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Plasma and serum volume remain unchanged following a 12-h
fast from food and drink despite changes in blood and urinary
hydration markers
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BACKGROUND/OBJECTIVES: The effect of mild dehydration on plasma and serum volume has not been well established.
Furthermore, the ability of urinary and blood biomarkers to monitor small hydration changes have not been solidified. There were
two objectives of this research: 1. Determine if mild dehydration affects plasma and serum volume; 2. Determine if mild
dehydration can be detected better by urinary or blood biomarkers.
SUBJECTS/METHODS: 47 subjects were recruited; 10 subjects were removed from the study and 37 subjects (27% male)
completed the study. This was a crossover study design such that each subject underwent all protocols in a counterbalanced order.
Protocols consisted of 12-h dehydration, 12-h hydration, and control.
RESULTS: Neither plasma volume (p= 0.914), plasma volume status (p= 0.649), nor serum volume (p= 0.273) were different
among protocols. Body mass (p < 0.001) was lower following the dehydration protocol. Urine color (p < 0.001), urine osmolality
(p < 0.001), urine specific gravity (p < 0.001), serum osmolality (p < 0.001), and plasma osmolality (p < 0.001) were all lower following
the hydration protocol. Hematocrit (p= 0.842) and hemoglobin concentration (p= 0.558) were not different among protocols.
CONCLUSIONS: Dehydration did not affect plasma or serum volume. Therefore, a 12-h fast from food and water as done in this
study will not likely affect laboratory test results of biomarker concentration. All 3 urinary measures were able to detect changes in
hydration status, whereas only 2 blood measures were able to detect changes in hydration status. This may indicate that urinary
measures are best at detecting small changes in hydration status.
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INTRODUCTION
Hydration status has been shown to affect exercise performance
[1–3], cognitive performance [4, 5], and laboratory test results [6]. It
is likely the effect of hydration on these factors is a result of changes
in plasma volume (PV). The effect hydration status and exercise have
on PV is well understood [2, 7–10]. However, less research has
investigated how mild dehydration, in the absence of exercise
affects both PV and serum volume (SV). Understanding the effects of
hydration status on PV and SV may be important clinically, as the
concentration of plasma [11–14] and serum [15–17] biomarkers are
used to diagnose disease. Concentration of these biomarkers may
vary based on hydration status, ultimately affecting diagnoses. For
example, body mass index as an estimate of PV has been shown to
effect biomarkers used to assess Alzheimer’s disease [6]. Hydration
status may also affect the bioavailability of water-soluble drugs [18].
Previous research has found changes in PV due to hydration status
[19–21] which is likely to affect SV, as serum is simply plasma
without clotting factors [22]. Yet, we were unable to find research
specifically assessing the effect of hydration status on SV.
While many studies use body weight as a means of assessing

hydration status [23, 24], dehydration may occur with no significant
changes in body weight [25]. Additionally, it may be difficult to
determine changes in body weight as a result of hydration status in

the clinic, where patients are wearing different clothing from previous
visits or may have experienced weight losses or gains due to changes
in lean and fat mass [26]. Therefore, urinary or blood measurements
may be better alternatives for assessing hydration status clinically.
This study was conducted for two primary purposes: 1. To

determine if dehydration causes PV or SV changes at rest; and 2. To
determine which urinary and blood markers of hydration are able
to detect dehydration in subjects adhering to protocols causing
modest changes in hydration status.

