Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biallelic variants in genes previously associated with dominant inheritance: CACNA1A, RET and SLC20A2

A Comment to this article was published on 09 September 2021

Abstract

A subset of families with co-dominant or recessive inheritance has been described in several genes previously associated with dominant inheritance. Those recessive families displayed similar, more severe, or even completely different phenotypes to their dominant counterparts. We report the first patients harboring homozygous disease-related variants in three genes that were previously associated with dominant inheritance: a loss-of-function variant in the CACNA1A gene and two missense variants in the RET and SLC20A2 genes, respectively. All patients presented with a more severe clinical phenotype than the corresponding typical dominant form. We suggest that co-dominant or recessive inheritance for these three genes could explain the phenotypic differences from those documented in their cognate dominant phenotypes. Our results reinforce that geneticists should be aware of the possible different forms of inheritance in genes when WES variant interpretation is performed. We also evidence the need to refine phenotypes and inheritance patterns associated with genes in order to avoid failures during WES analysis and thus, raising the WES diagnostic capacity in the benefit of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Family 1: CACNA1A gene.
Fig. 2: Family 2: RET gene.
Fig. 3: Family 3: SLC20A2 gene.

Similar content being viewed by others

References

  1. Alkuraya FS. Discovery of mutations for Mendelian disorders. Hum Genet. 2016;135:615–23.

    Article  CAS  Google Scholar 

  2. Alsalem AB, Halees AS, Anazi S, Alshamekh S, Alkuraya FS. Autozygome sequencing expands the horizon of human knockout research and provides novel insights into human phenotypic variation. PLoS Genet. 2013;9:e1004030.

  3. Monies D, Maddirevula S, Kurdi W, Alanazy MH, Alkhalidi H, Al-Owain M, et al. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet Med. 2017;19:1144–50.

    Article  CAS  Google Scholar 

  4. Dillon OJ, Lunke S, Stark Z, Yeung A, Thorne N, Gaff C, et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet. 2018;26:644–51.

    Article  CAS  Google Scholar 

  5. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare mendelian disorders. JAMA. 2014;312:1880–7.

    Article  Google Scholar 

  6. Seo GH, Kim T, Choi IH, Park Jyoung, Lee J, Kim S, et al. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin Genet. 2020;98:562–70.

    Article  CAS  Google Scholar 

  7. Hu X, Guo R, Guo J, Qi Z, Li W, Hao C. Parallel tests of whole exome sequencing and copy number variant sequencing increase the diagnosis yields of rare pediatric disorders. Front Genet. 2020;11:473.

    Article  CAS  Google Scholar 

  8. Stefanski A, Calle-López Y, Leu C, Pérez-Palma E, Pestana-Knight E, Lal D. Clinical sequencing yield in epilepsy, autism spectrum disorder, and intellectual disability: a systematic review and meta-analysis. Epilepsia. 2021;62:143–51.

    Article  Google Scholar 

  9. Shamseldin HE, Maddirevula S, Faqeih E, Ibrahim N, Hashem M, Shaheen R, et al. Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genet Med. 2017;19:593–8.

    Article  Google Scholar 

  10. Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the association for molecular pathology and the college of american pathologists. J Mol Diagn. 2018;20:4–27.

  11. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv. 2013; p. 1303.

  12. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  Google Scholar 

  13. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43:11.10.1–11.10.33.

    Article  Google Scholar 

  14. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44:e108.

    Article  Google Scholar 

  15. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  Google Scholar 

  16. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.

    Article  Google Scholar 

  17. Damaj L, Lupien-Meilleur A, Lortie A, Riou É, Ospina LH, Gagnon L, et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet. 2015;23:1505–12.

    Article  CAS  Google Scholar 

  18. Jiang X, Raju PK, D’Avanzo N, Lachance M, Pepin J, Dubeau F, et al. Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia. 2019;60:1881–94.

    Article  CAS  Google Scholar 

  19. Indelicato E, Nachbauer W, Karner E, Eigentler A, Wagner M, Unterberger I, et al. The neuropsychiatric phenotype in CACNA1A mutations: a retrospective single center study and review of the literature. Eur J Neurol. 2019;26:66.

