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Exome sequencing identifies HELB as a novel susceptibility

gene for non-mucinous, non-high-grade-serous epithelial
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Rare, germline loss-of-function variants in a handful of DNA repair genes are associated with epithelial ovarian cancer. The aim of
this study was to evaluate the role of rare, coding, loss-of-function variants across the genome in epithelial ovarian cancer. We
carried out a gene-by-gene burden test with various histotypes using data from 2573 non-mucinous cases and 13,923 controls.
Twelve genes were associated at a False Discovery Rate of less than 0.1 of which seven were the known ovarian cancer
susceptibility genes BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH6 and PALB2. The other five genes were OR2T35, HELB, MYO1A and
GABRP which were associated with non-high-grade serous ovarian cancer and MIGAT which was associated with high-grade serous
ovarian cancer. Further support for the association of HELB association comes from the observation that loss-of-function variants in
HELB are associated with age at natural menopause and Mendelian randomisation analysis shows an association between
genetically predicted age at natural menopause and endometrioid ovarian cancer, but not high-grade serous ovarian cancer.
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INTRODUCTION

Substantial progress has been made in the past 30 years in
identifying inherited genetic variation associated with an
increased risk of epithelial ovarian cancer (EOC). The “high-
penetrance” genes BRCAT and BRCA2 were identified by linkage
studies in the 1990's; protein truncating variants in these genes
confer a substantial lifetime risk of epithelial ovarian cancer as
well as breast cancer and other cancers. Epithelial ovarian cancer
is also known to be part of the Lynch Syndrome phenotype
associated with protein-truncating variants in the mis-match
repair genes. Rare coding variants in BRIP1, PALB2, RAD51C and
RAD51D have been shown to confer more moderate risks by
using candidate-gene case-control sequencing [1-3]. Also, over

the past 15 years, large-scale genome-wide association studies
(GWAS) conducted by the Ovarian Cancer Association
Consortium (OCAC) have identified more than 40 common
susceptibility alleles [4, 5].

There are five major histotypes of epithelial ovarian cancer—high-
grade serous, low-grade serous, clear cell, endometrioid and
mucinous—which share some of the heritable component of disease
risk [6]. Nevertheless, there are some notable differences in their
genetic risk factors. High- and moderate-penetrance risk variants in
BRCA1, BRCA2, BRIP1, RAD51C and RAD51D predispose to high-grade
serous EOC whereas loss-of-function variants in the mis-match repair
genes predispose to endometrioid and clear cell EOC. There are also
histotype-specific differences in the risks conferred by common risk
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alleles with the mucinous histotype in particular being substantially
different from the other histotypes [4, 5].

The uncommon and rare, high- and moderate penetrance
alleles identified to date explain about one-quarter of the
inherited component of epithelial ovarian cancer susceptibility
with a further 5% explained by the known common risk alleles.
Genome-wide heritability analyses have estimated that the set of
common variants that are tagged or captured by the standard
genome-wide genotyping arrays explains about 40 percent of the
familial aggregation -the so-called chip heritability. The char-
acteristics of the alleles that account for the remaining familial
aggregation are not known; analyses of whole-genome data
suggest that a substantial portion is explained by rare variants.
Only a small fraction of genes, mostly those involved in DNA
repair, have been examined for risk association using the large
sample sizes needed to detect modest risks. Hence, there could be
many more genes conferring similar risks yet to be discovered.
The aim of this project was to identify genes with rare coding
variants that confer loss of function (LoF) that are associated with
risk of epithelial ovarian cancer.

