Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting serum response factor (SRF) deactivates ΔFosB and mitigates Levodopa-induced dyskinesia in a mouse model of Parkinson’s disease

Abstract

L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the preferred treatment for Parkinson’s Disease (PD) and is considered the gold standard. However, prolonged use of L-DOPA in patients can result in involuntary movements known as Levodopa-induced dyskinesia (LID), which includes uncontrollable dystonia affecting the trunk, limbs, and face. The role of ΔFosB protein, a truncated splice variant of the FosB gene, in LID has been acknowledged, but its underlying mechanism has remained elusive. Here, using a mouse model of Parkinson’s disease treated with chronic levodopa we demonstrate that serum response factor (SRF) binds to the FosB promoter, thereby activating FosB expression and levodopa induced-dyskinetic movements. Western blot analysis demonstrates a significant increase in SRF expression in the dyskinetic group compared to the control group. Knocking down SRF significantly reduced abnormal involuntary movements (AIMS) and ΔFosB expression compared to the control. Conversely, overexpression of SRF led to an increase in ΔFosB expression and worsened levodopa-induced dyskinesia. To shed light on the regulatory role of the Akt signaling pathway in this phenomenon, we administered the Akt agonist SC79 to PD mouse models via intraperitoneal injection, followed by L-DOPA administration. The expression of SRF, ΔFosB, and phosphorylated Akt (p-Akt) significantly increased in this group compared to the group receiving normal saline to signify that these happen through Akt signaling pathway. Collectively, our findings identify a promising therapeutic target for addressing levodopa-induced dyskinesia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parkinson’s disease mouse model.
Fig. 2: Levodopa-induced dyskinesia animal model and the chromatin immunoprecipitation results of SRF binding to FosB promoter.
Fig. 3: Expression of SRF is significantly elevated in a mouse model of levodopa-induced dyskinesia.
Fig. 4: Knocking down of SRF in mouse reduces ΔFosB expression and the Levodopa-induced dyskinetic movements.
Fig. 5: Overexpression of SRF in mouse increases the expression of ΔFosB and aggravate Levodopa-Induced Dyskinetic movements.
Fig. 6: SRF regulates the activity of ΔFosB through the Akt signaling pathway.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding authors [PAK & TCX].

References

  1. Tran TN, Vo TNN, Frei K, Truong DD. Levodopa-induced dyskinesia: clinical features, incidence, and risk factors. J Neural Transm (Vienna). 2018;125:1109–17.

    Article  PubMed  CAS  Google Scholar 

  2. di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-induced dyskinesias in Parkinson’s disease: an overview on pathophysiology, clinical manifestations, therapy management strategies and future directions. J Clin Med. 2023;12:4427.

  3. Xiao B, Tan EK. Cell replacement for Parkinson’s disease: advances and challenges. Neural Regen Res. 2023;18:2693–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2:577–88.

    Article  PubMed  CAS  Google Scholar 

  5. Eusebi P, Romoli M, Paoletti FP, Tambasco N, Calabresi P, Parnetti L. Risk factors of levodopa-induced dyskinesia in Parkinson’s disease: results from the PPMI cohort. NPJ Parkinsons Dis. 2018;4:33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao X, Yasuda T, Uthayathas S, Watts RL, Mouradian MM, Mochizuki H, et al. Striatal overexpression of DeltaFosB reproduces chronic levodopa-induced involuntary movements. J Neurosci. 2010;30:7335–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Svenningsson P, Arts J, Gunne L, Andren PE. Acute and repeated treatment with L-DOPA increase c-jun expression in the 6-hydroxydopamine-lesioned forebrain of rats and common marmosets. Brain Res. 2002;955:8–15.

    Article  PubMed  CAS  Google Scholar 

  8. Pavon N, Martin AB, Mendialdua A, Moratalla R. ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry. 2006;59:64–74.

    Article  PubMed  CAS  Google Scholar 

  9. Palafox-Sanchez V, Sosti V, Ramirez-Garcia G, Kulisevsky J, Aguilera J, Limon ID. Differential expression of striatal DeltaFosB mRNA and FosB mRNA after different levodopa treatment regimens in a rat model of Parkinson’s disease. Neurotox Res. 2019;35:563–74.

    Article  PubMed  CAS  Google Scholar 

  10. Sabatakos G, Rowe GC, Kveiborg M, Wu M, Neff L, Chiusaroli R, et al. Doubly truncated FosB isoform (Delta2DeltaFosB) induces osteosclerosis in transgenic mice and modulates expression and phosphorylation of Smads in osteoblasts independent of intrinsic AP-1 activity. J Bone Min Res. 2008;23:584–95.

    Article  CAS  Google Scholar 

  11. Robison AJ, Nestler EJ. DeltaFOSB: a potentially druggable master orchestrator of activity-dependent gene expression. ACS Chem Neurosci. 2022;13:296–307.