    Article  CAS  Google Scholar 

  20. Tottene A, Fellin T, Pagnutti S, Luvisetto S, Striessnig J, Fletcher C, et al. Familial hemiplegic migraine mutations increase Ca2+ influx through single human Cav2.1 channels and decrease maximal Cav2.1 current density in neurons. Proc Natl Acad Sci USA. 2002;99(Oct):13284–9.

    Article  CAS  Google Scholar 

  21. Travaglini L, Nardella M, Bellacchio E, D’Amico A, Capuano A, Frusciante R, et al. Missense mutations of CACNA1A are a frequent cause of autosomal dominant nonprogressive congenital ataxia. Eur J Paediatr Neurol. 2017;21:450–6.

    Article  Google Scholar 

  22. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α(1A)-voltage-dependent calcium channel. Nat Genet. 1997;15:62–9.

  23. Blumkin L, Michelson M, Leshinsky-Silver E, Kivity S, Lev D, Lerman-Sagie T. Congenital ataxia, mental retardation, and dyskinesia associated with a novel CACNA1A mutation. J Child Neurol. 2010;25:892–7.

    Article  Google Scholar 

  24. García Segarra N, Gautschi I, Mittaz-Crettol L, Kallay Zetchi C, Al-Qusairi L, Van Bemmelen MX, et al. Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A. J Neurol Sci. 2014;342:69–78.

    Article  Google Scholar 

  25. Mammadova D, Kraus C, Leis T, Trollmann R. Severe Epileptic Encephalopathy in Siblings due to a Novel Heterozygous CACNA1A Gene Mutation. Neuropediatrics 2019;50(S 02):S1–S55

  26. Hayashida T, Saito Y, Ishii A, Yamada H, Itakura A, Minato T, et al. CACNA1A-related early-onset encephalopathy with myoclonic epilepsy: a case report. Brain Dev. 2018;40:130–3.

    Article  Google Scholar 

  27. Myers CTT, McMahon JMM, Schneider ALL, Petrovski S, Allen ASS, Carvill GLL, et al. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet. 2016;99:287–98.

    Article  Google Scholar 

  28. Izquierdo-Serra M, Fernández-Fernández JM, Serrano M. Rare CACNA1A mutations leading to congenital ataxia. Pflugers Arch. 2020;472:791–809.

  29. Mariotti C, Gellera C, Grisoli M, Mineri R, Castucci A, Di, Donato S. Pathogenic effect of an intermediate-size SCA-6 allele (CAG)19 in a homozygous patient. Neurology. 2001;57:1502–4.

    Article  CAS  Google Scholar 

  30. Lv Y, Wang Z, Liu C, Cui L. Identification of a novel CACNA1A mutation in a Chinese family with autosomal recessive progressive myoclonic epilepsy. Neuropsychiatr Dis Treat. 2017;13:2631.

    Article  CAS  Google Scholar 

  31. Reinson K, Õiglane-Shlik E, Talvik I, Vaher U, Õunapuu A, Ennok M, et al. Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet Part A. 2016;170:2173–6.

    Article  CAS  Google Scholar 

  32. Fletcher CF, Tottene A, Lennon VA, Wilson SM, Dubel SJ, Paylor R, et al. Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J. 2001;15:1288–90.

    Article  CAS  Google Scholar 

  33. Ngo DN, So MT, Gui H, Tran AQ, Bui DH, Cherny S, et al. Screening of the RET gene of Vietnamese Hirschsprung patients identifies 2 novel missense mutations. J Pediatr Surg. 2012 ;47:1859–64.

    Article  Google Scholar 

  34. Bigalke JM, Aibara S, Roth R, Dahl G, Gordon E, Dorbéus S, et al. Cryo-EM structure of the activated RET signaling complex reveals the importance of its cysteine-rich domain. Sci Adv. 2019;5(7):eaau4202.