METHODS

Description of case and control datasets

Germline whole exome sequencing (WES) data and whole genome
sequencing (WGS) data as BAM or CRAM files from multiple epithelial
ovarian cancer case series were collated from multiple sources (Table 1).
Control sequencing data were sourced wholly from the UK Interval study; a
set of healthy UK blood donors (https://www.intervalstudy.org.uk/). All
analyses restricted case histotypes to high-grade serous, low-grade serous,
clear-cell, endometrioid, mixed, and other rare histotypes. Mucinous
ovarian cancer cases were excluded because it has previously been shown
that the genetic aetiology of this histotype differs substantially from the
other histotypes [5]. In total, exome or whole genome sequencing data
were available for 1638 cases and 4502 controls. We also used the variant
calls (as VCF files) for 1099 EOC cases and 9423 cancer free controls from
the WES sequencing released by UK Biobank (UKB) (https://
www.ukbiobank.ac.uk/). Cases were individuals with a diagnosis of invasive
epithelial ovarian cancer (ICD10 code C56) with clear cell, endometrioid,
papillary, other and serous histology codes. Controls were age matched
women without a cancer diagnosis and without a history of oophor-
ectomy. Up to ten controls were selected for each case. Thus, the final
sample size was 2737 cases and 13,925 controls before sequencing quality
control.

Variant calling and filtering

All BAM/CRAM files were aligned to human genome version hg19/GRCh37.
The original TCGA EOC BAM files had been aligned against human genome
hg18/NCBI36, these data were lifted over to build hg19 with the CrossMap
s/w [7] to match the rest of the WES/WGS data. All non-Biobank
sequencing data were analysed in an identical way. Duplicate sequence
reads were removed with the picard sequencing tools [8]. Sequence reads
were partitioned per chromosome and general manipulation performed
with the samtools s/w [9]. Variants were called with the Genome Analysis
ToolKit (GATK) UnifiedGenotyper version 3.8-1 [10], and following the best
practices guide as appropriate to our data [11, 12]. We restricted our risk
variant discovery to substitutions and short indels (length <= 12 bp).
Variants were annotated with ANNOVAR [13] referred to the UCSC RefSeq
gene transcript set (https://genome.ucsc.edu). Protein coding transcripts
with an NM_* type identifier were used, with the transcript having the
longest coding sequence being chosen for genes with multiple transcripts.
This yielded 19,092 gene transcripts at human reference hg19/GRCh37 for
variant annotation. The averaged coverage of targeted bases at 10X for the
non-UKB samples was 91 percent for cases and 92 percent for controls.

UK Biobank VCF calls were based on build GRCh38 [14]; in order to
incorporate these data into our pipeline we lifted over these calls to build
GRCh37 using picard and inserted the data at the appropriate step. Only
Biobank VCF calls with depth (DP) greater than or equal to 10 and
genotyping quality (GQ) greater than or equal to 20 were retained.

Variant calls from GATK were filtered with an in-house hard filter tuned
for optimum sensitivity by comparison of WES calls with chip genotyping
calls from multiple genotyping arrays [see Chip Genotyping Data for
details]. Additionally for all call sets, variants were carried forward only if
depth (DP) >= 10 and alternate allele frequency (AAF) >= 15 percent. A
more stringent filter was also applied, assigning calls a high quality (HQ)
having AAF > =20 percent and number of alternate alleles >= 4. All
variant sites with at least 1 occurrence of an HQ call were retained, whilst
sites without any HQ calls were rejected.

A rare variant was defined as one with minor allele frequency (MAF) <= 0.1
percent in non-UKB controls and cases combined. Each variant was visually
inspected with the Integrative Genomics Viewer (IGV) software [15] and
rejected if any doubts raised, e.g. not called bidirectionally. Visual inspection of
variants called for UK Biobank was only carried out for those variant sites not
validated in the non-Biobank data.

QC was applied to each rare variant site, rejecting sites with genotype
frequencies showing significant deviation from those expected under
Hardy-Weinberg equilibrium in either cases or controls (p-value <10~
and for UKB and non-UKB separately), and those with missingness >20%
(proportion of samples with depth<10). We also tested each variant for
association with epithelial ovarian cancer and excluded those with test for
association p-value <= 1077 and 0 rare control alleles; the threshold was

Table 1.

