EM structures of the Klebsiella pneumoniae AcrB multidrug efflux pump. mBio. 2023;14:e0065923.

    Article  PubMed  Google Scholar 

  43. Li J, Shi Y, Song X, Yin X, Liu H. Mechanisms of antimicrobial resistance in Klebsiella: advances in detection methods and clinical implications. Infect Drug Resist. 2025;18:1339–54.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bush K, Bradford PA. Epidemiology of β-Lactamase-Producing Pathogens. Clin Microbiol Rev. 2020;33:e4007-19.

  45. Kazemian H, Heidari H, Ghanavati R, Ghafourian S, Yazdani F, Sadeghifard N, et al. Phenotypic and genotypic characterization of ESBL-, AmpC-, and carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates. Med Princ Pr. 2019;28:547–51.

    Article  Google Scholar 

  46. Rao A, Naha S, Bhattacharjee A, Chattopadhyay P, Dutta S, Basu S. Plasmid-mediated AmpC in Klebsiella pneumoniae and Escherichia coli from septicaemic neonates: diversity, transmission and phenotypic detection. J Glob Antimicrob Resist. 2023;34:9–14.

    Article  CAS  PubMed  Google Scholar 

  47. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Findlay J, Poirel L, Juhas M, Nordmann P. KPC-Mediated resistance to ceftazidime-avibactam and collateral effects in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021;65. https://doi.org/10.1128/aac.00890-21.

  49. Zhang Y, Wang X, Wang Q, Chen H, Li H, Wang S, et al. Emergence of tigecycline nonsusceptible and IMP-4 Carbapenemase-Producing K2-ST65 Hypervirulent Klebsiella pneumoniae in China. Microbiol Spectr. 2021;9:e0130521.

    Article  PubMed  Google Scholar 

  50. Yousefi B, Kashanipoor S, Mazaheri P, Alibabaei F, Babaeizad A, Asli S, et al. Cefiderocol in combating carbapenem-resistant acinetobacter baumannii: action and resistance. Biomedicines. 2024;12:2532.

  51. Salleh MZ. Addressing antimicrobial resistance: Structural insights into cefiderocol’s mode of action and emerging resistance mechanisms. J Infect Public Health. 2025;18:102871.

    Article  PubMed  Google Scholar 

  52. Dalhoff A, Nasu T, Okamoto K. Target affinities of faropenem to and its impact on the morphology of gram-positive and gram-negative bacteria. Chemotherapy. 2003;49:172–83.

    Article  CAS  PubMed  Google Scholar 

  53. Chen Q, Liu L, Hu X, Jia X, Gong X, Feng Y, et al. A Small KPC-2-producing plasmid in Klebsiella pneumoniae: implications for diversified vehicles of carbapenem resistance. Microbiol Spectr. 2022;10:e0268821.

    Article  PubMed  Google Scholar 

  54. Mehta SC, Furey IM, Pemberton OA, Boragine DM, Chen Y, Palzkill T. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem. 2021;296:100155.

    Article  CAS  PubMed  Google Scholar 

  55. Ramirez MS, Tolmasky ME. Amikacin: uses, resistance, and prospects for inhibition. Molecules. 2017;22:2267.

  56. Fernández-Martínez M, Ruiz del Castillo B, Lecea-Cuello MJ, Rodríguez-Baño J, Pascual Á, Martínez-Martínez L, et al. Prevalence of aminoglycoside-modifying enzymes in escherichia coli and klebsiella pneumoniae producing extended spectrum β-lactamases collected in two multicenter studies in Spain. Microbial Drug Resistance. 2017;24:367–76.

    Article  PubMed  Google Scholar 

  57. Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist. 2024;6:dlae127.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Swedan S, Alabdallah EA, Ababneh Q. Resistance to aminoglycoside and quinolone drugs among Klebsiella pneumoniae clinical isolates from northern Jordan. Heliyon. 2024;10:e23368.

    Article  CAS  PubMed  Google Scholar 

  59. Hammad HA, Mohamed IS, El-Badawy O, Zakaria AM, Shabaan L, Aly SA. pKpQIL-like plasmid contributes to the dissemination of bla(NDM-1) and plasmid mediated quinolone resistance determinants among multi drug resistant Klebsiella pneumoniae in Assiut university hospital, Egypt. Iran J Microbiol. 2023;15:208–18.

