Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two distinct phenotypes in Snijders Blok-Campeau syndrome and characterization of the behavioral phenotype in a zebrafish model

Abstract

Chromatin remodeling is an important system controlling gene expression. CHD3, which is a causative gene of Snijders Blok-Campeau syndrome (SNIBCPS), is a member of the chromodomain helicase DNA-binding (CHD) family related to chromatin remodeling. SNIBCPS is characterized by developmental delay (DD), intellectual disability (ID), macrocephaly, and facial features including a prominent forehead and hypertelorism. Hypersociability/overfriendliness is a notable behavioral feature in patients. Here, we describe five SNIBCPS patients with CHD3 variants from four families, including a sibling pair caused by parental gonosomal mosaicism. We observed two distinct phenotypes in our patients in accordance with previous observations. Phenotype 1: macrocephaly, hypertelorism, overgrowth, DD, and ID; and Phenotype 2: microcephaly, growth retardation, DD, and ID. Phenotype 1 was consistent with the typical SNIBCPS phenotype, while Phenotype 2 was distinct. To understand further the features of the patients with SNIBCPS, we generated chd3-knockout (KO) zebrafish using CRISPR-Cas9 genome editing. No morphological changes were observed in chd3-KO zebrafish. However, behavioral tests showed that chd3-KO zebrafish had strong and sustained interest in others, and were less aggressive toward others, suggesting a recapitulation of the hypersociability/overfriendliness phenotype in patients with SNIBCPS. Metabolomic analysis using whole brains showed changes in metabolites processed by specific mitochondrial enzymes in chd3-KO zebrafish. The administration of metformin, which reportedly ameliorates mitochondrial dysfunction and behavioral abnormalities, attenuated the abnormal behavior of chd3-KO zebrafish. Our study helps delineate the phenotypes of patients with SNIBCPS, provides insights into a characteristic behavior of the disease, and suggests a potential treatment to improve the behavioral symptoms of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patient family pedigrees and location of the identified pathological variants in CHD3.
Fig. 2: Effects of chd3-knockout (KO) on social preference in zebrafish.
Fig. 3: Effects of chd3-knockout (KO) on mirror biting behavior of zebrafish.
Fig. 4: Differentially expressed metabolites between chd3-KO and WT zebrafish and the effect of metformin in the mirror biting test.

Similar content being viewed by others

Data availability

The data are not available due to ethical restrictions.

References

  1. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;154:490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:407–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marfella CG, Imbalzano AN. Imbalzano. The Chd family of chromatin remodelers concetta. Chd Fam Chromatin Remodel. 2007;605:105–12.

    Google Scholar 

  4. Cardoso AR, Lopes-Marques M, Oliveira M, Amorim A, Prata MJ, Azevedo L. Genetic variability of the functional domains of chromodomains helicase DNA-binding (CHD) proteins. Genes. 2021;12:1–15.

    Article  Google Scholar 

  5. Pilarowski GO, Vernon HJ, Applegate CD, Boukas L, Cho MT, Gurnett CA, et al. Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J Med Genet. 2018;55:561–6.

  6. Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45:825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suls A, Jaehn JA, Kecskés A, Weber Y, Weckhuysen S, Craiu DC, et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with dravet syndrome. Am J Hum Genet. 2013;93:967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Snijders Blok L, Rousseau J, Twist J, Ehresmann S, Takaku M, Venselaar H, et al. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat Commun. 2018;9:1–12.

    Article  CAS  Google Scholar 

  9. Weiss K, Terhal PA, Cohen L, Bruccoleri M, Irving M, Martinez AF, et al. De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. Am J Hum Genet. 2016;99:934–41. https://doi.org/10.1016/j.ajhg.2016.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SHA, Thienpont B, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48:1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parenti I, Lehalle D, Nava C, Torti E, Leitão E, Person R, et al. Missense and truncating variants in CHD5 in a dominant neurodevelopmental disorder with intellectual disability, behavioral disturbances, and epilepsy. Hum Genet. 2021;140:1109–20. https://doi.org/10.1007/s00439-021-02283-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:263–76. https://doi.org/10.1016/j.cell.2014.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coursimault J, Lecoquierre F, Saugier-Veber P, Drouin-Garraud V, Lechevallier J, Boland A, et al. Hypersociability associated with developmental delay, macrocephaly, and facial dysmorphism points to CHD3 mutations. Eur J Med Genet. 2021;64:104166.