Number of non-Biobank epithelial ovarian cancer patients by source of sequencing (total before sample QC 1638; total after QC 1474).

Data source Case type Number (before/after Reference Accession number
QQ)

Exomes

UK Familial Ovarian Cancer BRCA1/2-negative with family history 53/42 Unpublished

Registry

Leuven Unselected 45/44 Unpublished

Gilda-Radner Ovarian Cancer BRCA1/2-negative with family history 96/80 Unpublished

Registry

OCAC Positive family history or <50 years of 262/232 Unpublished
age

Mayo Clinic Unselected 25/24 Unpublished

Campbell BRCA1/2-negative high-grade serous 536/493 [40] EGAD00001006030

Hannover Unselected 11/7 Unpublished

TCGA High grade serous 413/361 phs000441.v2.p6

Whole genomes

Peter MacCallum Cancer Centre High-grade serous 93/92 [41] EGAD00001000877

Bowtell Long-term survivors with high-grade 48/46 [42] EGAD00001009398
serous

BRITROC High grade serous 56/53 [43] EGAD00001004189
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chosen to exclude variants with effect sizes greater than those for BRCA1
pathogenic variants as these are unlikely to be true positives.

Variant classification

Variants were defined as loss-of-function according to the following
criteria: 1) Variants predicted to cause protein truncation, that is stopgain
variants, frameshift indels, and canonical splice site variants. 2) Non-
canonical splice site variants and in-exon variation within 3 bp of the exon-
splice boundary predicted by the MaxEntScan algorithm to disrupt splicing
[16]. Qualifying variants with a wild-type MaxEntScan score greater than or
equal to 3 and decreased by greater than 40 percent in comparison to the
reference sequence were assumed to be deleterious. 3) Missense single
nucleotide variants or in frame indels designated by multiple submitters to
the NCBI ClinVar database (https://www.ncbi.nim.nih.gov/clinvar) as either
pathogenic or likely pathogenic with no conflicts between submitters.

Sample quality control and exclusion

Samples were removed if they met any of the following criteria: i) low
average depth of coverage (<25% at 10x) ii) excess LoF calls (>1000) iii)
concordance of exome data variant calls and chip genotyping calls (see
below) of <95% iv) known duplicates or cryptic duplicate sample based on
common variant calls. After exclusions, a total of 1474 cases and 4500
controls remained in the non-Biobank set and 1099 cases and 9423
controls in the Biobank set (Table 1 and Table 2).

Chip genotyping data

We used chip genotype calls to tune filters for rare variant calling and
check integrity of sample naming and also as an additional level of QC for
any non-UKB samples overlapping chip manifests. Data were from four
different Ovarian Cancer Association Consortium genotyping projects
(OncoArray [4], iCOGS [17], exome chip [18], and an ovarian GWAS [19]),
and TCGA. The numbers of WES/WGS samples overlapping with each chip
were 323, 350, 81, 95, and 412, respectively.

Statistical methods

We carried out a gene-by-gene simple burden test for the association of
rare loss-of-function variants with all non-mucinous ovarian cancer, high-
grade serous ovarian cancer, and non-high-grade serous ovarian cancer.
Rare variants were defined as those with a minor allele frequency of less
than 0.1% in the non-UKB dataset. We classified each individual for each
gene as a loss-of-function variant carrier or non-carrier, depending on
whether they had at least one rare variant (below the MAF threshold) in
that gene or not. Then we performed a logistic regression for each gene
adjusting for the top four principal components to account for cryptic
population structure and genetic ancestry. Principal component analysis
for the non-UK Biobank data was carried out using data from 36,047
uncorrelated variants (pairwise r? <0.1) with MAF > 0.03 using an in-house
programme (available at http://ccge.medschl.cam.ac.uk/software/pccalc/).
Principal components for the UK Biobank samples were provided by UK
Biobank [20]. We also adjusted for study stratum—non-UKB, UKB 50K
sample set and UKB non-50K sample set. The UK Biobank data were
stratified on recommendation from UK Biobank, since different oligo lots
had been used in the 2 stages of UK Biobank sample sequencing.

