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ARTICLE OPEN

Personalised genomic strategies improve diagnostic yield in 
inherited retinal dystrophies: a stepwise, patient-centred 
approach
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BACKGROUND: Inherited retinal dystrophies (IRDs) are a genetically heterogeneous group of conditions, with approximately 40% 
of cases remaining unresolved after initial genetic testing. This study aimed to assess the impact of a personalised genomic 
approach integrating whole-exome sequencing (WES) reanalysis, whole-genome sequencing (WGS), customised gene panels and 
functional assays to improve diagnostic yield in unresolved cases.
SUBJECTS/METHODS: We retrospectively reviewed a cohort of 597 individuals with IRDs, including 525 probands and 72 affected 
relatives. Among the 221 genetically unresolved cases, a subset of 101 was selected for stepwise re-evaluation. This included WES 
reanalysis with updated virtual panels, WGS in selected cases and targeted sequencing of complex regions. Variant interpretation 
was refined using updated classification criteria, segregation analysis and functional assays such as mRNA and minigene/midigene 
studies.
RESULTS: An initial diagnostic yield of 59.6% (313/525) was achieved through first-tier genetic testing. Re-evaluation of the 101 
prioritised cases resulted in 42 new diagnoses in probands and resolution of 7 more familial cases, yielding 49 additional 
diagnoses among previously unresolved patients (48.5%). This increased the overall diagnostic rate for probands to 67.6% (355/ 
525). Functional assays confirmed pathogenicity of variants in ABCA4, ATF6, REEP6, and TULP1, while WGS enabled the detection of 
structural and deep intronic variants, further enhancing diagnostic accuracy.
CONCLUSIONS: A patient-centred, stepwise genomic approach significantly improved the molecular diagnosis of IRDs. This 
strategy supports the clinical utility of periodic WES reanalysis and targeted use of customised panels, WGS and functional assays. 
The proposed workflow is scalable and applicable to routine clinical practice, contributing to precision medicine in IRDs.

Eye; https://doi.org/10.1038/s41433-025-03981-1

INTRODUCTION
Inherited retinal dystrophies (IRDs) are a leading cause of 
blindness worldwide, characterised by extensive genetic hetero
geneity that complicates molecular diagnosis [1–3]. To date, 
pathogenic variants in over 300 genes have been implicated in 
IRDs (RetNet, https://web.sph.uth.edu/RetNet/; accessed on 3 
February 2025), affecting both coding and non-coding regions. 
These include deep intronic variants (e.g., ABCA4, CEP290 and 
USH2A), GC-rich regions (RPGR-ORF15) and structural variants 
(SVs) such as large deletions and complex rearrangements [4–10].

Next-generation sequencing (NGS), particularly whole-exome 
sequencing (WES) and gene panels, has transformed IRD 
diagnostics by enabling simultaneous analysis of multiple genes 
[11–13]. However, despite these advancements, a significant 
proportion of cases remain unresolved, with diagnostic yields 
ranging from 49% to 75%, leaving nearly 40% of patients without 
a molecular diagnosis [3, 12–14]. This highlights key limitations of 
current NGS approaches: gene panels fail to capture non-targeted 
regions and WES has limited sensitivity for deep intronic variants 
[15]. Additionally, both methods struggle with SVs detection and 
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pathogenic variants in repetitive or homologous regions [15]. 
Whole-genome sequencing (WGS) provides a more comprehen
sive analysis, covering both coding and non-coding regions and 
allowing the identification of complex genomic rearrangements 
often missed by WES [16–20].

Beyond sequencing, variant interpretation remains a challenge, 
with many variants classified as variants of uncertain significance 
(VUS), complicating clinical decision-making [2, 21]. Emerging 
research continues to refine variant classification, revealing that 
synonymous and hypomorphic variants, previously considered 
benign, can contribute to IRD pathogenesis [22, 23]. This 
highlights the need for periodic WES reanalysis and refinements 
to American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology (ACMG-AMP) guidelines to 
improve diagnostic accuracy [24–26].