    PubMed  PubMed Central  Google Scholar 

  60. Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol. 2023;14:1238482.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, et al. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front Cell Infect Microbiol. 2022;12:877995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li L, Gao X, Li M, Liu Y, Ma J, Wang X, et al. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol. 2024;14:1324895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sutherland IW. The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9:222–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ma Y, Xu Y, Yestrepsky BD, Sorenson RJ, Chen M, Larsen SD, et al. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One. 2012;7:e47255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ Antimicrob Resist. 2024;2:27.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Albarri O, AlMatar M, Öcal MM, Köksal F. Overexpression of Efflux Pumps AcrAB and OqxAB contributes to ciprofloxacin resistance in clinical isolates of K. pneumonia. Curr Protein Pept Sci. 2022;23:356–68.

    Article  CAS  PubMed  Google Scholar 

  67. Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, et al. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun. 2025;16:940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52:1701–18.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat. 2022;43:1162–82.

    Article  CAS  PubMed  Google Scholar 

  70. Bhowmik P, Bharatham N, Murakami S, Ramachandran V, Datta S. Identification of key amino acid residues in OqxB mediated efflux of fluoroquinolones using site-directed mutagenesis. Res Microbiol. 2023;174:104039.

    Article  CAS  PubMed  Google Scholar 

  71. Xie L, Li J, Peng Q, Liu X, Lin F, Dai X, et al. Contribution of RND superfamily multidrug efflux pumps AdeABC, AdeFGH, and AdeIJK to antimicrobial resistance and virulence factors in multidrug-resistant Acinetobacter baumannii AYE. Antimicrob Agents Chemother. 2025;69:e0185824.

    Article  PubMed  Google Scholar 

  72. Gual-de-Torrella A, Delgado-Valverde M, Pérez-Palacios P, Oteo-Iglesias J, Pascual Á, Fernández-Cuenca F. In vitro activity of six biocides against carbapenemase-producing Klebsiella pneumoniae and presence of genes encoding efflux pumps. Enferm Infecc Microbiol Clin (Engl Ed). 2021: in press. https://doi.org/10.1016/j.eimc.2021.05.004.

  73. Smith BL, Fernando S, King MD. Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: a molecular dynamics study. Sci Rep. 2024;14:2742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goodarzi R, Arabestani M, Alikhani MY, Keramat F, Asghari B. Emergence of tigecycline-resistant Klebsiella pneumoniae ST11 clone in patients without exposure to tigecycline. J Infect Dev Ctries. 2021;15:1677–84.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Z, Zhao H, Shi C. Clonal spread and genetic mechanisms underpinning ciprofloxacin resistance in Salmonella enteritidis. Foods. 2025;14:289.

  76. Bedenić B, Vranić-Ladavac M, Venditti C, Tambić-Andrašević A, Barišić N, Gužvinec M, et al. Emergence of colistin resistance in Enterobacter aerogenes from Croatia. J Chemother. 2018;30:120–3.

    Article  PubMed  Google Scholar 

  77. Li Y, Kumar S, Zhang L, Wu H, Wu H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med (Wars). 2023;18:20230707.

    Article  CAS  PubMed  Google Scholar 

  78. Jiang Y, Wang Y, Hua X, Qu Y, Peleg AY, Yu Y. Pooled plasmid sequencing reveals the relationship between mobile genetic elements and antimicrobial resistance genes in clinically isolated Klebsiella pneumoniae. Genomics Proteom Bioinforma. 2020;18:539–48.

    Article  CAS  Google Scholar 

  79. Zhang J, Xu Y, Wang M, Li X, Liu Z, Kuang D, et al. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med. 2023;15:106.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ikhimiukor OO, Zac Soligno NI, Akintayo IJ, Marcovici MM, Souza SSR, Workman A, et al. Clonal background and routes of plasmid transmission underlie antimicrobial resistance features of bloodstream Klebsiella pneumoniae. Nature Commun. 2024;15:6969.

