Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED

Subjects

Abstract

Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the “BAC TG-EMBED” method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum-induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Walsh G. Biopharmaceutical benchmarks. Nat Biotechnol. 2006;24:769–76.

    Article  CAS  Google Scholar 

  2. Karpen GH. Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev. 1994;4:281–91.

    Article  CAS  Google Scholar 

  3. Dorer DR, Henikoff S. Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics. 1997;147:1181–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwaks THJ, Otte AP. Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol. 2006;24:137–42.

    Article  CAS  Google Scholar 

  5. Zopf CJ, Quinn K, Zeidman J, Maheshri N. Cell-cycle dependence of transcription dominates noise in gene expression. PLoS Comput Biol. 2013;9:e1003161.

    Article  CAS  Google Scholar 

  6. Akita H, Ito R, Kamiya H, Kogure K, Harashima H. Cell cycle dependent transcription, a determinant factor of heterogeneity in cationic lipid-mediated transgene expression. J Gene Med. 2007;9:197–207.

    Article  CAS  Google Scholar 

  7. Cooper LJN, Topp MS, Pinzon C, Plavec I, Jensen MC, Riddell SR, et al. Enhanced transgene expression in quiescent and activated human CD8+ T cells. Hum Gene Ther. 2004;15:648–58.

    Article  CAS  Google Scholar 

  8. Brightwell G, Poirier V, Cole E, Ivins S, Brown KW. Serum-dependent and cell cycle-dependent expression from a cytomegalovirus-based mammalian expression vector. Gene. 1997;194:115–23.

    Article  CAS  Google Scholar 

  9. Dutton RL, Scharer J, Moo-Young M. Cell cycle phase dependent productivity of a recombinant Chinese hamster ovary cell line. Cytotechnology. 2006;52:55–69.

    Article  CAS  Google Scholar 

  10. Lee FWF, Elias CB, Todd P, Kompala DS. Engineering Chinese hamster ovary (CHO) cells to achieve an inverse growth–associated production of a foreign protein, β-galactosidase. Cytotechnology. 1998;28:73–80.

    Article  Google Scholar 

  11. Suzuki E, Ollis DF. Cell cycle model for antibody production kinetics. Biotechnol Bioeng. 1989;34:1398–402.

    Article  CAS  Google Scholar 

  12. Fussenegger M, Schlatter S, Dätwyler D, Mazur X, Bailey JE. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol. 1998;16:468–72.

    Article  CAS  Google Scholar 

  13. Rosenqvist N, Hård Af Segerstad C, Samuelsson C, Johansen J, Lundberg C. Activation of silenced transgene expression in neural precursor cell lines by inhibitors of histone deacetylation. J Gene Med. 2002;4:248–57.

    Article  Google Scholar 

  14. Burns WR, Zheng Z, Rosenberg SA, Morgan RA. Lack of specific γ-retroviral vector long terminal repeat promoter silencing in patients receiving genetically engineered lymphocytes and activation upon lymphocyte restimulation. Blood. 2009;114:2888–99.

    Article  CAS  Google Scholar 

  15. Laker C, Meyer J, Schopen A, Friel J, Heberlein C, Ostertag W, et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. J Virol. 1998;72:339–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao S, Sukonnik T, Kean T, Bharadwaj RR, Pasceri P, Ellis J. Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol Ther. 2004;10:27–36.

    Article  CAS  Google Scholar 

  17. Phi-Van L, von Kries JP, Ostertag W, Strätling WH. The chicken lysozyme 5’ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol. 1990;10:2302–7.

    Article  CAS  Google Scholar 

  18. Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, et al. Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol. 2004;107:95–105.

    Article  CAS  Google Scholar 

  19. Grosveld F, van Assendelft GB, Greaves DR, Kollias G, Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987;51:975–85.

    Article  CAS  Google Scholar 

  20. Pikaart MJ, Recillas-Targa F, Felsenfeld G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 1998;12:2852–62.

    Article  CAS  Google Scholar 

  21. Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E, et al. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics. 2003;82:269–79.

    Article  CAS  Google Scholar 

  22. Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, et al. CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol. 2005;5:17.