MATERIALS/SUBJECTS AND METHODS
Study design
This was a crossover study design. A formal sample size calculator
was used to determine that at least 30 subjects were needed to
reach a power of 90% with an alpha level 0.01 [27]. Forty-seven
subjects were recruited for this study and all were Caucasian. None
of the subjects had comorbid heart disease, nor were any of them
using diuretics. Informed consent was obtained from all subjects,
and the Appalachian State University Institutional Review Board for
the protection of human subjects (Boone, NC, USA) approved the
study (IRB#18-0083). All subjects participated in the control,
hydration, and dehydration protocols in a counterbalanced order.
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The hydration and dehydration protocol required a 12-h fast
from food. The hydration protocol required subjects to drink water
during the 12-h fast (at least 6, 8-ounce (237mL) glasses for males
and at least 4, 8-ounce (237 mL) glasses for females), while the
dehydration protocol required a 12-h fast from fluid ingestion.
Participants were reminded via email the day before their lab visit
to begin the protocol exactly 12-h before coming to lab. Twelve
hours was chosen to mimic the clinical relevance of fasting 12-h
prior to common blood tests. For the control protocol, subjects
maintained their normal dietary routine prior to measurements.
Subjects reported to lab the same time of day for all protocols to
control for diurnal rhythm. Each subject was required to complete
all three testing protocols within a period of 7days to minimize
effects from weight changes, with a washout period of at least
24 h between protocols. Of the 47 subjects, 1 did not follow the
protocol on their hydration day and 5 had issues with blood draw.
Data from these 6 subjects were removed from analysis leaving a
total of 41 subjects who completed the study (Fig. 1).

Variables
To determine hydration status, the following measurements were
analyzed: spot urine osmolality (UOSM), spot urine specific gravity
(USG), spot urine color (UC), body mass (BM), percent total body

water (%TBW), hematocrit (Hct), hemoglobin concentration ([Hb]),
plasma osmolality (POSM), serum osmolality (SOSM), plasma volume
(PV), plasma volume status (PVS), and serum volume (SV). When a
subject came to the laboratory, blood was drawn from a prominent
vein in the antecubital space while seated [28] using a 21-gauge
butterfly needle with a 7-inch luer lock extension connected to a
vacutainer adapter (Becton-Dickinson, Franklin Lakes, NJ USA).
Blood was collected into a 4ml heparin and a 4ml serum separation
vacutainer (Becton-Dickinson, Franklin Lakes, NJ USA).
After blood collection, the subject entered a private restroom

where he/she provided a urine sample, emptied his/her bladder
completely, and then performed a naked body weight and %TBW
measurement using the Tanita BC-533 bioelectrical impedance
(BIA) scale (Tanita Corporation of America, Inc., Arlington Heights,
IL USA). This scale was used due to its ability to give repeatable
weight and %TBW measurements, as tested in-house prior to
commencement of the study. This type of scale does not
distinguish between intracellular water and extracellular water.
The urine sample was not a first morning sample as first morning
urine may not strongly correlate with fluid intake [29].
The urine sample was visually analyzed for color using the

sample-over-chart method [30] in ambient fluorescent laboratory
lighting by the same non-blinded investigator [31]. Urine

Fig. 1 Schematic representation of data collection from initial recruitment to data used for statistical analysis.
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Osmolality was measured using a single sample osmometer
(Advanced Instruments Model 3250, Norwood, MA USA). Specific
gravity was measured using an analog handheld refractometer
(ATAGO U.S.A., Inc., Bellevue, WA USA).
Blood from the heparin vacutainer was used to determine Hct in

duplicate (1.32% intra-assay coefficient of variation) by filling two
microhematocrit tubes with blood from the heparinized vacutai-
ner, which were then centrifuged at 13,700 × g for two minutes
using a microhematocrit centrifuge (StatSpin CritSpin, HemoCue
America, Brea, CA USA). Hematocrit was determined by measuring
the height of blood and plasma divided by the height of red blood
cells (RBCs) and multiplied by 100. A 10-fold dilution was
performed by placing 1ml of blood from the heparinized
vacutainer into 9 ml of deionized water (dH2O) for 30 min to
allow lysing of RBCs. Following this incubation period a 10-fold
series dilution was performed two more times using dH2O to
obtain a final 1000-fold dilution. This 1000-fold dilution was used
to determine [Hb] via the Harboe method with an Allen correction
factor [32]. Briefly, the 1000-fold diluted sample was poured into a
cuvette and underwent spectrophotometry at the wavelengths of
380, 415, and 450 nanometers (nm) using an Eon spectro-
photometer (BioTek Instruments, Inc., Winooski, VT USA). The
absorbance at each wavelength, after subtraction from a dH2O
blank, were used to determine [Hb] with a modified version of the
Harboe equation to give hemoglobin results in g/dl instead of
mg/dl. Thus, the following equation was used: Hb (g/dl) =
((0.01672 x A415) – (0.00836 x A380) – (0.00836 x A450)) * 1,000;
where 0.01672 and 0.00836 are constants, A415 represents
absorbance at 415 nm, A380 represents absorbance at 380 nm,
A450 represents absorbance at 450 nm, and multiplying by 1,000
accounts for the 1,000-fold dilution.
Hematocrit and [Hb] were then used to determine plasma

volume using the following equations developed by Dill and
Costill, 1974 [7]:

