Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of the effects of different models of nutrient supply on nutritional status and clinical outcomes in ICU patients: a systematic review and network meta-analysis

Abstract

Objectives

Nutrition support improves ICU patients’ nutritional status and outcomes, but optimal models remain unclear. We performed a Bayesian and frequentist network meta-analysis (NMA) and systematic review to assess improvements in nutritional indicators and clinical outcomes.

Methods

We systematically searched PubMed, Embase, Cochrane, and Web of Science up to November 23, 2023 for Randomised controlled trials (RCT), case-control studies, and cohort studies. Outcomes mainly included serum albumin values, length of hospitalization, infection rates, feeding-related complication rates and mortality. All the analyses were conducted using STATA 17.0 and R software version 4.5.1.

Results

A total of 26 studies were included, enrolling 7698 critically ill ICU patients receiving four different types of nutrition support, including parenteral nutrition (PN), enteral nutrition (EN), enteral immunonutrition (EIN), and parenteral nutrition combined with enteral nutrition (PN + EN). The NMA results showed that according to SUCRA, PN + EN had the highest probability of being the most effective intervention for improving serum albumin values (SUCRA = 84.5%) and reducing infection rates (SUCRA = 83.0%) and mortality rates (SUCRA = 82.7%). PN had the highest probability of reducing the length of hospitalization (SUCRA = 77.9%), while EIN had the highest probability of reducing feeding-related complication rates (SUCRA = 81.0%).

Conclusion

The available evidence suggests that all four models of nutrition support affect the nutritional status and clinical outcomes of critically ill patients in the ICU to varying degrees. However, EN + PN appears to be the most effective approach in improving clinical outcomes and nutrition support in critically ill ICU patients. More high-quality studies are needed to validate these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Quality assessment of included studies.
Fig. 3: Network meta-analysis of clinical outcomes.
Fig. 4: Network meta-analysis of mortality rates in adults and minors.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sharma K, Mogensen KM, Robinson MK. Pathophysiology of critical illness and role of nutrition. Nutr Clin Pr. 2019;34:12–22.

    Article  Google Scholar 

  2. Lew CCH, Yandell R, Fraser RJL, Chua AP, Chong MFF, Miller M. Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review [formula: see text]. JPEN J Parenter Enter Nutr. 2017;41:744–58.

    Article  Google Scholar 

  3. Zaragoza-García I, Arias-Rivera S, Frade-Mera MJ, Martí JD, Gallart E, San José-Arribas A, et al. Enteral nutrition management in critically ill adult patients and its relationship with intensive care unit-acquired muscle weakness: a national cohort study. PLoS One. 2023;18:e0286598.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pilotto S, Agustoni F, Morelli AM, Lobascio F, Cereda E, Bironzo P, et al. Nutritional support in lung cancer: Time to combine immunonutrition with immunotherapy?. Nutrition. 2022;98:111637.

    Article  PubMed  Google Scholar 

  5. Mirhosiny M, Arab M, Shahrbabaki PM. How do physicians and nurses differ in their perceived barriers to effective enteral nutrition in the intensive care unit?. Acute Crit Care. 2021;36:342–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ma M, Zheng Z, Zeng Z, Li J, Ye X, Kang W. Perioperative enteral immunonutrition support for the immune function and intestinal mucosal barrier in gastric cancer patients undergoing gastrectomy: a prospective randomised controlled study. Nutrients. 2023;15.

  7. Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017;43:380–98.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alsharif DJ, Alsharif FJ, Aljuraiban GS, Abulmeaty MMA. Effect of supplemental parenteral nutrition versus enteral nutrition alone on clinical outcomes in critically ill adult patients: a systematic review and meta-analysis of randomised controlled trials. Nutrients. 2020;12.

  9. Chittawatanarat K, Pokawinpudisnun P, Polbhakdee Y. Mixed fibers diet in surgical ICU septic patients. Asia Pac J Clin Nutr. 2010;19:458–64.