  35. Li J, Shang G, Chen Y-J, Brautigam CA, Liou J, Zhang X, et al. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. Elife. 2019;8:e47650.

  36. So M-T, Leon TY-Y, Cheng G, Tang CS-M, Miao X-P, Cornes BK, et al. RET mutational spectrum in Hirschsprung disease: evaluation of 601 Chinese patients. PLoS One. 2011;6:e28986.

    Article  CAS  Google Scholar 

  37. Jiang Q, Wang Y, Li Q, Zhang Z, Xiao P, Wang H, et al. Sequence characterization of RET in 117 Chinese Hirschsprung disease families identifies a large burden of de novo and parental mosaic mutations. Orphanet J Rare Dis. 2019;14:237.

    Article  Google Scholar 

  38. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45:1–14.

    Article  CAS  Google Scholar 

  39. De Falco V, Carlomagno F, Li H yu, Santoro M. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. Vol. 31, Best Prac Res Clin Endocrino Metabol. 2017;31:307–18.

  40. Iwashita T, Murakarni H, Asai N, Takahashi M. Mechanism of Ret dysfunction by Hirschsprung mutations affecting its extracellular domain. Hum Mol Genet. 1996;5:1577–80.

    Article  CAS  Google Scholar 

  41. Iwashita T, Kurokawa K, Qiao S, Murakami H, Asai N, Kawai K, et al. Functional analysis of RET with Hirschsprung mutations affecting its kinase domain. Gastroenterology. 2001;121:24–33.

    Article  CAS  Google Scholar 

  42. Hsu SC, Sears RL, Lemos RR, Quintáns B, Huang A, Spiteri E, et al. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics. 2013;14:11–22.

    Article  CAS  Google Scholar 

  43. Tsai JY, Chu CH, Lin MG, Chou YH, Hong RY, Yen CY, et al. Structure of the sodium-dependent phosphate transporter reveals insights into human solute carrier SLC20. Sci Adv. 2020;6(32):eabb4024.

  44. Salaün C, Maréchal V, Heard JM. Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. J Mol Biol. 2004;340:39–47.

    Article  Google Scholar 

  45. Bøttger P, Pedersen L Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem. 2011;12(1):21.

  46. Travaglini L, Nardella M, Bellacchio E, D’Amico A, Capuano A, Frusciante R, et al. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. FEBS J. 2005;272:3060–74.

    Article  Google Scholar 

  47. Westenberger A, Klein C. The genetics of primary familial brain calcifications. Curr Neurol Neurosci Rep. 2014;14:490.

    Article  Google Scholar 

  48. Yamada M, Tanaka M, Takagi M, Kobayashi S, Taguchi Y, Takashima S, et al. Evaluation of SLC20A2 mutations that cause idiopathic basal ganglia calcification in Japan. Neurology. 2014;82:705–12.

    Article  CAS  Google Scholar 

  49. Wang XJ, Camilleri M. Hirschsprung disease: Insights on genes, penetrance, and prenatal diagnosis. Neurogastroenterol Motil. 2019;31(11):e13732.

  50. Wu W, Lu L, Xu W, Liu J, Sun J, Zheng L, et al. Whole exome sequencing identifies a novel pathogenic RET variant in Hirschsprung disease. Front Genet. 2019;14(9):752.

Download references

Acknowledgements

The authors would like to thank all the clinical staff from the University Hospital 12 de Octubre, who made this study possible. Grant number PI17/1067 to MIAB from the Spanish “Instituto de Salud Carlos III” (ISCIII). Grant number PI18/01374 to MAM from the Spanish “Instituto de Salud Carlos III” (ISCIII) and European Regional Development Fund (ERDF; FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arteche-López.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arteche-López, A., Álvarez-Mora, M., Sánchez Calvin, M. et al. Biallelic variants in genes previously associated with dominant inheritance: CACNA1A, RET and SLC20A2. Eur J Hum Genet 29, 1520–1526 (2021). https://doi.org/10.1038/s41431-021-00919-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41431-021-00919-5

This article is cited by

Search

Quick links