Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electroporation-mediated novel albumin-fused Flt3L DNA delivery promotes cDC1-associated anticancer immunity

Abstract

Dendritic cells (DCs) constitute a distinct type of immune cell found within tumors, serving a central role in mediating tumor antigen-specific immunity against cancer cells. Frequently, DC functions are dysregulated by the immunosuppressive signals present within the tumor microenvironment (TME). Consequently, DC manipulation holds great potential to enhance the cytotoxic T cell response against cancer diseases. One strategy involves administering Fms-like tyrosine kinase receptor 3 ligand (Flt3L), a vitally important cytokine for DC development. In this current study, the electroporation-mediated delivery of a novel albumin-fused Flt3L DNA (alb-Flt3L DNA) demonstrated the ability to induce an anti-tumor immune response. This albumin fusion construct possesses more persistent bioactivity in targeted organs. Furthermore, TC-1-bearing-C57BL/6 mice receiving alb-Flt3L DNA treatment presented better tumor control and superior survival. Cellular analysis revealed that alb-Flt3L DNA administration promoted robust DC and cDC1 expansion. In addition, increased levels of IFN-γ-secreting CD8+ lymphocytes were found in correlation to greater cDC1 population. Moreover, the toxicity of alb-Flt3L administration is limited. Collectively, our data showcases a novel DC-based immunotherapy using electroporation to administer alb-Flt3L DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Albumin-fused Gaussia luciferase (alb-GLuc) exhibits extended biodistribution under local injection compared to GLuc.
Fig. 2: alb-Flt3L DNA treatment elicits superior tumor control and better survival compared with that of Flt3L DNA.
Fig. 3: alb-Flt3L DNA-induced DC expansion leads to tumor control.
Fig. 4: alb-Flt3L DNA demonstrates robust anti-tumor immunity against TC-1 tumor.
Fig. 5: Histology examination of key organs of mice receiving treatments.

Similar content being viewed by others

Data availability

Raw data were generated at Johns Hopkins University School of Medicine. The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Investig. 2016;126:3447–52.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:717–34.

    Article  CAS  PubMed  Google Scholar 

  5. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19:1180–91.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, et al. Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 2020;13:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol. 2022;19:3–13.

    Article  CAS  PubMed  Google Scholar 

  8. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172:1022–37.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med. 2018;24:1178–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13:832–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26:623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017;8:2122.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nefedova Y, Cheng P, Gilkes D, Blaskovich M, Beg AA, Sebti SM, et al. Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. J Immunol. 2005;175:4338–46.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Wang XY, Subjeck JR, Shrikant PA, Kim HL. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br J Cancer. 2011;104:643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article  CAS  PubMed  Google Scholar 

  17. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  18. Aznar MA, Planelles L, Perez-Olivares M, Molina C, Garasa S, Etxeberria I, et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer. 2019;7:116.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17:3520–6.

    Article  PubMed  Google Scholar 

  20. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95:3489–97.

    Article  CAS  PubMed  Google Scholar 

  21. Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I, Sancho D. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer. 2019;7:100.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26:638–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cueto FJ, Del Fresno C, Brandi P, Combes AJ, Hernandez-Garcia E, Sanchez-Paulete AR, et al. DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. J Immunother Cancer. 2021;9:e002054.

  25. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood. 2000;96:878–84.

    Article  CAS  PubMed  Google Scholar 

  26. Breton G, Lee J, Zhou YJ, Schreiber JJ, Keler T, Puhr S, et al. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J Exp Med. 2015;212:401–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med. 1996;184:1953–62.

    Article  CAS  PubMed  Google Scholar 

  28. Brasel K, McKenna HJ, Morrissey PJ, Charrier K, Morris AE, Lee CC, et al. Hematologic effects of flt3 ligand in vivo in mice. Blood. 1996;88:2004–12.

    Article  CAS  PubMed  Google Scholar 

  29. Whartenby KA, Calabresi PA, McCadden E, Nguyen B, Kardian D, Wang T, et al. Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease. Proc Natl Acad Sci USA. 2005;102:16741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tussiwand R, Onai N, Mazzucchelli L, Manz MG. Inhibition of natural type I IFN-producing and dendritic cell development by a small molecule receptor tyrosine kinase inhibitor with Flt3 affinity. J Immunol. 2005;175:3674–80.

    Article  CAS  PubMed  Google Scholar 

  31. Anandasabapathy N, Feder R, Mollah S, Tse SW, Longhi MP, Mehandru S, et al. Classical Flt3L-dependent dendritic cells control immunity to protein vaccine. J Exp Med. 2014;211:1875–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schraml BU, Reis e Sousa C. Defining dendritic cells. Curr Opin Immunol. 2015;32:13–20.

    Article  CAS  PubMed  Google Scholar 

  33. Tu HF, Kung YJ, Lim L, Tao J, Hu MH, Cheng M, et al. FLT3L-induced virtual memory CD8 T cells engage the immune system against tumors. J Biomed Sci. 2024;31:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kreiter S, Diken M, Selmi A, Diekmann J, Attig S, Husemann Y, et al. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res. 2011;71:6132–42.

