Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic insights into 16p13.3 microdeletions encompassing TBC1D24 and ATP6V0C through advanced sequencing approaches

Abstract

Chromosomal microdeletions represent a complex class of genetic disorders. Recently, 16p13.3 microdeletions encompassing TBC1D24 and ATP6V0C have gained prominence as structural variants associated with neurodevelopmental disorders, but their occurrence mechanisms remain unexplored. We used a comprehensive range of sequencing technologies (mate pair genome sequencing, linked-pair genome sequencing, nanopore sequencing, targeted locus amplification (TLA), long range and nested PCR followed by Sanger sequencing), to map the exact 16p13.3 microdeletion breakpoints in eight previously reported individuals. Microdeletion breakpoints were successfully mapped in all patients using TLA, split read analysis, PCR/Sanger sequencing, or nanopore sequencing. Alu sequences and/or non-B DNA motifs were detected in all patients. Mechanistic analysis identified distinct pathways underlying these rearrangements. Noteworthy, two unrelated individuals carried identical microdeletions that might have been mediated by an atypical form of non-allelic homologous recombination, given the presence of a 639 bp sequence with 96.2% homology. Microhomology-mediated end-joining and non-homologous end-joining emerged as other mechanisms driving these 16p13.3 microdeletions, which differs from other studied contiguous gene deletion syndromes. This research contributes to a deeper understanding of microdeletion-associated disorder pathophysiology in medical genetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis conducted for each patient to delineate the breakpoints of each microdeletion.
Fig. 2: Representation of 16p13.3 microdeletions suggested occurrence mechanisms and corresponding chromatograms when available or relevant.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kumar D. Disorders of the genome architecture: a review. Genom Med. 2008;2:69–76. https://doi.org/10.1007/s11568-009-9028-2.

    Article  Google Scholar 

  2. Shaw CJ, Lupski JR. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet. 2005;116:1–7. https://doi.org/10.1007/s00439-004-1204-9.

    Article  PubMed  CAS  Google Scholar 

  3. Verdin H, D’haene B, Beysen D, Novikova Y, Menten B, Sante T, et al. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013;9:e1003358 https://doi.org/10.1371/journal.pgen.1003358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. Pathogenetics. 2008;1: https://doi.org/10.1186/1755-8417-1-4.

  5. Gu S, Yuan B, Campbell IM, Beck CR, Carvalho CMB, Nagamani SCS, et al. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet. 2015;24:4061–77. https://doi.org/10.1093/hmg/ddv146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, et al. Predicting human genes susceptible to genomic instability associated with Alu/Alu-mediated rearrangements. Genome Res. 2018;28:1228–42. https://doi.org/10.1101/gr.229401.117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6. https://doi.org/10.1126/science.1149504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chen J-M, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP. Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol. 2010;20:222–33. https://doi.org/10.1016/j.semcancer.2010.05.007.

    Article  PubMed  CAS  Google Scholar 

  9. Carvalho CM, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17:224–38. https://doi.org/10.1038/nrg.2015.25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mucha BE, Banka S, Ajeawung NF, Molidperee S, Chen GG, Koenig MK, et al. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genet Med. 2019;21:1058–64. https://doi.org/10.1038/s41436-018-0290-3.

    Article  PubMed  CAS  Google Scholar 

  11. Bartsch O, Rasi S, Delicado A, Dyack S, Neumann LM, Seemanová E, et al. Evidence for a new contiguous gene syndrome, the chromosome 16p13.3 deletion syndrome alias severe Rubinstein–Taybi syndrome. Hum Genet. 2006;120:179–86. https://doi.org/10.1007/s00439-006-0215-0.

    Article  PubMed  CAS  Google Scholar 

  12. Balestrini S, Campeau PM, Mei D, Guerrini R, Sisodiya S. TBC1D24-Related Disorders. In Adam MP editor GeneReviews®. Seattle: University of Washington; 2015.

  13. Mattison KA, Tossing G, Mulroe F, Simmons C, Butler KM, Schreiber A, et al. ATP6V0C variants impair V-ATPase function causing a neurodevelopmental disorder often associated with epilepsy. Brain. 2023;146:1357–72. https://doi.org/10.1093/brain/awac330.

    Article  PubMed  Google Scholar 

  14. Tinker RJ, Burghel GJ, Garg S, Steggall M, Cuvertino S, Banka S. Haploinsufficiency of ATP6V0C possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. Am J Med Genet A. 2021;185:196–202. https://doi.org/10.1002/ajmg.a.61905.

    Article  CAS  Google Scholar 

  15. Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet. 2011;88:469–81. https://doi.org/10.1016/j.ajhg.2011.03.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hottentot QP, van Min M, Splinter E, White SJ. Targeted locus amplification and next-generation sequencing. In: Methods in molecular biology. New York, NY: Springer New York; 2017. p. 185–96.

  17. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinforma. 2007;23:1289–91. https://doi.org/10.1093/bioinformatics/btm091.

    Article  CAS  Google Scholar 

  18. Tsai M-F, Lin Y-J, Cheng Y-C, Lee K-H, Huang C-C, Chen Y-T, et al. PrimerZ: streamlined primer design for promoters, exons and human SNPs. Nucleic Acids Res. 2007;35:W63–W65. https://doi.org/10.1093/nar/gkm383.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e115. https://doi.org/10.1093/nar/gks596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13: https://doi.org/10.1186/1471-2105-13-134.