BVA ¼ BVBðHbB=HbAÞ

CVA ¼ BVAðHctAÞ

PVA ¼ BVA � CVA

CVB ¼ BVBðHctBÞ

PVB ¼ BVB � CVB;

where BV = blood volume, Hb = hemoglobin, CV = red blood cell
volume, Hct = hematocrit, PV = Plasma Volume, A = after
dehydration, B = before dehydration, BVB was considered to
be 100.
Plasma volume was calculated with control values for [Hb] and

Hct entered in the “before” part of the formulas and [Hb] and Hct
values for dehydration or hydration put in the “after” part of the
formulas to provide consistency of the PV calculations.
Plasma volume status has also been shown to be an accurate

measure to assess plasma volume [33, 34]. Therefore, PVS was
calculated according to Hoshika et al. [33]:

Actual PV ¼ ð1� hematocritÞ � aþ ðb � body weight in kgÞ½

Ideal PV ¼ c � body weight in kg

PVSð%Þ ¼ ½ðactual PV� ideal PVÞ=ideal PV� � 100;
where PV = plasma volume, a= 1530 in males and 864 in females,
b= 41 in males and 47.9 in females, kg = kilograms, c= 39 in
males and 40 in females, PVS = plasma volume status.

The remaining 3mL of blood in the heparin vacutainer
underwent centrifugation at 2630 × g for 10 min at 4 °C (Thermo-
Scientific Sorvall Legend RT+ refrigerated centrifuge, Thermo
Fisher Scientific, Inc., Walthum, MA USA) to separate the plasma.
Following centrifugation, POSM was determined via the single-
sample osmometer.
3 mL of blood were removed from the serum separation

vacutainer and placed into a serum transfer tube. This was done to
ensure the same amount of blood was used to determine SV for
each sample, as no formula exists for calculating SV. The 3mL of
blood was then allowed to coagulate at room temperature for
greater than 30min, but no longer than 60min. Following
coagulation, the blood underwent centrifugation at 2630 × g for
10min at 4 °C. The separated serum was then poured into a
graduated cylinder standing on a chemical scale (Mettler Toledo
XS104, Mettler-Toledo, LLC, Columbus, OH USA) to determine SV
produced per 3 mL of blood both by visual measurement using
the graduated cylinder and by weighing the serum sample with
the assumption that 1 µl of serum has a mass of 1 mg. Once the
measurement of SV was complete, SOSM was measured via freezing
point depression using the single sample osmometer. All
measurements were performed immediately following blood
and urine collection to avoid any fluid changes due to storage
[35].

Statistical analysis
One subject forgot to measure %TBW on their control day creating
one missing data point. To account for this, a multiple imputation
approach using 5 imputations and taking the mean was used. The
original data set of %TBW was then compared to the %TBW data
following multiple imputation using a two-tailed paired T-test.
Outliers for all variables were identified using the Z score method
with cutoff points of 3.0 and −3.0. This decision was made a priori
in order to remove subjects who likely did not comply with one of
the protocols.
A repeated measures analysis of variance (RMANOVA) was used

to compare all variables when multivariate normality was met.
When Mauchley’s test of sphericity was not met, a
Greenhouse–Geisser Correction factor was used. For variables in
which multivariate normality was not met, a two-way Friedman’s
non-parametric test was used. Bonferroni post-hoc analyses were
used when significance was found to determine differences
among variables. Partial eta squared (η2) was used to calculate
effect size when RMANOVA was used, and Kendall’s W was used
for a Friedman test.
To determine sex differences between age, a two-tailed