  14. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAM tools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:1–7.

    Article  Google Scholar 

  18. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Enomoto Y, Tsurusaki Y, Yokoi T, Abe-Hatano C, Ida K, Naruto T, et al. CNV analysis using whole exome sequencing identified biallelic CNVs of VPS13B in siblings with intellectual disability. Eur J Med Genet. 2020;63:103610. https://doi.org/10.1016/j.ejmg.2018.12.015.

    Article  PubMed  Google Scholar 

  20. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM, et al. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am J Hum Genet. 2012;91:597–607. https://doi.org/10.1016/j.ajhg.2012.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, et al. Zebrafish pigmentation mutations and the processes of neural crest development. Development. 1996;123:369–89.

    Article  CAS  PubMed  Google Scholar 

  22. Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, et al. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom. 2015;55:1–16.

    Article  Google Scholar 

  23. Kotani H, Taimatsu K, Ohga R, Ota S, Kawahara A. Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PLoS ONE. 2015;10:1–16.

    Article  Google Scholar 

  24. Adachi Y, Higuchi A, Wakai E, Shiromizu T, Koiwa J, Nishimura Y. Involvement of homeobox transcription factor Mohawk in palatogenesis. Congenit Anom. 2022;62:27–37.

    Article  CAS  Google Scholar 

  25. Stewart AM, Nguyen M, Wong K, Poudel MK, Kalueff AV. Developing zebrafish models of autism spectrum disorder (ASD). Prog NeuroPsychopharmacol Biol Psychiatry. 2014;50:27–36. https://doi.org/10.1016/j.pnpbp.2013.11.014.

    Article  CAS  PubMed  Google Scholar 

  26. Tomar S. Converting video formats with FFmpeg. Linux J. 2006;2006:10.

  27. Yamanaka O, Takeuchi R. UMATracker: an intuitive image-based tracking platform. J Exp Biol. 2018;221:1–5.

    Google Scholar 

  28. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 3rd ed. Springer: Verlag, 2016.

  29. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.

    Article  Google Scholar 

  30. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. RankProd: a Bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22:2825–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Ibanez J, Pazos F, Chagoyen M. MBROLE3: improved functional enrichment of chemical compounds for metabolomics data analysis. Nucleic Acids Res. 2023;51:W305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Drivas TG, Li D, Nair D, Alaimo JT, Alders M, Altmüller J, et al. A second cohort of CHD3 patients expands the molecular mechanisms known to cause Snijders Blok-Campeau syndrome. Eur J Hum Genet. 2020;28:1422–31. https://doi.org/10.1038/s41431-020-0654-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aishworiya R, Valica T, Hagerman R, Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics. 2022;19:248–62. https://doi.org/10.1007/s13311-022-01183-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biag HMB, Potter LA, Wilkins V, Afzal S, Rosvall A, Salcedo-Arellano MJ, et al. Metformin treatment in young children with fragile X syndrome. Mol Genet Genomic Med. 2019;7:1–13.

    Article  Google Scholar 

  36. Amin S, Mallick AA, Edwards H, Cortina-Borja M, Laugharne M, Likeman M, et al. The metformin in tuberous sclerosis (MiTS) study: a randomised double-blind placebo-controlled trial. EClinicalMedicine. 2021;32:100715. https://doi.org/10.1016/j.eclinm.2020.100715.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nabais Sá, El Tekle MJ, de Brouwer G, Sawyer SL APM, del Gaudio D, Parker MJ, et al. De novo variants in SPOP cause two clinically distinct neurodevelopmental disorders. Am J Hum Genet. 2020;106:405–11.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, et al. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom. 2016;56:18–27.

    Article  Google Scholar 

  39. Toth M. The other side of the coin: hypersociability. Genes Brain Behav. 2019;18:1–11.

    Article  CAS  Google Scholar 

  40. López-Tobón A, Trattaro S, Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Mol Autism. 2020;11:1–13.

    Article  Google Scholar 

  41. Hoffmeister H, Fuchs A, Erdel F, Pinz S, Gröbner-Ferreira R, Bruckmann A, et al. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res. 2017;45:10534–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Havugimana PC, Goel RK, Phanse S, Youssef A, Padhorny D, Kotelnikov S, et al. Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat Commun. 2022;13:1–8.