    Article  CAS  Google Scholar 

  81. Li P, Liang Q, Liu W, Zheng B, Liu L, Wang W, et al. Convergence of carbapenem resistance and hypervirulence in a highly-transmissible ST11 clone of K. pneumoniae: An epidemiological, genomic and functional study. Virulence. 2021;12:377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen H, Tao S, Li N, Wang F, Wang L, Tang Y, et al. Functional comparison of anti-restriction and anti-methylation activities of ArdA, KlcA, and KlcA(HS) from Klebsiella pneumoniae. Front Cell Infect Microbiol. 2022;12:916547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist. 2020;23:174–80.

    Article  PubMed  Google Scholar 

  84. Xu Y, Zhang J, Wang M, Liu M, Liu G, Qu H, et al. Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae. Genome Med. 2021;13:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31:e00088-17.

  86. Wang X, Zhang H, Yu S, Li D, Gillings MR, Ren H, et al. Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens. ISME J. 2024;18: in press. https://doi.org/10.1093/ismejo/wrad032.

  87. Wang Q, Liu Y, Chen R, Zhang M, Si Z, Wang Y, et al. Genomic insights into the evolution and mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae co-harboring bla(KPC) and bla(NDM): implications for public health threat mitigation. Ann Clin Microbiol Antimicrob. 2024;23:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gu Y, Wang X, Zhang W, Weng R, Shi Q, Hou X, et al. Dissemination of bla(NDM)-harboring plasmids in carbapenem-resistant and hypervirulent Klebsiella pneumoniae. Microbiol Spectr. 2025;13:e0196824.

    Article  PubMed  Google Scholar 

  89. Hobson CA, Pierrat G, Tenaillon O, Bonacorsi S, Bercot B, Jaouen E, et al. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob Agents Chemother. 2022;66:e0044722.

    Article  PubMed  Google Scholar 

  90. Li S, Feng X, Li M, Shen Z. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy. Front Microbiol. 2023;14:1159912.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Arcari G, Cecilia F, Oliva A, Polani R, Raponi G, Sacco F, et al. Genotypic Evolution of Klebsiella pneumoniae Sequence Type 512 during Ceftazidime/Avibactam, Meropenem/Vaborbactam, and Cefiderocol Treatment, Italy. Emerg Infect Dis. 2023;29:2266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front Microbiol. 2016;7:173.

    Google Scholar 

  93. Comandatore F, Sassera D, Bayliss SC, Scaltriti E, Gaiarsa S, Cao X, et al. Gene composition as a potential barrier to large recombinations in the bacterial pathogen Klebsiella pneumoniae. Genome Biol Evol. 2019;11:3240–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. David C, Czauderna A, Cheng L, Lagune M, Jung HJ, Kim SG, et al. Intestinal carbapenem-resistant Klebsiella pneumoniae undergoes complex transcriptional reprogramming following immune activation. Gut Microbes. 2024;16:2340486.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Heljanko V, Tyni O, Johansson V, Virtanen JP, Räisänen K, Lehto KM, et al. Clinically relevant sequence types of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae detected in Finnish wastewater in 2021-2022. Antimicrob Resist Infect Control. 2024;13:14.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bedenić B, Pešorda L, Krilanović M, Beader N, Veir Z, Schoenthaler S, et al. Evolution of Beta-Lactamases in Urinary Klebsiella pneumoniae Isolates from Croatia; from Extended-Spectrum Beta-Lactamases to Carbapenemases and Colistin Resistance. Curr Microbiol. 2022;79:355.

    Article  PubMed  Google Scholar 

  97. Guan X, Jin L, Zhou H, Chen J, Wan H, Bao Y, et al. Polydatin prevent lung epithelial cell from Carbapenem-resistant Klebsiella pneumoniae injury by inhibiting biofilm formation and oxidative stress. Sci Rep. 2023;13:17736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mondol SM, Hossain MA, Haque FKM. Comprehensive genomic insights into a highly pathogenic clone ST656 of mcr8.1 containing multidrug-resistant Klebsiella pneumoniae from Bangladesh. Sci Rep. 2025;15:5909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Han.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Li, S., Zhang, D. et al. The mechanisms of antibiotic resistance and drug resistance transmission of Klebsiella pneumoniae. J Antibiot (2025). https://doi.org/10.1038/s41429-025-00860-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41429-025-00860-5

Search

Quick links