Abstract
The escalating rise of antimicrobial resistance (AMR) casts a grave shadow over global public health, making once manageable infections increasingly difficult to treat. Despite advancements in combination chemotherapy for multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (TB), this pathogen remains a formidable foe. TB is now the second leading cause of death worldwide from infectious diseases, only surpassed by COVID-19. It is the primary driver of AMR-related deaths, particularly among HIV co-infected individuals. A significant challenge lies in TB’s resistance to β-lactam antibiotics, the most widely used class, comprising about 65% of global antibiotic consumption. This resistance is driven by the bacterium’s β-lactamase enzyme (BlaC) production, which neutralizes the antibiotic by hydrolyzing the β-lactam ring. Although BlaC remains susceptible to β-lactamase inhibitors (MBIs) like sulbactam, tazobactam, and clavulanate, resistance mutations in secondary catalytic sites pose an emerging threat, potentially undermining these inhibitors. To combat this evolving challenge, a comprehensive study explored BlaC’s role in AMR. The research spanned six phases, from gene and protein sequence analysis to dynamic protein modelling and mutational landscape exploration. Homology modelling was employed to generate structures for all 40 BlaC variants, with stability assessed through Ramachandran plots. Drug-protein interactions with six β-lactam agents and MBIs were investigated via automated docking and simulation studies. These insights provide a deeper understanding of BlaC-mediated resistance in TB and offer a promising foundation for future drug development to address this global health crisis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Cortoos PJ, De Witte K, Peetermans WE, Simoens S, Laekeman G. Opposing expectations and suboptimal use of a local antibiotic hospital guideline: a qualitative study. J Antimicrob Chemother. 2008;62:189–95.
Lawrence JG, Ochman H. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 2002;10:1–4.
Shrivastava SR, Shrivastava PS, Ramasamy J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J Med Soc. 2018;32:76.
Chaudhry D, Tomar P. Antimicrobial resistance: the next BIG pandemic. Int J Community Med Public Health. 2017;4:2632–6.
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.
O’neill J. AMR review. 2016. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.
Drug-resistant infections: a threat to our economic future. 2017. https://hdl.handle.net/10986/26707.
Taneja N, Sharma M. Antimicrobial resistance in the environment: the Indian scenario. Indian J Med Res. 2019;149:119–28.
Global tuberculosis report. 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.
Wong D, van Duin D. Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs. 2017;77:615–28.
Sg K, Ra B. Reappraising the use of β-lactams to treat tuberculosis. Expert Rev Anti Infect Ther. 2012. https://pubmed.ncbi.nlm.nih.gov/23106275/.
Frère JM, Joris B, Granier B, Matagne A, Jacob F, Bourguignon-Bellefroid C. Diversity of the mechanisms of resistance to beta-lactam antibiotics. Res Microbiol. 1991;142:705–10.
Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C. Tackling the antibiotic resistance caused by class a β-lactamases through the use of β-lactamase inhibitory protein. Int J Mol Sci. 2018;19:2222.
Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:657–86.
Rawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010;2:263–74.
Kurz SG, Wolff KA, Hazra S, Bethel CR, Hujer AM, Smith KM, et al. Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance? A biochemical rationale for the use of β-lactam–β-lactamase inhibitor combinations. Antimicrob Agents Chemother. 2013;57:6085–96.
Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23:160–201.
Hugonnet JE, Blanchard JS. Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. Biochemistry. 2007;46:11998–2004.
Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE, Blanchard JS. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 2009;323:1215–8.
Egesborg P, Carlettini H, Volpato JP, Doucet N. Combinatorial active-site variants confer sustained clavulanate resistance in BlaC β-lactamase from Mycobacterium tuberculosis. Protein Sci Publ Protein Soc. 2015;24:534–44.
Bhattacharya S, Junghare V, Pandey NK, Baidya S, Agarwal H, Das N, et al. Variations in the SDN loop of class a beta-lactamases: a study of the molecular mechanism of BlaC (Mycobacterium tuberculosis) to alter the stability and catalytic activity towards antibiotic resistance of MBIs. Front Microbiol. 2021;12:710291.