    Article  PubMed  CAS  Google Scholar 

  12. Chen J, Kelz MB, Hope BT, Nakabeppu Y, Nestler EJ. Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. J Neurosci. 1997;17:4933–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nestler EJ. ∆FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharm. 2015;753:66–72.

    Article  CAS  Google Scholar 

  14. Beck G, Zhang J, Fong K, Mochizuki H, Mouradian MM, Papa SM. Striatal DeltaFosB gene suppression inhibits the development of abnormal involuntary movements induced by L-Dopa in rats. Gene Ther. 2021;28:760–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Beck G, Singh A, Zhang J, Potts LF, Woo JM, Park ES, et al. Role of striatal DeltaFosB in l-Dopa-induced dyskinesias of parkinsonian nonhuman primates. Proc Natl Acad Sci USA. 2019;116:18664–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Engeln M, Bastide MF, Toulme E, Dehay B, Bourdenx M, Doudnikoff E, et al. Selective inactivation of striatal FosB/DeltaFosB-expressing neurons alleviates L-DOPA-induced dyskinesia. Biol Psychiatry. 2016;79:354–61.

    Article  PubMed  CAS  Google Scholar 

  17. Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci. 2008;9:665–77.

    Article  PubMed  CAS  Google Scholar 

  18. Kambey PA, Liu WY, Wu J, Bosco B, Nadeem I, Kanwore K, et al. Single-nuclei RNA sequencing uncovers heterogenous transcriptional signatures in Parkinson’s disease associated with nuclear receptor-related factor 1 defect. Neural Regen Res. 2023;18:2037–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Kambey PA, Liu WY, Wu J, Tang C, Buberwa W, Saro A, et al. Amphiregulin blockade decreases the levodopa-induced dyskinesia in a 6-hydroxydopamine Parkinson’s disease mouse model. CNS Neurosci Ther. 2023;29:2925–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kambey PA, Chengcheng M, Xiaoxiao G, Abdulrahman AA, Kanwore K, Nadeem I, et al. The orphan nuclear receptor Nurr1 agonist amodiaquine mediates neuroprotective effects in 6-OHDA Parkinson’s disease animal model by enhancing the phosphorylation of P38 mitogen-activated kinase but not PI3K/AKT signaling pathway. Metab Brain Dis. 2021;36:609–25.

    Article  PubMed  CAS  Google Scholar 

  21. Monville C, Torres EM, Dunnett SB. Validation of the l-dopa-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Res Bull. 2005;68:16–23.

    Article  PubMed  CAS  Google Scholar 

  22. Dekundy A, Lundblad M, Danysz W, Cenci MA. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res. 2007;179:76–89.

    Article  PubMed  CAS  Google Scholar 

  23. Cantuti-Castelvetri I, Hernandez LF, Keller-McGandy CE, Kett LR, Landy A, Hollingsworth ZR, et al. Levodopa-induced dyskinesia is associated with increased thyrotropin releasing hormone in the dorsal striatum of hemi-parkinsonian rats. PLoS One. 2010;5:e13861.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu JL, Wu YY, Wu D, Luo WF, Zhang ZQ, Liu CF. SC79, a novel Akt activator, protects dopaminergic neuronal cells from MPP(+) and rotenone. Mol Cell Biochem. 2019;461:81–9.

    Article  PubMed  CAS  Google Scholar 

  25. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: a plausible therapeutic target in Parkinson’s disease. Exp Mol Pathol. 2023;129:104846.

    Article  PubMed  Google Scholar 

  27. Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front Pharm. 2021;12:648636.

    Article  CAS  Google Scholar 

  28. Tran J, Anastacio H, Bardy C. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinsons Dis. 2020;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abbott A. Levodopa: the story so far. Nature. 2010;466:S6–7.

    Article  PubMed  CAS  Google Scholar 

  30. Calne DB, Sandler M. L-Dopa and Parkinsonism. Nature. 1970;226:21–4.

    Article  PubMed  CAS  Google Scholar 

  31. Raket LL, Oudin Astrom D, Norlin JM, Kellerborg K, Martinez-Martin P, Odin P. Impact of age at onset on symptom profiles, treatment characteristics and health-related quality of life in Parkinson’s disease. Sci Rep. 2022;12:526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci. 2000;3:226–30.

    Article  PubMed  CAS  Google Scholar 

  33. Filipovic M, Ketzef M, Reig R, Aertsen A, Silberberg G, Kumar A. Direct pathway neurons in mouse dorsolateral striatum in vivo receive stronger synaptic input than indirect pathway neurons. J Neurophysiol. 2019;122:2294–303.