    PubMed  Google Scholar 

  10. Li X, Yang Y, Ma ZF, Gao S, Ning Y, Zhao L, et al. Enteral combined with parenteral nutrition improves clinical outcomes in patients with traumatic brain injury. Nutr Neurosci. 2022;25:530–6.

    Article  PubMed  CAS  Google Scholar 

  11. Reintam Blaser A, Deane AM, Preiser JC, Arabi YM, Jakob SM. Enteral feeding intolerance: updates in definitions and pathophysiology. Nutr Clin Pr. 2021;36:40–49.

    Article  Google Scholar 

  12. Cadena AJ, Habib S, Rincon F, Dobak S. The benefits of parenteral nutrition (PN) versus enteral nutrition (EN) among adult critically ill patients: What is the evidence? A literature review. J Intensive Care Med. 2020;35:615–26.

    Article  PubMed  Google Scholar 

  13. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.

    Article  PubMed  Google Scholar 

  14. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj. 2009;339:b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  15. You SB, Ulrich CM. Ethical considerations in evaluating discharge readiness from the intensive care unit. Nurs Ethics. 2023:9697330231212338.

  16. Alsamman MA, Alsamman S, Moustafa A, Khan MS, Steinbrunner J, Koselka H. Critical care utilization in patients with diabetic ketoacidosis, stroke, and gastrointestinal bleed: two hospitals experience. Cureus. 2019;11:e4698.

    PubMed  PubMed Central  Google Scholar 

  17. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomised studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  18. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019;366:l4898.

    Article  PubMed  Google Scholar 

  19. Lin L, Zhang J, Hodges JS, Chu H. Performing arm-based network meta-analysis in R with the pcnetmeta Package. J Stat Softw. 2017;80.

  20. Xu C, Niu Y, Wu J, Gu H, Zhang C. Software and package applicating for network meta-analysis: A usage-based comparative study. J Evid Based Med. 2018;11:176–83.

    Article  PubMed  Google Scholar 

  21. Bhatnagar N, Lakshmi PV, Jeyashree K. Multiple treatment and indirect treatment comparisons: An overview of network meta-analysis. Perspect Clin Res. 2014;5:154–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Su YX, Tu YK. Statistical approaches to adjusting weights for dependent arms in network meta-analysis. Res Synth Methods. 2018;9:431–40.

    Article  PubMed  Google Scholar 

  23. Spineli LM. An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis. BMC Med Res Methodol. 2019;19:86.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Veroniki AA, Straus SE, Fyraridis A, Tricco AC. The rank-heat plot is a novel way to present the results from a network meta-analysis including multiple outcomes. J Clin Epidemiol. 2016;76:193–9.

    Article  PubMed  Google Scholar 

  25. Levinson M, Bryce A. Enteral feeding, gastric colonisation and diarrhoea in the critically ill patient: is there a relationship?. Anaesth Intensive Care. 1993;21:85–88.

    Article  PubMed  CAS  Google Scholar 

  26. Eyer SD, Micon LT, Konstantinides FN, Edlund DA, Rooney KA, Luxenberg MG, et al. Early enteral feeding does not attenuate metabolic response after blunt trauma. J Trauma. 1993;34:639–43. discussion 643-634.

    Article  PubMed  CAS  Google Scholar 

  27. Hasse JM, Blue LS, Liepa GU, Goldstein RM, Jennings LW, Mor E, et al. Early enteral nutrition support in patients undergoing liver transplantation. JPEN J Parenter Enter Nutr. 1995;19:437–43.

    Article  CAS  Google Scholar 

  28. Kudsk KA, Minard G, Croce MA, Brown RO, Lowrey TS, Pritchard FE, et al. A randomised trial of isonitrogenous enteral diets after severe trauma. An immune-enhancing diet reduces septic complications. Ann Surg. 1996;224:531–40. discussion 540-533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Watters JM, Kirkpatrick SM, Norris SB, Shamji FM, Wells GA. Immediate postoperative enteral feeding results in impaired respiratory mechanics and decreased mobility. Ann Surg. 1997;226:369–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Minard G, Kudsk KA, Melton S, Patton JH, Tolley EA. Early versus delayed feeding with an immune-enhancing diet in patients with severe head injuries. JPEN J Parenter Enter Nutr. 2000;24:145–9.