We calculated a false discovery probability based on the methods of
Benjamini and Hochberg [21] and a Bayes False Discovery Probability using
the method proposed by Wakefield [22]. For the latter method, we assumed
a prior probability of association for any one gene of 0.005 — ~100 expected

Table 2. Number of epithelial ovarian cancer patients by histotype
after QC.

Histotype Non-UKB UKB Total % of total
High-grade serous® 1237 869 2106 81.8
Low-grade serous 52 0 52 2.1

Clear cell 52 86 138 5.4
Endometrioid 110 139 249 9.7
Mixed/unknown 23 5 28 1.1

Includes those with carcinosarcoma and serous carcinoma of unspecified
grade.
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true number of genes truly associated with epithelial ovarian cancer—and a
likely maximum effect size (log odds ratio) of 0.836.

We applied Mendelian randomisation using five different methods
implemented in the R package TwoSampleMR (MR Egger, weighted
median, inverse variance weighted, simple mode and weighted mode)
[23]. Five methods were used because each method is susceptible to
different possible biases and consistent finding using different methods
provide stronger evidence for any observed association. Genetic instru-
mental variables were derived from summary statistics for association
between common genetic variants and epithelial ovarian cancer by
histotypes published by the Ovarian Cancer Association Consortium [5]
(available at www.ebi.ac.uk/gwas/publications/38723632). Power for the
Mendelian randomisation analyses was calculated using the method
reported by Brion [24]. Other analyses were conducted using the
patchwork [25] and tidyverse [26] packages of the R software [27]
implemented in R Studio [28].

RESULTS

An initial analysis was performed for all genes in the non-UKB set
of 1474 cases and 4500 controls that passed QC. There were
12,761 genes with at least one case or control loss-of-function
variant carrier with minor allele frequency of less than 0.1 percent,
of which 4623 had sufficient pathogenic variant carriers to obtain
a risk estimate. There was little evidence of inflation of the test
statistic (Fig. 1) showing that the potential bias arising from
systematic differences in sequencing between cases and controls
has been prevented by the data harmonisation process. Seven
hundred and thirty-seven genes had a P-value for association of
less than 0.05; these genes were selected for additional analysis in
the UKB data in addition to candidate genes ATM, BARD1, CHEK2,
FANCM, MLH1, MSH2, MSH6, PMS2, RAD51B, SLX4, TIPARP and TP53
which have previously been confirmed or suggested as ovarian
cancer susceptibility genes [1-3, 29].

The results of the simple burden test for association of rare loss-
of-function variants in each gene with non-mucinous ovarian
cancer, high-grade serous ovarian cancer and non-high-grade
serous ovarian cancer using the combined data are shown in
Supplementary Table 1 with the results for non-UKB and UKB
shown in Supplementary Table 2. The association from the
combined data with the smallest P-value from the three histotype-

6-

N

Observed -log10(P-value)
N

o

0 2 4 6
Expected -log10(P-value)
Fig. 1 QQ plot for association analysis of genes with at least one