independent samples T-test was conducted when the assumption
of normality and homogeneity of variance for mean was met. A
two-tailed Mann–Whitney U test was conducted when normality
or homogeneity of variance for mean was not met. Cohen’s D (d)
was used to calculate effect size when a two-tailed independent
samples T-test was conducted and η2 was used to calculate effect
size when a Mann–Whitney U test was conducted.
Sex differences for all other variables were compared using a

multivariate ANOVA (MANOVA) with Pillai’s trace even if
normality was violated, as long as homogeneity of variance
was met, as the MANOVA has been found to outperform the
nonparametric test when only the assumption of normal
distribution is violated [36]. If the assumption of homogeneity
of variance was violated, a nonparametric multivariate
Kruskal–Wallis test was used.
Normality was tested using a Shapiro–Wilk Normality test.

Homogeneity of variance was tested using a Levene statistic.
Alpha was set at 0.05 to determine statistical significance. All
statistical analyses were generated using the Statistical Package
for the Social Sciences (SPSS) version 28 (SPSS Inc., Chicago,
IL USA).
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RESULTS
The paired T-test between the original %TBW data set and the %
TBW data set following multiple imputation indicated a standard
deviation of zero. Therefore, we used the data set derived from
multiple imputation for all statistical analyses. The Z score method
showed 4 subjects with outliers. These 4 subjects were removed
giving a total of 37 subjects (10 males and 27 females) for
statistical analysis (Fig. 1).
Normality was met in all protocols for %TBW and SOSM (p > 0.05)

but not for BM, age, %TBW, UC, USG, UOSM, Hct, [Hb], PV, PVS, POSM,
SV in grams, or SV in milliliters (p < 0.05). Homogeneity of variance
based on mean for all protocols was met for each variable
(p > 0.05) except USG and UOSM (p < 0.05). Normality based on sex
was met for PV, PVS, and SOSM (p > 0.05) but not for any other
variable (p < 0.05). Homogeneity of variance based on mean for
sex was met in all variables (p > 0.05).
There were no differences among protocols for %TBW or age

(p= 1.000). Serum osmolality was lower in the hydration group
compared to the dehydration (p < 0.001) and control groups
(p < 0.001). There were no significant differences among protocols
for Hct (p= 0.842), [Hb] (p= 0.558), PV (p= 0.914), PVS (p= 0.649),
SV in grams (p= 0.273), or SV in milliliters (p= 0.334).
Body mass was 0.14% lower following dehydration compared to

control (p= 0.001) and 0.86% lower than the hydration protocol
(p < 0.001). Urine color was lower following the hydration protocol
compared to both the dehydration (p < 0.001) and control
(p= 0.011) protocols. Urine osmolality, USG, and POSM, were all
lower following the hydration protocol compared to the dehydra-
tion (p < 0.001) and control (p < 0.001) protocols. See Fig. 2 and
Supplementary Data 1 for comparisons among protocols.

Sex differences
Body mass, %TBW, Hct, and [Hb], were greater in males compared
to females for all protocols (p < 0.001). Plasma osmolality was also

greater in males for the control (p < 0.001), hydration (p= 0.025),
and dehydration (p= 0.003) protocols. Males had higher SOSM but
only at the control protocol (p= 0.026). On the other hand,
females had a greater PV and PVS in all protocols (p < 0.001).
Serum volume in grams was greater in females for the control
(p= 0.005), hydration (p < 0.001), and dehydration (p= 0.001)
protocols. Females also had a higher SV in milliliters but only at the
hydration protocol (p= 0.034). There were no differences between
sexes for age, UC, USG, or UOSM (p > 0.05). See Fig. 3 and
supplementary Data 2 for comparison between sexes.