    Article  CAS  Google Scholar 

  23. Giraldo P, Montoliu L. Size matters: Use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 2001;10:83–103.

    Article  CAS  Google Scholar 

  24. Truffinet V, Guglielmi L, Cogné M, Denizot Y. The chicken β-globin HS4 insulator is not a silver bullet to obtain copy-number dependent expression of transgenes in stable B cell transfectants. Immunol Lett. 2005;96:303–4.

    Article  CAS  Google Scholar 

  25. Blaas L, Musteanu M, Eferl R, Bauer A, Casanova E. Bacterial artificial chromosomes improve recombinant protein production in mammalian cells. BMC Biotechnol. 2009;9:3.

    Article  Google Scholar 

  26. Bian Q, Belmont AS. BAC TG-EMBED: one-step method for high-level, copy-number-dependent, position-independent transgene expression. Nucleic Acids Res. 2010;38:e127.

    Article  Google Scholar 

  27. Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009;12:826–8.

    Article  CAS  Google Scholar 

  28. Zboray K, Sommeregger W, Bogner E, Gili A, Sterovsky T, Fauland K, et al. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells. Nucleic Acids Res. 2015;43:gkv475.

    Article  Google Scholar 

  29. Hu Y, Plutz M, Belmont AS. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J Cell Biol. 2010;191:711–9.

    Article  CAS  Google Scholar 

  30. Bian Q, Khanna N, Alvikas J, Belmont AS. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J Cell Biol. 2013;203:767–83.

    Article  CAS  Google Scholar 

  31. Sinclair P, Bian Q, Plutz M, Heard E, Belmont AS. Dynamic plasticity of large-scale chromatin structure revealed by self-assembly of engineered chromosome regions. J Cell Biol. 2010;190:761–76.

    Article  CAS  Google Scholar 

  32. Johnson LF, Fuhrman CL, Wiedemann LM. Regulation of dihydrofolate reductase gene expression in mouse fibroblasts during the transition from the resting to growing state. J Cell Physiol. 1978;97:397–406.

    Article  CAS  Google Scholar 

  33. Meilinger D, Fellinger K, Bultmann S, Rothbauer U, Bonapace IM, Klinkert WEF, et al. Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep. 2009;10:1259–64.

    Article  CAS  Google Scholar 

  34. Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol. 2000;20:7419–26.

    Article  CAS  Google Scholar 

  35. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002;295:868–72.

    Article  CAS  Google Scholar 

  36. Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genom. 2005;21:389–95.

    Article  CAS  Google Scholar 

  37. Zhao B, Chaturvedi P, Zimmerman DL, Andrew S. BAC TG-EMBED tools for either episomal or integrated transgene expression. Nucleic Acids Res.

  38. Chusainow J, Yang YS, Yeo JHM, Toh PC, Asvadi P, Wong NSC, et al. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102:1182–96.

    Article  CAS  Google Scholar 

  39. de Boer L, Gray PP, Sunstrom NA. Enhanced productivity of G1 phase Chinese hamster ovary cells using the GADD153 promoter. Biotechnol Lett 2004;26:61–65.

  40. Shao HY, Hsu HY, Wu KS, Hee SW, Chuang LM, Yeh JI. Prolonged induction activates Cebpα independent adipogenesis in NIH/3T3 cells. PLoS ONE. 2013;8:e51459.

    Article  CAS  Google Scholar 

  41. Dadheech N, Srivastava A, Belani M, Gupta S, Pal R, Bhonde RR, et al. Basal expression of pluripotency-associated genes can contribute to stemness property and differentiation potential. Stem Cells Dev. 2013;22:1802–17.

    Article  CAS  Google Scholar 

  42. Bibel M, Richter J, Lacroix E, Barde YA. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc. 2007;2:1034–43.

    Article  CAS  Google Scholar 

  43. Katsetos CD,Legido A,Perentes E,Mörk SJ, Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol. 2003;18:851–66.

    Article  Google Scholar 

  44. Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005;23:1542–50.

    Article  CAS  Google Scholar 

  45. Hong S, Hwang DD, Yoon S, Isacson O, Ramezani A, Hawley RG, et al. Functional analysis of various promoters in lentiviral vectors at different stages of in vitro differentiation of mouse embryonic stem cells. Mol Ther. 2007;15:1630–9.

    Article  CAS  Google Scholar 

  46. Hamaguchi I, Woods NB, Panagopoulos I, Andersson E, Mikkola H, Fahlman C, et al. Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J Virol. 2000;74:10778–84.