case or control loss-of-function variant carrier in the non-UK Biobank
data set (three genes with smallest P-values excluded).
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Table 3.
Case type Gene Minor allele freq Odds ratio
HGSOC BRCA2 0.0036 12
HGSOC BRCA1 0.0010 40
HGSOC BRIP1 0.0011 10
HGSOC RAD51C 0.00057 12
NHGSOC MSH6 0.0013 11
HGSOC RAD51D 0.00043 13
NHGSOC OR2T35 0.00072 15
NHGSOC HELB 0.00093 9.6
NHGSOC MYO1A 0.0024 9.1
NHGSOC GABRP 0.00072 78
HGSOC MIGTA 0.00022 15
HGSOC PALB2 0.0017 36
NHGSOC NBN 0.0015 7
HGSOC STARD6 0.00050 7
NHGSOC KIR3DL1 0.00014 32
NMOC NENF 0.00050 6.5
NHGSOC HPSE 0.001 7.8
HGSOC OR4A47 0.00036 8.5
HGSOC SH3BGRL 0.00044 15
NHGSOC SHMT1 0.0013 10
NHGSOC SALL2 0.00022 20
NHGSOC FASTKD5 0.00044 33
NMOC PLEKHGS 0.0019 3.9
HGSOC DQX1 0.0017 3.5
NHGSOC FAM71F1 0.00036 16
NHGSOC LIFR 0.0011 11
NMOC LIPT1 0.00050 4.9
NHGSOC LTBP2 0.00050 12
NHGSOC MMAA 0.0011 7.5
NHGSOC POLR2A 0.002 54
NHGSOC CD302 0.00022 48

Genes most strongly associated with epithelial ovarian cancer based on analysis of combined non-UKB and UKB data.

(95% ClI) P-value FDR BFDP
(84 -18) 1.7x10 38 8.1x10 * 44x10 33
(22 - 70) 48 x 10736 1.2x 10732 1.5x107%°
(5.4 - 20) 43 x10°"? 36x10°° 23x1077
(4.7 - 28) 87 x10°8 53x107° 0.0028
(4.4 - 26) 16 x1077 87%x107° 0.0045
(4.5 - 37) 20 x10°° 9.1x10°* 0.053
(44 - 48) 12 x10°° 0.0048 0.23
(3.3 - 28) 3.0 x107° 0.011 0.30
(3.1-27) 6.0 x10°° 0.020 0.43
(7.9 - 780) 20x10°* 0.060 0.92
(3.5 - 65) 26x10°* 0.072 0.80
(1.8 - 7.4) 3.2x10* 0.081 0.65
(2.4 -21) 44x107* 0.10 0.77
(2.3 -21) 48%x10°4 0.10 0.78
(4.5 - 230) 55x 1074 0.11 0.93
(2.2-19) 55x 1074 0.11 0.79
(24 - 25) 6.0x 107 0.11 0.82
(2.5 - 29) 6.5x 10 0.11 0.84
(3.2-73) 63x10°* 0.11 0.89
(2.6 - 42) 0.001 0.17 0.90
(3.3 - 130) 0.0012 0.18 0.94
(3.9 - 270) 0.0013 0.19 0.96
(1.7-9) 0.0014 0.20 0.87
(1.6 - 7.6) 0.0017 0.20 0.88
(29 - 87) 0.0015 0.20 0.94
(24 - 46) 0.0018 0.20 0.93
(1.8-13) 0.0017 0.20 0.89
(26 - 61) 0.0017 0.20 0.94
(2.2 - 26) 0.0016 0.20 0.91
(1.9 - 16) 0.0018 0.20 0.90
(4.2 - 560) 0.0019 0.20 0.97

FDR Benjamini-Hochberg false discovery rate, BFDP Bayes false discovery probability, HGSOC high-grade serous ovarian cancer, NMOC non-mucinous epithelial

ovarian cancer, NHGSOC non-high-grade serous ovarian cancer (non-mucinous).

specific analyses was selected for each gene and the genes were
then ranked by P-value. Table 3 shows the 31 genes associated
with ovarian cancer at a False Discovery Rate of less than 0.2.
Twelve genes were associated at a False Discovery Rate of less
than 0.1, of which seven were the known ovarian cancer
susceptibility genes BRCA1, BRCA2, BRIP1, RAD51C, RADS5ID,
MSH6 and PALB2. The other five genes were OR2T35, HELB,
MYO1A, GABRP and MIGAT1. BRCA1, BRCA2, BRIP1, MIGA1, RAD51C,
RAD51D, and PALB2 were more strongly associated with high-
grade serous ovarian cancer whereas MSH6, OR2T35, HELB, MYOT1A
and GABRP were more strongly associated with the non-high-
grade serous histotypes.