Functional validation is critical for confirming variant patho
genicity, particularly in non-coding regions. However, the 
inaccessibility of retinal tissue remains a key challenge [27]. In 
vitro assays, such as mRNA analysis and minigene/midigene 
assays, have emerged as powerful tools to elucidate IRD 
mechanisms and improve variant interpretation [28, 29].

This study focuses on a subset of 101 unresolved cases, 
selected from a larger diagnostic cohort, to assess the impact of a 
personalised, case-by-case re-evaluation strategy. By integrating 
WES reanalysis, customised gene panels, WGS, functional assays 
and updated classification frameworks, this approach aims to 
enhance the diagnostic yield for IRDs. Beyond improving 
molecular diagnosis, this strategy contributes to a better under
standing of IRD pathogenesis, facilitates access to gene-targeted 
therapies and enables more accurate genetic counselling.

SUBJECTS AND METHODS
Cohort description
We retrospectively reviewed the clinical and genetic records of 597 adult 
patients with a confirmed clinical diagnosis of IRD, all monitored at the 
Hereditary Retinal Dystrophies Unit of Bellvitge University Hospital. This 
cohort included 525 probands from unrelated families and 72 affected 
relatives (familial cases). Clinical diagnoses were based on comprehensive 
ophthalmological assessments, including fundus examination, optical 
coherence tomography, autofluorescence imaging and electrophysiology 
when indicated. All individuals underwent genetic testing between 2021 
and 2024, primarily through targeted gene panels or WES, both of which 
included copy number variant (CNV) analysis as part of standard 
diagnostic protocols.

Among the 525 probands, 221 remained without a conclusive 
molecular diagnosis after initial testing. Based on clinical presentation, 
family history and previous genetic findings, a subset of 101 unresolved 
cases were selected for further re-evaluation. This subgroup constitutes 
the primary study population in which the personalised genomic 
approach described in this study was applied.

Genetic testing workflow
Initially, cases were classified as resolved or unresolved based on prior 
genetic results. From the 221 unresolved cases, a subset of 101 cases was 
selected for stepwise, case-by-case genetic re-evaluation. This re- 
assessment involved one or more of the following approaches: variant 
reinterpretation and reclassification, WES reanalysis with updated virtual 
panels, WGS, customised gene panels or functional studies, depending on 
the specific characteristics of each case. This additional testing was 
performed between 6 months and 3 years after the initial analysis, 
depending on the clinical course, newly available evidence and the 
implementation of updated sequencing tools.

Case prioritisation was based on both clinical and genetic criteria, 
including reproductive planning, family history of IRDs, the presence of a 
single pathogenic variant in recessive genes with a consistent phenotype, 
and cases with no candidate variants in which the initial study had been 
performed over a year earlier—especially when the original panel might 
not have included recently associated IRD genes. Notably, timing alone 
was not the sole determinant; in several cases, prioritisation was driven 
more by the nature of preliminary findings than by the time elapsed since 

the first analysis. Exclusion criteria included patient mortality, lack of 
clinical follow-up or reclassification of the phenotype as non-IRD.

WES REANALYSIS
Unresolved cases underwent WES reanalysis using an updated 
IRD gene panel for non-syndromic cases (Supplementary Data) 
and a phenotype-driven approach with Human Phenotype 
Ontology (HPO)-guided analysis for syndromic IRDs [30]. Updated 
annotation tools were applied in both analyses, with bioinfor
matics performed using Datagenomics software (versions 19.1 
and 22.4.0) and CNV detection was carried out via the VarSeq 
platform (Golden Helix).

WHOLE-GENOME SEQUENCING ANALYSIS AND CUSTOMISED 
GENE PANEL SEQUENCING
WGS was performed using the KAPA HyperPrep Kit (Roche) and 
the xGen DNA Library Prep EZ Kit (Integrated DNA Technologies), 
with sequencing conducted on the Illumina NovaSeq 6000 
platform. Bioinformatics analysis was carried out using the CNAG 
(Centro Nacional de Análisis Genómico) GPAP (Genome-Phenome 
Analysis Platform, hg19) and Emedgene (Illumina, hg19) plat
forms. Variants were filtered using an expanded IRD panel that 
also included candidate IRD genes (Supplementary Data) [17, 31]. 
A customised gene panel targeting ABCA4 deep intronic regions 
and RPGR-ORF15 repetitive region was processed using the 
Agilent SureSelect XT HS2 and the Magnis NGS Prep system 
(Agilent Technologies, CA, USA), sequenced on the Illumina MiSeq 
platform and analysed using the Datagenomics software.