  21. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64. https://doi.org/10.1101/gr.229202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. https://doi.org/10.1101/gr.229102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Paré B, Rozendaal M, Morin S, Kaufmann L, Simpson SM, Poujol R, et al. Patient health records and whole viral genomes from an early SARS-CoV-2 outbreak in a Quebec hospital reveal features associated with favorable outcomes. PLoS One. 2021;16:e0260714 https://doi.org/10.1371/journal.pone.0260714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Delehelle F, Cussat-Blanc S, Alliot J-M, Luga H, Balaresque P. ASGART: fast and parallel genome scale segmental duplications mapping. Bioinforma. 2018;34:2708–14. https://doi.org/10.1093/bioinformatics/bty172.

    Article  CAS  Google Scholar 

  25. Cer RZ, Bruce KH, Mudunuri US, Yi M, Volfovsky N, Luke BT, et al. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res. 2011;39:D383–D391. https://doi.org/10.1093/nar/gkq1170.

    Article  PubMed  CAS  Google Scholar 

  26. Cer RZ, Donohue DE, Mudunuri US, Temiz NA, Loss MA, Starner NJ, et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 2012;41:D94–D100. https://doi.org/10.1093/nar/gks955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cer RZ, Bruce KH, Donohue DE, Temiz NA, Mudunuri US, Yi M, et al. Searching for non-B DNA-forming motifs using nBMST (non-B DNA Motif Search Tool). Curr Protoc Hum Genet. 2012;73: https://doi.org/10.1002/0471142905.hg1807s73.

  28. Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: diversity and disease association. Front Genet. 2022;13:959258. https://doi.org/10.3389/fgene.2022.959258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie. 2023;214:176–92. https://doi.org/10.1016/j.biochi.2023.07.002.

    Article  PubMed  CAS  Google Scholar 

  30. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7: https://doi.org/10.1038/msb.2011.75.

  31. Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45. https://doi.org/10.1002/pro.3290.

    Article  PubMed  CAS  Google Scholar 

  32. Brown NP, Leroy C, Sander C. MView: a web-compatible database search or multiple alignment viewer. Bioinforma. 1998;14:380–1. https://doi.org/10.1093/bioinformatics/14.4.380.

    Article  CAS  Google Scholar 

  33. Bacolla A, Wells RD. Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem. 2004;279:47411–4. https://doi.org/10.1074/jbc.r400028200.

    Article  PubMed  CAS  Google Scholar 

  34. Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer. 2019;58:270–83. https://doi.org/10.1002/gcc.22721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, et al. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet. 2006;79:41–53. https://doi.org/10.1086/504600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Waldman AS, Liskay RM. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988;8:5350–7. https://doi.org/10.1128/mcb.8.12.5350-5357.1988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rubnitz J, Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 1984;4:2253–8. https://doi.org/10.1128/mcb.4.11.2253-2258.1984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283:1–5. https://doi.org/10.1074/jbc.r700039200.

    Article  PubMed  CAS  Google Scholar 

  39. Boyer A-S, Grgurevic S, Cazaux C, Hoffmann J-S. The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J Mol Biol. 2013;425:4767–81. https://doi.org/10.1016/j.jmb.2013.09.022.

    Article  PubMed  CAS  Google Scholar 

  40. Xu Y, Komiyama M. G-quadruplexes in human telomere: structures, properties, and applications. Molecules. 2023;29:174 https://doi.org/10.3390/molecules29010174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Georgakopoulos-Soares I, Victorino J, Parada GE, Agarwal V, Zhao J, Wong HY, et al. High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics. 2022;2:100111. https://doi.org/10.1016/j.xgen.2022.100111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. De Cario R, Kura A, Suraci S, Magi A, Volta A, Marcucci R, et al. Sanger validation of high-throughput sequencing in genetic diagnosis: still the best practice? Front Genet. 2020;11: https://doi.org/10.3389/fgene.2020.592588.

  43. Walz K, Fonseca P, Lupski JR. Animal models for human contiguous gene syndromes and other genomic disorders. Genet Mol Biol. 2004;27:305–20. https://doi.org/10.1590/s1415-47572004000300001.

    Article  CAS  Google Scholar 

  44. Theisen A, Shaffer LG. Disorders caused by chromosome abnormalities. Appl Clin Genet. 2010;159: https://doi.org/10.2147/tacg.s8884.

  45. Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020;21:765–81. https://doi.org/10.1038/s41580-020-00297-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for taking part in the study. We also thank the physicians who contributed to our initial microdeletion study.

Funding

This work was supported by Canadian Institutes of Health Research (CIHR) grant 137093.

Author information

Authors and Affiliations

Authors

Contributions

BM and EAC wrote the manuscript and were responsible for data collection and interpretation. EAC, SK, NFA, DAJC, SE, GC and CE contributed to the data collection and data interpretation. BM, PMC and JR contributed to the data collection, data interpretation, writing, review, and editing of the manuscript. All authors reviewed and approved the latest version of the manuscript.

Corresponding author

Correspondence to Philippe M. Campeau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by an institutional review board and adheres to the tenets of the Declaration of Helsinki. Written informed consent was obtained from all individuals before participation in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazel, B., Coleman, E.A., Rousseau, J. et al. Mechanistic insights into 16p13.3 microdeletions encompassing TBC1D24 and ATP6V0C through advanced sequencing approaches. Eur J Hum Genet 33, 1136–1143 (2025). https://doi.org/10.1038/s41431-025-01912-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41431-025-01912-y

This article is cited by

Search

Quick links