DISCUSSION

We have assembled whole exome sequencing for a large number
of epithelial ovarian cancer cases and controls to investigate the
role of rare, loss-of-function coding variation in the germline and
risk of epithelial ovarian cancer. The exome sequencing of the
non-UK Biobank cases and controls was carried out in different
centres with the potential for false positive associations that are
due to technical artefacts resulting in differential variant calls

SPRINGER NATURE

between cases and controls. We attempted to limit such bias by
harmonising the variant calling across the different data sets with
careful visual inspection of many variants using the Integrative
Genomics Viewer. The lack of inflation of the test statistics for the
gene-based association tests within the non-UK Biobank data
suggests that any technical bias was small (if present).

Perhaps the major limitation of this study was the limited power
to detect rare variants with modest effects. Figure 2A shows the
power of the available sample size to detect loss-of-function
alleles by carrier frequency and effect size. Power to detect alleles
with effects similar to the known genes is good, but power to
detect alleles conferring odds ratios between 2 and 5 is limited.
Much larger sample sizes are needed to detect more modest
effects (Fig. 2B). Power may be further limited by disease
heterogeneity, as histotype specific sample sizes are even smaller.

Nevertheless, we have confirmed the association of six genes
known to be associated with high-grade serous ovarian cancer.
There was some evidence of association of protein truncating
variants in MIGA1, STARD6, OR4A47 and SH3BGRL with the same
histotype (FDR<0.2). MIGAT encodes mitoguardin 1 which
enables protein heterodimerization activity and protein homo-
dimerization activity and is involved in mitochondrial fusion. The

European Journal of Human Genetics (2025) 33:297 - 303
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gene is expressed in the ovary and mitoguardin-1 and -2 promote
maturation and the developmental potential of mouse oocytes by
maintaining mitochondrial dynamics and functions [30]. STARD6
encodes the StAR-related lipid transfer domain containing 6
protein which is involved in the intracellular transport of sterols
and other lipids [31]. OR4A47 encodes an olfactory receptor and
SH3BGRL encodes SH3 domain binding glutamate-rich protein-like
a scaffold protein with the potential for a variety of roles in cellular
events by protein-protein interaction [32]. However, the strength
of the statistical evidence for these three genes is only moderate;
while the Benjamini-Hochberg False Discovery Rate was less than
0.2, the Bayes False Discovery Probability was greater than 0.5.

It is notable that of the nine genes associated with high-grade
serous ovarian cancer three (BRCA1, BRCA2, BRIP1) were also
associated with the non-high grade serous histotype (P < 0.05).
This may be a true association, but given the limited evidence for
the association of BRCAT and BRCA2 with histoypes other than
high-grade serous, some histotype misclassification in the datais a
possible explanation. There were too few pathogenic variant
carriers in the non-high-grade serous cases to estimate risk for the
other six genes (PALB2, RAD51C, RAD51D, MIGA1, SH3BGRL and
STARDS).