    Article  CAS  Google Scholar 

  31. Pupelis G, Selga G, Austrums E, Kaminski A. Jejunal feeding, even when instituted late, improves outcomes in patients with severe pancreatitis and peritonitis. Nutrition. 2001;17:91–94.

    Article  PubMed  CAS  Google Scholar 

  32. Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, et al. Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomised multicentre clinical trial. Intensive Care Med. 2003;29:834–40.

    Article  PubMed  Google Scholar 

  33. Martin CM, Doig GS, Heyland DK, Morrison T, Sibbald WJ. Multicentre, cluster-randomised clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). Cmaj. 2004;170:197–204.

    PubMed  PubMed Central  Google Scholar 

  34. Klek S, Kulig J, Sierzega M, Szybinski P, Szczepanek K, Kubisz A, et al. The impact of immunostimulating nutrition on infectious complications after upper gastrointestinal surgery: a prospective, randomised, clinical trial. Ann Surg. 2008;248:212–20.

    Article  PubMed  Google Scholar 

  35. Moses V, Mahendri NV, John G, Peter JV, Ganesh A. Early hypocaloric enteral nutritional supplementation in acute organophosphate poisoning-a prospective randomised trial. Clin Toxicol (Philos). 2009;47:419–24.

    Article  CAS  Google Scholar 

  36. Wu XM, Ji KQ, Wang HY, Li GF, Zang B, Chen WM. Total enteral nutrition in prevention of pancreatic necrotic infection in severe acute pancreatitis. Pancreas. 2010;39:248–51.

    Article  PubMed  CAS  Google Scholar 

  37. Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381:385–93.

    Article  PubMed  Google Scholar 

  38. Sanghvi KP, Joshi P, Nabi F, Kabra N. Feasibility of exclusive enteral feeds from birth in VLBW infants >1200 g-an RCT. Acta Paediatr. 2013;102:e299–304.

    Article  PubMed  Google Scholar 

  39. Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371:1673–84.

    Article  PubMed  Google Scholar 

  40. de Betue CT, van Steenselen WN, Hulst JM, Olieman JF, Augustus M, Mohd Din SH, et al. Achieving energy goals at day 4 after admission in critically ill children; predictive for outcome?. Clin Nutr. 2015;34:115–22.

    Article  PubMed  Google Scholar 

  41. Fan M, Wang Q, Fang W, Jiang Y, Li L, Sun P, et al. Early enteral combined with parenteral nutrition treatment for severe traumatic brain injury: effects on immune function, nutritional status and outcomes. Chin Med Sci J. 2016;31:213–20.

    Article  PubMed  CAS  Google Scholar 

  42. Mazaherpur S, Khatony A, Abdi A, Pasdar Y, Najafi F. The Effect of Continuous Enteral Nutrition on Nutrition Indices, Compared to the Intermittent and Combination Enteral Nutrition in Traumatic Brain Injury Patients. J Clin Diagn Res. 2016;10:Jc01–jc05.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Wu W, Zhong M, Zhu DM, Song JQ, Huang JF, Wang Q, et al. Effect of early full-calorie nutrition support following esophagectomy: a randomised controlled trial. JPEN J Parenter Enter Nutr. 2017;41:1146–54.

    Article  Google Scholar 

  44. Reignier J, Boisramé-Helms J, Brisard L, Lascarrou JB, Ait Hssain A, Anguel N, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391:133–43.

    Article  PubMed  Google Scholar 

  45. Yang S, Guo J, Ni Q, Chen J, Guo X, Xue G, et al. Enteral nutrition improves clinical outcome and reduces costs of acute mesenteric ischaemia after recanalisation in the intensive care unit. Clin Nutr. 2019;38:398–406.