    Article  Google Scholar 

  43. Young EJ, Lipina T, Tam E, Mandel A, Clapcote SJ, Bechard AR, et al. Reduced fear and aggression and altered serotonin metabolism in Gtf2ird1-targeted mice. Genes Brain Behav. 2008;7:224–34.

    Article  CAS  PubMed  Google Scholar 

  44. Proulx É, Young EJ, Osborne LR, Lambe EK. Enhanced prefrontal serotonin 5-HT1A currents in a mouse model of Williams-Beuren syndrome with low innate anxiety. J Neurodev Disord. 2010;2:99–108.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Filiou MD, Zhang Y, Teplytska L, Reckow S, Gormanns P, MacCarrone G, et al. Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol Psychiatry. 2011;70:1074–82. https://doi.org/10.1016/j.biopsych.2011.06.009.

    Article  CAS  PubMed  Google Scholar 

  46. Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 2018;15:1–31.

    Article  Google Scholar 

  47. Gómez-Del Arco P, Perdiguero E, Yunes-Leites PS, Acín-Pérez R, Zeini M, Garcia-Gomez A, et al. The chromatin remodeling complex Chd4/NuRD controls striated muscle identity and metabolic homeostasis. Cell Metab. 2016;23:881–92.

    Article  PubMed  Google Scholar 

  48. Morella IM, Brambilla R, Morè L. Emerging roles of brain metabolism in cognitive impairment and neuropsychiatric disorders. Neurosci Biobehav Rev. 2022;142;104892.

  49. Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Institute Physiol Behav. 2016;176:100–6.

    Google Scholar 

  50. Vaubel RA, Rustin P, Isaya G. Mutations in the dimer interface of dihydrolipoamide dehydrogenase promote site-specific oxidative damages in yeast and human cells. J Biol Chem. 2011;286:40232–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A O, U M, LF B, A GC. Energy metabolism in childhood neurodevelopmental disorders. EBioMedicine. 2021;69:103474.

  52. Fontaine E. Metformin-induced mitochondrial complex I inhibition: facts, uncertainties, and consequences. Front Endocrinol. 2018;9:23–8.

    Article  Google Scholar 

Download references

Acknowledgements

We thank patients and their families for their cooperation.

Funding

This research was supported by the Initiative on Rare and Undiagnosed Diseases (IRUD) (19ek0109301) from the Japan Agency for Medical Research and Development, a Grant-in-Aid for Research on rare and intractable diseases, Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare of Japan, MEXT KAKENHI (no. 221S0002 to KK), the Japan Society for the Promotion of Science, KAKENHI (grant nos. 20K08270 and 23K07283 to KK, 22K06882 to TS, and 23K06355 to YN), the Research Revitalization Program at Mie University Graduate School of Medicine (to YN), and Ikuura Mariko Foundation (to YN).

Author information

Authors and Affiliations

Authors

Contributions

KK, YN, and YE designed the study, the main conceptual ideas, and the proof outline. YE analyzed the clinical and genomic data and wrote the manuscript with support from all members. KK, YK, and HM were involved in patients’ medical care and analysis of the clinical and genomic data. TN and YE provided the bioinformatics pipeline for genomic data analysis. SS and NO performed the laboratory experiments. TS generated the chd3-KO zebrafish and performed the metabolome analysis. JK maintained the zebrafish. SY, JK, MO, and HI performed the behavioral analysis of the zebrafish. RS and MY performed the histological analysis of the zebrafish.

Corresponding authors

Correspondence to Yuhei Nishimura or Kenji Kurosawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

Written informed consent was obtained from the parents of the patients in accordance with the Kanagawa Children’s Medical Center Review Board and Ethics Committee. This study was approved by the Institutional Animal Care and Use Committee of Mie University (no. 2020-19).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enomoto, Y., Shiromizu, T., Yasojima, S. et al. Two distinct phenotypes in Snijders Blok-Campeau syndrome and characterization of the behavioral phenotype in a zebrafish model. Eur J Hum Genet 33, 747–757 (2025). https://doi.org/10.1038/s41431-025-01815-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41431-025-01815-y

This article is cited by

Search

Quick links