Soroka D, Li de la Sierra-Gallay I, Dubée V, Triboulet S, van Tilbeurgh H, Compain F, et al. Hydrolysis of clavulanate by Mycobacterium tuberculosis β-lactamase BlaC harboring a canonical SDN motif. Antimicrob Agents Chemother. 2015;59:5714–20.
van Alen I, Chikunova A, Safeer AA, Ahmad MUD, Perrakis A, Ubbink M. The G132S mutation enhances the resistance of Mycobacterium tuberculosis β-lactamase against sulbactam. Biochemistry. 2021;60:2236–45.
Banerjee S, Pieper U, Kapadia G, Pannell LK, Herzberg O. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Biochemistry. 1998;37:3286–96.
Egorov A, Rubtsova M, Grigorenko V, Uporov I, Veselovsky A. The role of the Ω-loop in regulation of the catalytic activity of TEM-type β-lactamases. Biomolecules. 2019;9:854.
Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB) - structure and function. J Enzym Inhib Med Chem. 2017;32:917–9.
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.
Srivastava A, Singhal N, Goel M, Virdi JS, Kumar M. CBMAR: a comprehensive β-lactamase molecular annotation resource. Database. 2014;2014:bau111.
National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/, 2025.
Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acids Res. 2009;37:D443–7.
Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinforma Oxf Engl. 2010;26:680–2.
Multiple Sequence Alignment - CLUSTALW. https://www.genome.jp/tools-bin/clustalw, 2025.
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–4.
Elings W, Tassoni R, van der Schoot SA, Luu W, Kynast JP, Dai L, et al. Phosphate promotes the recovery of Mycobacterium tuberculosis β-lactamase from clavulanic acid inhibition. Biochemistry. 2017;56:6257–67.
Schrödinger LLC. The PyMOL molecular graphics system, version 2.5.7, 2023.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.
PubChem. Ampicillin. https://pubchem.ncbi.nlm.nih.gov/compound/6249, 2005.
PubChem. Avibactam. https://pubchem.ncbi.nlm.nih.gov/compound/9835049, 2006.
PubChem. Aztreonam. https://pubchem.ncbi.nlm.nih.gov/compound/5742832, 2005.
PubChem. Cephalexin. https://pubchem.ncbi.nlm.nih.gov/compound/27447, 2005.
PubChem. Clavulanic Acid. https://pubchem.ncbi.nlm.nih.gov/compound/5280980, 2004.
PubChem. Meropenem. https://pubchem.ncbi.nlm.nih.gov/compound/441130, 2005.
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–7.
Laskowski RA. PDBsum: a standalone program for generating PDBsum analyses. Protein Sci. 2022;31:e4473.
Gorai S, Junghare V, Kundu K, Gharui S, Kumar M, Patro BS, et al. Synthesis of dihydrobenzofuro[3,2-b]chromenes as potential 3CLpro inhibitors of SARS-CoV-2: a molecular docking and molecular dynamics study. Chemmedchem. 2022;17:e202100782.
Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israe. Dordrecht: Springer Netherlands; 1981. p. 331–42.
Bhattacharya S, Junghare V, Pandey NK, Ghosh D, Patra H, Hazra S. An insight into the complete biophysical and biochemical characterization of novel class A beta-lactamase (Bla1) from Bacillus anthracis. Int J Biol Macromol. 2020;145:510–26.
Nair ASR, Samanta A, Hazra S. Understanding the basis of thermostability for enzyme “Nanoluc” towards designing industry-competent engineered variants. J Biomol Struct Dyn. 2024;28;1–14.
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8.
Junghare V, Alex R, Baidya A, Paul M, Alyethodi RR, Sengar GS, et al. In silico modeling revealed new insights into the mechanism of action of enzyme 2’-5’-oligoadenylate synthetase in cattle. J Biomol Struct Dyn. 2022;40:14013–26.