    Article  CAS  Google Scholar 

  47. Kunert R, Casanova E. Recent advances in recombinant protein production: BAC-based expression vectors, the bigger the better. Bioengineered. 2013;4:258–61.

    Article  Google Scholar 

  48. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods. 2011;8:861–9.

    Article  CAS  Google Scholar 

  49. Tasic B, Hippenmeyer S, Wang C, Gamboa M, Zong H, Chen-Tsai Y, et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA. 2011;108:7902–7.

    Article  CAS  Google Scholar 

  50. Bronson SK, Plaehn EG, Kluckman KD, Hagaman JR, Maeda N, Smithies O. Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci USA. 1996;93:9067–72.

    Article  CAS  Google Scholar 

  51. Giel-Moloney M, Krause DS, Chen G, Van Etten RA, Leiter AB. Ubiquitous and uniform in vivo fluorescence in ROSA26-EGFP BAC transgenic mice. Genesis. 2007;45:83–9.

    Article  CAS  Google Scholar 

  52. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425:917–25.

    Article  CAS  Google Scholar 

  53. Luo Y, Liu C, Cerbini T, San H. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription. Stem Cells Transl Med. 2014;3:821–35.

    Article  CAS  Google Scholar 

  54. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol. 2008;26:549–51.

    Article  CAS  Google Scholar 

  55. Maison C, Almouzni G. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol. 2004;5:296–304.

    Article  CAS  Google Scholar 

  56. Chen ZY, Riu E, He CY, Xu H, Kay MA. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther. 2008;16:548–56.

    Article  CAS  Google Scholar 

  57. Dalle B, Rubin JE, Alkan O, Sukonnik T, Pasceri P, Yao S, et al. eGFP reporter genes silence LCRb-globin transgene expression via CpG dinucleotides. Mol Ther. 2005;11:591–9.

    Article  CAS  Google Scholar 

  58. Ebisuya M, Yamamoto T, Nakajima M, Nishida E. Ripples from neighbouring transcription. Nat Cell Biol. 2008;10:1106–13.

    Article  CAS  Google Scholar 

  59. Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 2013;154:914–27.

    Article  CAS  Google Scholar 

  60. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 2005;33:e36.

    Article  Google Scholar 

  61. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, et al. The UCSC genome browser database. Nucleic Acids Res. 2003;31:51–4.

    Article  CAS  Google Scholar 

  62. Khanna N, Bian Q, Plutz M, Belmont AS. BAC manipulations for making BAC transgene arrays. Methods Mol Biol. 2013;1042:197–210.

    Article  CAS  Google Scholar 

  63. Strukov YG, Belmont AS. Development of mammalian cells lines with lac operator-tagged chromosomes. Cold Spring Harb Protoc. 2008;3:1–9.

    Google Scholar 

  64. Faust D, Schmitt C, Oesch F, Oesch-Bartlomowicz B, Schreck I, Weiss C, et al. Differential p38-dependent signalling in response to cellular stress and mitogenic stimulation in fibroblasts. Cell Commun Signal. 2012;10:6.

    Article  CAS  Google Scholar 

  65. Metzger JM, Lin WI, Samuelson LC. Vital staining of cardiac myocytes during embryonic stem cell cardiogenesis in vitro. Circ Res. 1996;78:547–52.

    Article  CAS  Google Scholar 

  66. Agard DA, Hiraoka Y, Shaw P, Sedat JW. Fluorescence microscopy in three dimensions. Methods Cell Biol. 1989;30:353–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant R01 GM098319 from the National Institute of General Medical Sciences (ASB). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health. We thank Peter Jones (University of Nevada Medical School) for providing pCpGvitro-neo-ZGFP and T. Brennan (University of California, San Francisco, San Francisco, CA) for FUGW plasmids. We also thank A. Smith (University of Cambridge, Cambridge, England, UK) for HM1 ES cells. We are also grateful to Edith Heard (Curie Institute) for providing Dhfr BAC (clone 057L22 from CITB mouse library).

Funding:

This work is NIH funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Belmont.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, P., Zhao, B., Zimmerman, D.L. et al. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther 25, 376–391 (2018). https://doi.org/10.1038/s41434-018-0021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41434-018-0021-z

This article is cited by

Search

Quick links