VARIANT FILTERING AND CLASSIFICATION
Variants with read depth >20x and an allele frequency ≥20% were 
considered, except for RPGR-ORF15, where all variants were 
retained. A minor allele frequency threshold of 0.05 in gnomAD 
v2.1.1 [32] was applied, prioritising deleterious variants, including 
nonsense, frameshift, splice site and missense variants. Patho
genicity was assessed using REVEL [33] for missense variants and 
SpliceAI [34] for splicing impact. Variants were classified accord
ing to the ACMG-AMP classifications standards [24], the latest 
recommendations from the Sequence Variant Interpretation 
Working Group (SVI-WG) [35] and gene-specific adaptations, such 
as those from Cornelis et al. (2023) for ABCA4 gene [36].

VALIDATION OF VARIANTS AND SPLICE SITE ASSAYS
Variants were validated using Sanger sequencing, digital PCR, 
array-CGH or MLPA, depending on variant type, following 
standard protocols. Splicing impact was assessed through mRNA 
analysis and minigene/midigene assays.

To evaluate the impact of REEP6 c.349-4G>T and c.349-1G>A 
variants, as well as the ATF6 c.160-8A>G variant, RNA was 
extracted from nasal ciliary cells (REEP6) and whole blood (ATF6) 
using the RNeasy Mini Kit (Qiagen) and Maxwell® RSC SimplyRNA 
Blood Kit (Promega), respectively. cDNA synthesis was performed 
using the PrimeScript RT Reagent Kit (TaKaRa), followed by PCR 
amplification with primers listed in Supplementary Table S1. PCR 
products were purified (ExoSAP-IT, Applied Biosystems) and 
analysed by Sanger sequencing (BigDye Terminator v3.1, Applied 
Biosystems). Electropherograms were analysed using Mutation 
Surveyor v5.1.2 (for ATF6) and FinchTV (for REEP6) software. The 
potential protein impact of these variants was assessed using 
Expasy translate tool [37].

The splicing effect of ABCA4 c.859-442C>T variant was investi
gated using an in vitro splice assay based on a previously 
established wild-type midigene (BA7) containing ABCA4 exons 7 
to 11 [38]. The variant was introduced via site-directed mutagenesis 
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using oligonucleotides listed in Supplementary Table S2. Wild-type 
and mutant constructs were transfected into HEK293T cells, 
followed by RNA extraction (Nucleospin RNA, Machery-Nagel) 
and cDNA synthesis (iScript, Bio-Rad). RT-PCR was performed using 
ACTB and RHO exon 5 as controls. Splicing defects were analysed 
via electrophoresis, Sanger sequencing and semi-quantitative 
mRNA analysis using Fiji software. Further details on the midigene 
assay are provided in the Supplementary Material.

Additionally, a minigene splice assay for TULP1 c.822G>T was 
conducted as previously described [39].

Ethical considerations
This study was approved by the Research Ethics Committee of 
Bellvitge University Hospital (reference number PR014/22) and 
conducted in accordance with the Declaration of Helsinki [40]. 
Informed consent was obtained from all participants and 
biological samples were sourced from the Biobank HUB-ICO- 
IDIBELL, part of the ISCIII Biobanks and Biomodels Platform when 
needed.

RESULTS
Cohort characterisation
Of the 597 cases, 376 were classified as genetically resolved (P1- 
P376 in Supplementary Table S3), including 313 probands and 63 
familial cases. This cohort exhibited a near-equal sex distribution 
(189 females and 187 males). The mean age of symptom onset 
was 23.3 years (range: 1 to 75 years), with 51.1% (192/376) of 
patients reporting a family history of IRD. Pathogenic variants 
were identified in 70 genes across 24 IRD subtypes (Fig. 1). 
Among the 525 probands tested, first-tier genetic testing 
achieved a diagnostic yield of 59.6% (313/525).

From the 221 unresolved cases, a subset of 101 was selected for 
personalised reanalysis based on clinical and genetic prioritisation 
criteria. This group constitutes the primary study population.