Kumar S, Seth D, Deshpande PA. Molecular dynamics simulations identify the regions of compromised thermostability in SazCA. Proteins. 2021;89:375–88.
Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model. 2009;15:1093–108.
Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinforma Oxf Engl. 2003;19:163–4.
Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 2005;33:W299–302.
Zhou HX, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev. 2018;118:1691–741.
beta-lactamase TEM-1 [Acinetobacter baumannii] - Protein - NCBI. https://www.ncbi.nlm.nih.gov/protein/AAP20891, 2003.
Acinetobacter baumannii beta-lactamase TEM-1 (blaTEM-1) gene, complete cds. 2003. https://www.ncbi.nlm.nih.gov/nuccore/AY263331.1.
beta-lactamase SHV-1b [Acinetobacter baumannii] - Protein - NCBI. https://www.ncbi.nlm.nih.gov/protein/AAV38100, 2004.
Acinetobacter baumannii beta-lactamase SHV-1b gene, complete cds. 2004. https://www.ncbi.nlm.nih.gov/nuccore/AY787643.1.
Martínez T, Ropelewski AJ, González-Mendez R, Vázquez GJ, Robledo IE. Draft genome sequence of a multidrug-resistant Klebsiella pneumoniae Carbapenemase-producing Acinetobacter baumannii sequence type 2 isolate from Puerto Rico. Genome Announc. 2016;4:e00758-16.
Xu L, Evans J, Ling T, Nye K, Hawkey P. Rapid genotyping of CTX-M extended-spectrum beta-lactamases by denaturing high-performance liquid chromatography. Antimicrob Agents Chemother. 2007;51:1446–54.
Cheung TKM, Ho PL, Woo PCY, Yuen KY, Chau PY. Cloning and expression of class A β-lactamase gene blaABPS in Burkholderia pseudomallei. Antimicrob Agents Chemother. 2002;46:1132–5.
Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, et al. Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol. J Bacteriol. 2012;194:2371–2.
Lartigue MF, Nordmann P, Edelstein MV, Cuzon G, Brisse S, Poirel L. Characterization of an extended-spectrum class A β-lactamase from a novel enterobacterial species taxonomically related to Rahnella spp./Ewingella spp. J Antimicrob Chemother. 2013;68:1733–6.
Seoane A, García Lobo JM. Nucleotide sequence of a new class A beta-lactamase gene from the chromosome of Yersinia enterocolitica: implications for the evolution of class A beta-lactamases. Mol Gen Genet MGG. 1991;228:215–20.
Dymova MA, Alkhovik OI, Evdokimova LS, Cherednichenko AG, Petrenko TI. Complete genome sequence of a novel clinical isolate, Mycobacterium abscessus strain NOV0213. Genome Announc. 2016;4:e01407-15.
Fonzé E, Charlier P, To’th Y, Vermeire M, Raquet X, Dubus A, et al. TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant. Acta Crystallogr D Biol Crystallogr. 1995;51:682–94.
Philippon A, Slama P, Dény P, Labia R. A structure-based classification of class a β-lactamases, a broadly diverse family of enzymes. Clin Microbiol Rev. 2016;29:29–57.
Galdadas I, Qu S, Oliveira ASF, Olehnovics E, Mack AR, Mojica MF, et al. Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics. eLife. 2021;10:e66567.
Giakkoupi P, Hujer AM, Miriagou V, Tzelepi E, Bonomo RA, Tzouvelekis LS. Substitution of Thr for Ala-237 in TEM-17, TEM-12 and TEM-26: alterations in β-lactam resistance conferred on Escherichia coli. FEMS Microbiol Lett. 2001;201:37–40.
Marciano DC, Brown NG, Palzkill T. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 β-lactamase. Protein Sci Publ Protein Soc. 2009;18:2080–9.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kumar, K.C.A., Nair, A., Sharma, S. et al. Strategic design of a multi-tier database for class A β-lactamase BlaC variants of M. tuberculosis: advancing the fight against antibacterial resistance. J Antibiot (2025). https://doi.org/10.1038/s41429-025-00862-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41429-025-00862-3