DISCUSSION
There were 2 purposes of this study: 1. To determine if a 12-h fast
affects PV or SV; 2. To analyze the performance of blood and
urinary markers in detecting hydration changes. In regard to the
first purpose, we found that neither PV nor SV were affected by the
dehydration and hydration protocols. For the second purpose, we
found that BM, SOSM, POSM, UC, UOSM, and USG did show
differences among protocols.
The finding that PV and SV did not change supports the practice

of not considering hydration status when analyzing clinical blood
tests. Hematocrit and [Hb] also did not change, which is expected
given the calculation used to determine PV is dependent upon Hct
and [Hb] [7]. A lack of change in Hct, [Hb], and PV among our
protocols is in agreement with other studies [37–41] and supports
the hypothesis that PV and SV are maintained despite small
changes in hydration status [39].
Plasma osmolality and SOSM were all lower after the hydration

protocol compared to the dehydration and control protocols. Our
results agree with those of others who have found changes in
POSM and SOSM with changes in hydration status [20,
37, 40, 42–44]. However, none of the protocols in our study
caused POSM or SOSM to go outside of the normal range
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(≥290mOsm) [1] for a hydrated individual. This is to be expected
with our modest protocol, as POSM and SOSM have been reported
to be well controlled in light of hydration status [35, 42].
Urine osmolality, USG, and UC were all lower after the hydration

protocol compared to the dehydration and control protocols. All 3
urinary measures were in the dehydration category of UOSM≥700
mOsmol, USG≥1.020, and UC≥4 [4, 31, 45] following both the
control and dehydration protocols. This shows that solute
concentration in urine is sensitive to modest changes in fluid
intake. Our finding of changes in UOSM and USG with only a 0.86%
reduction in BM disagree with those of Popowski et al. who found
that UOSM was not changed significantly until a 5% decrease in
BM; and that USG was not changed significantly until a 3%
decrease in BM [43]. This distinction is likely due to differences in
protocols, as Popowski et al. was investigating acute dehydration
caused by exercise, whereas our study employed a 12-h period of
dehydration. Therefore, it is possible the urinary values did not
have time to change in the Popowski study. Other research agrees
with our study, supporting the use of urine measurements as an
indicator of hydration status even in cases of mild hypohydration
[38, 39]. Our findings of urinary measures changing with hydration
status despite no changes in SV or PV agree with the findings of
Tucker et al. who found that neither UOSM, USG, nor UC is
predictive of plasma volume [46].
Although not the primary purpose of this study, we compared

all data between sexes. BM, %TBW, Hct, and [Hb] were all
significantly higher in males, which has been shown previously
[38, 47–49]. A unique result was that PV and SV was greater in
females for all protocols. This finding was unexpected since males
tend to have greater blood volume than females [50], and would
therefore be expected to have higher PV and SV. However, it is
possible the menstrual cycle may have caused this difference, as
women have reported retaining water at different times through-
out the menstrual cycle [51]. In expectation from our findings on
PV and SV, POSM and SOSM was found to be greater in males for all
protocols. Urinary markers were not different between sexes.
There are limitations to be considered when interpreting data

from this study. One is that water ingestion was not normalized by

BM in the hydration protocol. This could cause less hydration in
larger individuals and greater hydration in smaller individuals.
Another limitation is that we did not require subjects to report the
amount of fluid they ingested during the hydration protocol
which would have allowed us to normalize data based on the
amount of water each subject ingested. Although our data was
within the normal ranges expected, we used single measures for
UOSM, SOSM, POSM, USG, SV, PV, and [Hb]. While we did use duplicate
measures for Hct, we should have used duplicate measures for all
variables tested. A final limitation to consider is that all subjects in
this study were young (18–22 yrs.) and apparently healthy. Since
hydration status may be affected by age and disease, the results of
this study should not be extrapolated to older or diseased
populations.
In conclusion, no differences were found in PV or SV. Since PV

and SV were not affected by these protocols, it stands to reason
the concentration of clinical biomarkers would also not be
affected by a 12-h fasting protocol as typically prescribed prior
to common blood tests. Of the variables used to assess hydration
status, the urinary variables appeared to be better at detecting
small changes in hydration status compared to blood variables.
Sex differences existed between BM, Hct, and [Hb] as expected.
Unexpectedly, females had higher PV and SV than males. Future
research may consider investigating an older population who
more commonly undergo a 12-h fast prior to blood tests,
normalize fluid based on BM, take multiple blood and urinary
measures during the 12-hour period, and control for the menstrual
cycle in women.

DATA AVAILABILITY
Data analyzed during this study can be found in the Supplementary Data 3 excel
spreadsheet.
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