Diagnostic improvement
The 101 selected cases underwent further analysis through a 
stepwise, case-by-case strategy. Variant re-evaluation and 

reclassification were conducted for 41 cases with VUS that 
matched the clinical phenotype (P377–P417, Table 1), resolving 
18 cases through VUS reclassification to likely pathogenic or 
pathogenic (Fig. 2). WES reanalysis identified 16 additional 
diagnoses, while WGS and customised gene panels provided 
molecular diagnoses for 15 more cases from a subset of 60 
patients (P418–P477, Table 2).

In total, 49 new molecular diagnoses were established, 
comprising 42 probands and 7 familial cases. This personalised 
approach achieved a diagnostic rate of 48.5% (49/101) in 
reassessed cases and increased the overall diagnostic rate for 
probands to 67.6% (355/525), reflecting a 13.4% relative 
improvement in diagnostic yield.

Reclassification of candidate variants
Family co-segregation and functional studies played crucial roles in 
reclassifying VUS. In patient P394, the REEP6 c.349-4G>T variant, 
initially classified as a VUS, was upgraded to likely pathogenic 
following co-segregation and mRNA analysis, which revealed a 32 nt 
deletion in exon 4 resulting in a frameshift (Supplementary Fig. S1). 
Computational predictions (SpliceAI) predicted minimal splicing 
impact (acceptor loss: 0.07; cryptic acceptor activation: 0.16) 
(Supplementary Table S4), but cDNA sequencing demonstrated 
loss-of-function, supporting pathogenicity. Conversely, despite a 
strong genotype-phenotype correlation, the AIPL1 c.767T>G variant 
identified in case P395 remained classified as a VUS due to 
insufficient functional evidence.

In addition to the 18 resolved cases, the reclassification of 
variants also contributed to the partial resolution of 23 additional 
cases, for which future evidence may provide further insights 
leading to conclusive classification.

Non-coding variants
Pathogenic non-coding variants were identified in ABCA4, ATF6, 
NPHP4, RPGRIP1 and USH2A genes through WES reanalysis, a 
customised ABCA4 panel and WGS (Table 2). Seven deep intronic 
variants in ABCA4 were detected, including six previously 
reported [36] (c.4539∫2064C>T in P420, P429 and P432; 
c.5196∫1137G>A in P423 and P430; and c.4253∫43G>A in 

Fig. 1 Clinical and genetic distribution in resolved cases. A The most common clinical diagnoses in the genetically resolved cohort (n =∠376) 
were non-syndromic retinitis pigmentosa (nsRP, 40.4%, 152/376), Stargardt disease (STGD, 11.4%, 43/376) and Usher syndrome (USH, 6.3%, 24/ 
376). B Pathogenic variants were identified in 70 genes across 24 IRD subtypes. Only genes implicated in ≥5 cases are shown; the remaining 49 
genes not shown were found in fewer than 5 cases. The most frequently affected genes were ABCA4 (18.1%, 68/376), USH2A (8.5%, 32/376), and 
RPGR (6.7%, 25/376). CD cone dystrophy, BMD best macular dystrophy, LCA leber congenital amaurosis, sRP syndromic retinitis pigmentosa, CRD 
cone-rod dystrophy, BBS Bardet-Biedl syndrome, CHM choroideremia, CSNB congenital stationary night blindness, ACHM achromatopsia, 
AOVMD adult-onset vitelliform macular dystrophy, PXE pseudoxanthoma elasticum.
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P428) and a novel c.859-442C>T variant in patient P434. 
Segregation analysis clarified cases initially classified as resolved. 
For example, in patients P423 and P430, it confirmed that ABCA4 
variants were in cis, leading to the identification of deep intronic 
variants in trans, which resolved both cases.

WGS identified the novel ABCA4 c.859-442C>T variant in P434. 
SpliceAI predictions indicated acceptor and donor gain (acceptor 
gain: 0.28; donor gain: 0.23) (Supplementary Table S4). In vitro 
splice assays revealed three splicing alterations: inclusion of a 238 
nt pseudoexon (37%), exons 8–10 skipping (35%) and exon 8 
skipping (7%) (Supplementary Table S5), which resulted in 
frameshifts and premature stop codons, likely disrupting ABCA4 
function (Fig. 3). Consequently, the c.859-442C>T variant was 
classified as moderately-severe in line with previous severity 
ABCA4 variants classifications [28, 38, 41].