    Article  PubMed  CAS  Google Scholar 

  34. Kurushima H, Ohno M, Miura T, Nakamura TY, Horie H, Kadoya T, et al. Selective induction of DeltaFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of DeltaFosB and galectin-1 in neuroprotection and neurogenesis. Cell Death Differ. 2005;12:1078–96.

    Article  PubMed  CAS  Google Scholar 

  35. Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer. 2005;41:2449–61.

    Article  PubMed  CAS  Google Scholar 

  36. Gualdrini F, Esnault C, Horswell S, Stewart A, Matthews N, Treisman R. SRF Co-factors Control the Balance between Cell Proliferation and Contractility. Mol Cell. 2016;64:1048–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease. FEBS J. 2021;288:3120–34.

    Article  PubMed  CAS  Google Scholar 

  38. Chai J, Tarnawski AS. Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J Physiol Pharm. 2002;53:147–57.

    CAS  Google Scholar 

  39. Song J, Dikwella N, Sinske D, Roselli F, Knoll B. SRF deletion results in earlier disease onset in a mouse model of amyotrophic lateral sclerosis. JCI Insight. 2023;8:e167694.

  40. Cheng XY, Li SY, Mao CJ, Wang MX, Chen J, Wang F, et al. Serum response factor promotes dopaminergic neuron survival via activation of beclin 1-dependent autophagy. Neuroscience. 2018;371:288–95.

    Article  PubMed  CAS  Google Scholar 

  41. Chow N, Bell RD, Deane R, Streb JW, Chen J, Brooks A, et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer’s phenotype. Proc Natl Acad Sci USA. 2007;104:823–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vidal-Sancho L, Fernandez-Garcia S, Soles-Tarres I, Alberch J, Xifro X. Decreased myocyte enhancer factor 2 levels in the hippocampus of Huntington’s disease mice are related to cognitive dysfunction. Mol Neurobiol. 2020;57:4549–62.

    Article  PubMed  CAS  Google Scholar 

  43. Parkitna JR, Bilbao A, Rieker C, Engblom D, Piechota M, Nordheim A, et al. Loss of the serum response factor in the dopamine system leads to hyperactivity. FASEB J. 2010;24:2427–35.

    Article  PubMed  CAS  Google Scholar 

  44. Yang SP, Lo CY, Tseng HM, Chao CC. Knockdown of protein kinase CK2 blocked gene expression mediated by brain-derived neurotrophic factor-induced serum response element. Chin J Physiol. 2019;62:63–9.

    Article  PubMed  CAS  Google Scholar 

  45. Gerosa L, Grillo B, Forastieri C, Longaretti A, Toffolo E, Mallei A, et al. SRF and SRFDelta5 splicing isoform recruit corepressor LSD1/KDM1A modifying structural neuroplasticity and environmental stress response. Mol Neurobiol. 2020;57:393–407.

    Article  PubMed  CAS  Google Scholar 

  46. Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry. 2007;62:800–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Santini E, Alcacer C, Cacciatore S, Heiman M, Herve D, Greengard P, et al. L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. J Neurochem. 2009;108:621–33.

    Article  PubMed  CAS  Google Scholar 

  48. Fasano S, Bezard E, D’Antoni A, Francardo V, Indrigo M, Qin L, et al. Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci USA. 2010;107:21824–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Madhunapantula SV, Mosca PJ, Robertson GP. The Akt signaling pathway: an emerging therapeutic target in malignant melanoma. Cancer Biol Ther. 2011;12:1032–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rivera VM, Miranti CK, Misra RP, Ginty DD, Chen RH, Blenis J, et al. A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol. 1993;13:6260–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Small EM, O’Rourke JR, Moresi V, Sutherland LB, McAnally J, Gerard RD, et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci USA. 2010;107:4218–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Poser S, Impey S, Trinh K, Xia Z, Storm DR. SRF-dependent gene expression is required for PI3-kinase-regulated cell proliferation. EMBO J. 2000;19:4955–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This project was funded by Jiangsu Province Science Foundation for Youths (Grant No. BK20210903).

Author information

Authors and Affiliations

Authors

Contributions

PAK and TCX conceived the idea, designed and supervised the study; WJ performed the experiments; LWY, MYS and WB performed data analysis.

Corresponding authors

Correspondence to Piniel Alphayo Kambey or Chuanxi Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Laboratory animal care and use protocols approved by the Xuzhou Medical University’s institutional animal care and use committee. This study exclusively utilized mice, therefore consent to participate is not applicable.

Consent for publication

All authors consent to the publication of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambey, P.A., Wu, J., Liu, W. et al. Targeting serum response factor (SRF) deactivates ΔFosB and mitigates Levodopa-induced dyskinesia in a mouse model of Parkinson’s disease. Gene Ther 31, 614–624 (2024). https://doi.org/10.1038/s41434-024-00492-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41434-024-00492-8

Search

Quick links