    Article  PubMed  Google Scholar 

  46. Srinivasan V, Hasbani NR, Mehta NM, Irving SY, Kandil SB, Allen HC, et al. Early enteral nutrition is associated with improved clinical outcomes in critically ill children: a secondary analysis of nutrition support in the heart and lung failure-paediatric insulin titration trial. Pediatr Crit Care Med. 2020;21:213–21.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lou JQ, Li Q, Cui QW, Zhang P, Sun H, Tang H, et al. A prospective randomised controlled study on the curative effects of enteral immunonutrition support therapy in adult burn patients at nutritional risk. Chin J Burns. 2022;38:722–34.

    CAS  Google Scholar 

  48. Yang XJ, Wang XH, Yang MY, Ren HY, Chen H, Zhang XY, et al. Exploring choices of early nutritional support for patients with sepsis based on changes in intestinal microecology. World J Gastroenterol. 2023;29:2034–49.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rao YK, Saxena R, Midha T, Rao N, Saxena V. Clinical outcome of enteral nutrition versus IV fluids in newborns on inotropes: a randomised study. J Clin Neonatol. 2020;9:261–5.

    Article  Google Scholar 

  50. Collins N. The difference between albumin and prealbumin. Adv Ski Wound Care. 2001;14:235–6.

    Article  CAS  Google Scholar 

  51. Moon SJ, Ko RE, Park CM, Suh GY, Hwang J, Chung CR. The effectiveness of early enteral nutrition on clinical outcomes in critically ill sepsis patients: a systematic review. Nutrients. 2023;15.

  52. Ünal Aslan KS. Examining the nutrition, oral mucositis, and gastrointestinal system symptoms of intensive care units patients receiving enteral and parenteral nutrition. Turk J Gastroenterol. 2023;34:813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lopez-Delgado JC, Grau-Carmona T, Mor-Marco E, Bordeje-Laguna ML, Portugal-Rodriguez E, Lorencio-Cardenas C, et al. Parenteral nutrition: current use, complications, and nutrition delivery in critically ill patients. Nutrients. 2023;15.

  54. Zhong M, Qiu Y, Pan T, Wang R, Gao Y, Wang X, et al. Improving enteral nutrition tolerance and protein intake maybe beneficial to intensive care unit patients. Sci Rep. 2023;13:21614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Martens PJ, Gysemans C, Verstuyf A, Mathieu AC. Vitamin D’s effect on immune function. Nutrients. 2020;12.

  56. Palesty JA, Dudrick SJ. Cachexia, malnutrition, the refeeding syndrome, and lessons from Goldilocks. Surg Clin North Am. 2011;91:653–73.

    Article  PubMed  Google Scholar 

  57. Zou B, Xi F, Yu W. Early parenteral nutrition comparing to enteral nutrition cannot reduce 28-day mortality in critically ill patients: a retrospective comparative cohort study based on the MIMIC‑IV database. Ann Transl Med. 2023;11:77.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yu K, Guo N, Zhang D, Xia Y, Meng Y, Weng L, et al. Prevalence and risk factors of enteral nutrition intolerance in intensive care unit patients: a retrospective study. Chin Med J. 2022;135:1814–20.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sharma SK, Rani R, Thakur K. Effect of early versus delayed parenteral nutrition on the health outcomes of critically ill adults: a systematic review. J Crit Care Med. 2021;7:160–9.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Scientific Research Fund of Yunnan Provincial Department of Education (grant number 2024J0847) and the Science and Technology Program of Yunnan Province Science and Technology Department (grant number 202101BA070001-118).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tingting Shi and Yunmei Chen; methodology: Tingting Shi, Ting Li, and Xiaoling Zhu; formal analysis and investigation: Tingting Shi; writing—original draft preparation: Tingting Shi; writing—review and editing: Tingting Shi, Ting Li; supervision: Yunmei Chen and Xiaoling Zhu; all authors have commented on previous versions of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yunmei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Li, T., Zhu, X. et al. Comparison of the effects of different models of nutrient supply on nutritional status and clinical outcomes in ICU patients: a systematic review and network meta-analysis. Eur J Clin Nutr (2026). https://doi.org/10.1038/s41430-026-01704-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41430-026-01704-7

Search

Quick links