In patient P448, diagnosed with non-progressive cone-rod 
dystrophy at age 10, WES reanalysis identified a homozygous 

ATF6 c.160-8A>G variant with a strong genotype-phenotype 
correlation. SpliceAI predicted a highly impactful acceptor gain 
(score: 0.99) and a minor acceptor loss (score 0.11) (Supplemen
tary Table S4). mRNA analysis confirmed the inclusion of 7 nt of 
intron 2 into de coding sequence, leading to a frameshift and 
introducing a premature stop codon (Supplementary Fig. S2). This 
led to the reclassification of the variant as likely pathogenic.

In siblings P435 and P436, biallelic splice-site NPHP4 variants 
(c.2485∫2T>C and c.2611∫1G>A) were identified, which had 
been missed due to the absence of NPHP4 from the original 
virtual panel. This finding confirmed the diagnosis of Senior- 
Løken syndrome and revealed previously unrecognised kidney 
involvement in one sibling.

WES reanalysis also identified a second RPGRIP1 c.2367∫23del 
variant in trans with a previously detected c.1111C>T pathogenic 
variant in patient P445, confirming the molecular diagnosis. 
Additionally, WGS identified a novel deep intronic USH2A c.11048- 

Fig. 2 Diagnostic yield improvement through stepwise testing. Among the 101 unresolved cases prioritised for further assessment, 41 cases 
(37 probands and 4 familial) with phenotype-associated VUS underwent reclassification, leading to 18 new diagnoses (15 probands and 3 
familial). The remaining 23 cases were considered partially resolved due to phenotype-matching VUS. WES reanalysis identified 16 additional 
diagnoses (14 probands and 2 familial), while targeted ABCA4/RPGR panel testing and WGS contributed to 5 and 10 new diagnoses, respectively. 
However, 29 cases (28 probands and 1 familial) remained inconclusive due to insufficient evidence of pathogenicity or genotype-phenotype 
discordance.

A. Esteve-Garcia et al.  
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1055A>G variant in siblings P446 and P447, reinforcing their 
clinical diagnosis.

Structural and copy number variants
WGS detected previously overlooked SVs (Table 2), including a 
partial exon 6 deletion in ABCA4 in patient P433 and a 
homozygous deletion affecting three genes, including NPHP1, in 
patient P440, who presented with retinitis pigmentosa and renal 
disease. WES reanalysis identified a homozygous intragenic PDE6B 
deletion in P443 and a likely pathogenic deletion involving ARSG 
exon 2 in P418, which had been missed due to limitations in the 
original analysis pipeline for detecting CNVs.

Coding variants and emerging gene associations
WES reanalysis identified previously overlooked coding variants in 
ABCA4, CERKL, HK1, RPGR, and TULP1 (Table 2). Emerging 
functional evidence, newly reported gene-disease associations, 
and advances in bioinformatics facilitated the detection and 
reclassification of variants. For example, biallelic ABCA4 variants, 
including the c.5603A>T hypomorphic variant, were identified in 
several cases (P421, P422, P424, P425, P426, P427 and P431). 
Additionally, a pathogenic homozygous CERKL c.769C>T variant 
was detected in patient P441, previously missed due to outdated 
transcript annotation.

In patient P444, a de novo pathogenic HK1 c.1334C>G variant 
was identified through WES reanalysis, guided by HPO terms. In 
patients P438, P439 and P442, variants in RPGR-ORF15 were 
detected using a customised RPGR panel, which facilitated the 
detection of variants in low-coverage regions. Finally, a novel 
splice-site TULP1 c.822G>T variant was identified in patient P437, 
with its pathogenicity validated through a minigene assay 
previously reported by our group [39].