We have also confirmed the known association of the mis-
match repair gene, MSH6, with the non-high-grade serous
histotype, with another four genes associated at a False Discovery
Rate of less than 0.1. HELB encodes DNA helicase B which
catalysers the unwinding of DNA necessary for DNA replication,
repair, recombination, and transcription [33]. Rare damaging
variants in the gene are associated with later age at natural
menopause [34]. Given the association of damaging variants with
both later age at natural menopause and non-high-grade serous
ovarian cancer we used Mendelian randomisation to investigate
the associations of genetically determined age at natural
menopause with ovarian cancer by histotypes. Genome-wide
association studies have identified 290 common genetic variants
associated with late age at natural menopause [35]. Published
summary statistics for the association of 234 of these variants with
epithelial ovarian cancer by histotype were available to use as the
instrumental variable [5]. A strong association with genetically
predicted late age at menopause was observed for endometrioid
ovarian cancer (P<0.05 for all five Mendelian randomisation
methods, Supplementary Table 3), with limited evidence for clear
cell ovarian cancer (P < 0.05 for two methods) and little evidence
for the other histoypes. Power to detect an association with
genetically predicted age at menopause was very good assuming
a causal odds ratio per standard deviation for age at menopause
of 1.2 or greater (Supplementary Fig. 1). Three of the five ovarian
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cases that were found to carry a loss-of-function variant in HELB
were the endometrioid histotype, with the other two being low-
grade serous. A recent WES study of 123 epithelial ovarian cancer
patients identified one carrier of a loss of function variant in HELB
[36]; this patient was diagnosed aged 25 with low-grade serous
OC. Furthermore, we analysed the published data from whole-
genome sequencing of tumour DNA from 59 high-grade serous,
35 clear-cell and 29 endometrioid ovarian cancers [37] for point
mutations in HELB. Only one pathogenic variant was identified in
one of the endometrioid cases. The histotype specificity of the
germline and somatic association of protein-truncating variants in
HELB together with the histotype specificity of the genetically
predicted age at natural menopause association provides strong
evidence that the association of protein-truncating variants in
HELB with non-high grade serous ovarian cancer is a true positive
association.

GABRP encodes the gamma-aminobutyric acid A receptor which
is a multi-subunit chloride channel that mediates the fastest
inhibitory synaptic transmission in the central nervous system. The
subunit encoded by this gene is expressed in several non-
neuronal tissues including the uterus and ovaries with some
evidence that it is involved in cellular invasion and migration in
ovarian cancer [38]. There is little evidence to link the OR2T35 or
MYOI1A to the biology of ovarian cancer. OR2T35 encodes olfactory
receptor family 2 subfamily T member 35 and MYOTA encodes
myosin 1A, an unconventional myosin that functions as actin-
based molecular motors.

Of the other genes associated with a FDR of less than 0.2, NBN is
perhaps the best candidate ovarian cancer susceptibility gene. It
encodes nibrin, a member of the MRE11/RAD50 double-strand
break repair complex involved in DNA double-strand break repair
and DNA damage-induced checkpoint activation. Protein truncat-
ing variants in this gene are associated with Nijmegen breakage
syndrome, an autosomal recessive condition characterised by
microcephaly, growth retardation, immunodeficiency, cancer
predisposition, and premature ovarian failure in females [39].
NBN has previously been studied using candidate-gene sequen-
cing and no significant association was found for non-high grade
serous ovarian cancer based on 444 non-high grade serous cases
of which just 72 were the endometrioid histotype [1].

We have confirmed the histotype-specific associations of rare
protein-truncating variants in the known epithelial ovarian cancer
susceptibility genes and found a novel association for protein-
truncating variants in HELB with risk of non-mucinous, non-high
grade serous ovarian cancer. The relative risk estimate for this
gene is likely to be inflated by the winner's curse effect and may
also be biased by the case ascertainment. Large case-control
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sequencing studies will be needed to obtain a more precise,
unbiased estimate of the associated risk as well as to obtain more
specific risks for the three main histotypes that comprise non-
mucinous, non-high-grade serous ovarian cancer. Given our data,
it is unlikely that any additional susceptibility genes exist for either
epithelial ovarian cancer of all histotypes or high-grade serous
ovarian cancer with the risk-allele frequency and effect-size
characteristics of the known susceptibility genes. It is possible
there are genes with very rare risk alleles or modest effect sizes or
genes specifically associated with the less common histotypes
that we have not identified. Much larger studies will be needed to
identify robustly such genes.

DATA AVAILABILITY

The accession numbers for some of the sequencing data are provided in Table 1. The
results of the association statistics for the comlete set of analyses are provided in
Supplementary Table 1. We are unable to post some of the raw sequencing data due
to ethical and/or legal data governance constraints on the sharing of Personal Data
for some of the constituent studies.
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