DISCUSSION
This study demonstrates a significant improvement in the 
molecular diagnostic yield for IRDs through a patient-centred, 
multi-step genomic approach. By integrating variant reclassifica
tion, WES reanalysis, WGS, customised gene panels and functional 
assays, we resolved previously undiagnosed cases, providing 
deeper insights into IRD pathogenesis. These findings highlight 
the diagnostic challenges posed by the genetic heterogeneity of 
IRDs, particularly the presence of SVs and variants in GC-rich and 
non-coding regions, which are often missed by conventional 
methods [42].

The initial WES diagnostic yield in our cohort was 59.6%, 
aligning with previously reported rates for IRDs [3, 12–14]. 
However, incorporating variant reclassification, additional 
sequencing and functional validation increased the yield to 
48.5% among the prioritised cases that were re-evaluated. This 
surpasses diagnostic rates reported in large cohort studies where 
WGS alone was used as a second-tier method (33.3% [19], 24% 
[27] and 13% [18]), emphasising the value of a personalised 
approach.

While WES and WGS significantly contributed to variant 
identification, the interpretation of VUS remains challenging. 
Cases P394 and P448 exemplify how segregation analysis and 
functional assays can refine variant classification and resolve 
previously inconclusive cases. In contrast, patient P395 remained 
unresolved despite a strong genotype-phenotype correlation, 
underscoring the need for periodic reassessment and functional 
validation beyond in silico predictions.

The ABCA4 c.5603A>T hypomorphic variant, now recognised as 
pathogenic [22], was initially not reported due to limited evidence 
of pathogenicity. This variant is estimated to account for 
approximately 50% of unresolved cases in individuals carrying 
only one ABCA4 pathogenic variant [43], reinforcing the need for 
WES reanalysis as new evidence emerges [44]. However, its Ta
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Fig. 3 Overview of splice defects caused by ABCA4 c.859-442C>T variant in HEK293T cells. A Wild-type and mutant midigenes assay results. 
Rhodopsin exon 5 (RHO ex5) RT-PCR was used as a control for transfection efficiency. To the right, schematic representation of WT midigene 
(BA7_WT), in which the position of the variant is indicated with an arrow and the forward (fwd) and reverse (rev) primers used for PCR 
amplification are depicted as triangles. Beneath, schematic representation of the four RT-PCR products identified in panel, heteroduplex bands 
are labelled with an asterisk. ABCA4 c.859-442C>T variant leads to the inclusion of a 238 nt long pseudoexon (PE) in intron 7 (Fragment 1), exon 
8 skipping (Fragment 3), exon 8 to 10 skipping (Fragment 4) and WT product (Fragment 2). B The chromatograms show the exact exonic and 
intronic breakpoints in the four fragments as confirmed by Sanger sequencing.
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interpretation requires caution, as it is only considered patho
genic when in trans with severe variants. For instance, in cases 
P449, P459 and P472, c.5603A>T was found in trans with non-loss- 
of-function variants, limiting resolution of these cases.

Additionally, updates to transcript annotation were crucial, as 
demonstrated by case P441, where a CERKL variant was initially 
undetected. Similarly, in other cases, the detection of causative 
variants was hindered by the absence of certain genes in the 
applied virtual panels, highlighting the need for continuous 
updates to gene lists, transcript-aware analysis and periodic WES 
reanalysis using updated bioinformatics pipelines [44, 45].

One case was resolved through HPO-driven reanalysis, demon
strating its utility in syndromic cases, though its impact on non- 
syndromic IRDs remains limited [46]. Furthermore, the use of a 
customised RPGR panel enriched for low-coverage regions proved 
particularly effective in detecting variants within the ORF15 
region, providing a cost-effective alternative to WGS and long- 
read sequencing technologies for sequencing this hotspot [47, 5].

Our findings reinforce the role of non-coding variants in IRD 
pathogenesis [18]. The identification of pathogenic intronic 
variants in ABCA4, ATF6, NPHP4, RPGRIP1 and USH2A further 
validate their significance in disease development [4, 25, 48]. 
Notable examples include the novel deep intronic variants ABCA4 
c.859-442C>T and USH2A c.11048-1055A>G, both classified as 
pathogenic following segregation and/or functional analyses. The 
acceptor gain position at ABCA4 c.859-685 (243 nt upstream of 
-442) appears to be recurrently activated, as shown in Khan et al. 
(2020) and Corradi et al. (2022) [49, 50], where it coincided with 
pseudo-exon inclusion and the largest exon elongation for the 
-25A>G variant of intron 7. Another variant using this splice 
acceptor site has also been reported [22], reinforcing its 
functional relevance. These findings highlight the need for 
routine non-coding region screening, particularly in ABCA4 and 
USH2A. Cases P423 and P430 further emphasise the importance of 
segregation analysis to prevent misinterpretation when patho
genic variants are inherited in cis.

The identification of SVs—including a previously overlooked 
homozygous intragenic PDE6B deletion, a partial exon 6 deletion 
in ABCA4, which represents the second most frequently reported 
SV in ABCA4, particularly prevalent in the Spanish population [51] 
and a large deletion involving NPHP1—, reinforces the need to 
integrate WGS as a second-tier test in unresolved cases. These 
findings highlight the limitations of WES in detecting complex 
genomic rearrangements and emphasise the need for comple
mentary approaches to improve diagnostic accuracy [18, 19].

Beyond diagnostics, these findings have direct clinical implications. 
Establishing a molecular diagnosis enables tailored genetic counsel
ling, informed clinical decision-making and eligibility for emerging 
gene-specific therapies [52]. In addition to the 49 new diagnoses, 
segregation analysis in asymptomatic individuals identified carriers, 
facilitating reproductive counselling in at-risk couples, some of whom 
opted for preimplantation genetic diagnosis, directly impacting the 
next generation. Moreover, the identification of previously unde
tected variants enhances our understanding of disease mechanisms, 
which is crucial for developing more precise molecular diagnostic 
protocols for IRDs [41, 53].

Based on our findings, we propose a flexible and scalable 
diagnostic workflow for IRDs that integrates reanalysis, WGS and 
functional assays as complementary tools. Targeted gene panels 
and WES remain cost-effective and reliable first-line options in 
many healthcare settings, especially when their design is 
periodically updated to include newly associated IRD genes. 
However, clinicians must be aware of their limitations in detecting 
non-coding, structural and complex variants. Current literature 
supports systematic reanalysis of WES data every 18 to 24 months, 
due to ongoing advances in gene discovery and variant 
interpretation [54]. Nonetheless, timing should remain flexible 

and adapted to individual clinical contexts, particularly when 
preliminary findings suggest the presence of deep intronic or SVs, 
or when reproductive planning is a priority [16]. In selected cases 
with strong genotype–phenotype correlation, such as individuals 
carrying a single pathogenic variant in ABCA4 or USH2A, re- 
evaluation should not be delayed, even if the initial study was 
recent, as deep intronic or SVs may have been missed. In this 
context, the increasing implementation of genome sequencing as 
a first-tier test in certain countries may further accelerate and 
streamline the diagnostic process [55]. Overall, this patient- 
centred, stepwise approach proved effective and can be adapted 
to routine clinical practice to optimise IRD diagnostics.

In conclusion, our case-by-case genomic approach significantly 
improved the diagnostic yield for IRDs. These findings support the 
routine integration of advanced sequencing methodologies, 
variant reclassification and functional validation in IRD diagnostics 
to optimise patient outcomes and expand the role of precision 
medicine in ophthalmic genetics. Future efforts should prioritise 
refining diagnostic workflows, identifying novel candidate genes, 
improving variant classification systems and incorporating emer
ging technologies such as long-read sequencing to further 
enhance diagnostic accuracy and patient care [47, 56].

SUMMARY

What was known before:

● Whole-exome sequencing (WES) is the primary diagnostic 
tool for inherited retinal dystrophies (IRDs), yet approximately 
40% of cases remain unresolved.

● Whole-genome sequencing (WGS) and functional assays have 
demonstrated potential to improve the diagnostic yield.

● Variants of uncertain significance (VUS) complicate clinical 
interpretation and limit patient access to gene therapies.

What this study adds:

● A personalised genomic approach integrating WES reanalysis, 
WGS and customised gene panels improves IRD diagnosis.

● Deep intronic, non-coding and structural variants were 
identified, broadening the spectrum of IRD-related variants.

● Functional assays and systematic variant reclassification 
resolved previously undiagnosed cases.
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