    Article  CAS  PubMed  Google Scholar 

  35. Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS, et al. Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Investig. 2004;114:1334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robinson SN, Chavez JM, Pisarev VM, Mosley RL, Rosenthal GJ, Blonder JM, et al. Delivery of Flt3 ligand (Flt3L) using a poloxamer-based formulation increases biological activity in mice. Bone Marrow Transplant. 2003;31:361–9.

    Article  CAS  PubMed  Google Scholar 

  37. Solheim JC, Reber AJ, Ashour AE, Robinson S, Futakuchi M, Kurz SG, et al. Spleen but not tumor infiltration by dendritic and T cells is increased by intravenous adenovirus-Flt3 ligand injection. Cancer Gene Ther. 2007;14:364–71.

    Article  CAS  PubMed  Google Scholar 

  38. Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 2001;61:1080–8.

    CAS  PubMed  Google Scholar 

  39. Chuang YM, He L, Pinn ML, Tsai YC, Cheng MA, Farmer E, et al. Albumin fusion with granulocyte-macrophage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cell Mol Immunol. 2021;18:2393–401.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt EGW, Hvam ML, Antunes F, Cameron J, Viuff D, Andersen B, et al. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J Biol Chem. 2017;292:13312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lam B, Kung YJ, Lin J, Tseng SH, Tu HF, Huang C, et al. In situ vaccination via tissue-targeted cDC1 expansion enhances the immunogenicity of chemoradiation and immunotherapy. J Clin Investig. 2024;134:e171621.

  43. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27:74–95.

    Article  CAS  PubMed  Google Scholar 

  44. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44:924–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oba T, Long MD, Keler T, Marsh HC, Minderman H, Abrams SI, et al. Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s. Nat Commun. 2020;11:5415.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Horton HM, Lalor PA, Rolland AP. IL-2 plasmid electroporation: from preclinical studies to phase I clinical trial. Methods Mol Biol. 2008;423:361–72.

    Article  CAS  PubMed  Google Scholar 

  47. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26:5896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ugen KE, Kutzler MA, Marrero B, Westover J, Coppola D, Weiner DB, et al. Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther. 2006;13:969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhardwaj N, Friedlander PA, Pavlick AC, Ernstoff MS, Gastman BR, Hanks BA, et al. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nat Cancer. 2020;1:1204–17.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng MA, Farmer E, Huang C, Lin J, Hung CF, Wu TC. Therapeutic DNA vaccines for human papillomavirus and associated diseases. Hum Gene Ther. 2018;29:971–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Neumann E, Rosenheck K. Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol. 1972;10:279–90.

    Article  CAS  PubMed  Google Scholar 

  52. Chiarella P, Massi E, De Robertis M, Sibilio A, Parrella P, Fazio VM, et al. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther. 2008;8:1645–57.

    Article  CAS  PubMed  Google Scholar 

  53. Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011;23:421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Young JL, Dean DA. Electroporation-mediated gene delivery. Adv Genet. 2015;89:49–88.

    Article  CAS  PubMed  Google Scholar 

  55. Girelli R, Prejano S, Cataldo I, Corbo V, Martini L, Scarpa A, et al. Feasibility and safety of electrochemotherapy (ECT) in the pancreas: a pre-clinical investigation. Radiol Oncol. 2015;49:147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Komel T, Bosnjak M, Kranjc Brezar S, De Robertis M, Mastrodonato M, Scillitani G, et al. Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry. 2021;141:107843.

    Article  CAS  PubMed  Google Scholar 

  57. Waldmann TA. Cytokines in Cancer Immunotherapy. Cold Spring Harb Perspect Biol. 2018;10:a028472.

  58. Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021;18:558–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer. 2023;22:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lyerly HK. Self-replicating messenger RNA based cancer immunotherapy. Cancer Gene Ther. 2023;30:769–70.

    Article  PubMed  Google Scholar 

  61. Klein O, Ebert LM, Zanker D, Woods K, Tan BS, Fucikova J, et al. Flt3 ligand expands CD4+ FoxP3+ regulatory T cells in human subjects. Eur J Immunol. 2013;43:533–9.

    Article  CAS  PubMed  Google Scholar 

  62. Clappaert EJ, Kancheva D, Brughmans J, Debraekeleer A, Bardet PMR, Elkrim Y, et al. Flt3L therapy increases the abundance of Treg-promoting CCR7(+) cDCs in preclinical cancer models. Front Immunol. 2023;14:1166180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Regnier P, Vetillard M, Bansard A, Pierre E, Li X, Cagnard N, et al. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med. 2023;4:101256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Health, National Cancer Institute Specialized Program of Research Excellence (SPORE) in Cervical Cancer grant (NIH/NCI P50CA098252) and NCI awards (R01CA237067, R21DE029910-01, R21CA256020, and 1R21CA234516-01A1).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: M.H.H. and C.F.H. Conducting experiments: M.H.H., D.F., Y.C.T., L.H., and Z.Z. analysis and interpretation of data: M.H.H., D.F., H.F.T., D.X., and S.W. Writing and review of manuscript: M.H.H., D.F., M.C., A.W., and C.F.H. Study supervision: T.C.W. and C.F.H.

Corresponding author

Correspondence to Chien-Fu Hung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All mouse experiments were conducted at the Johns Hopkins University School of Medicine following preapproved protocols and in accordance with the Johns Hopkins University School of Medicine Institutional Animal Care and Use Committee (MO23M84).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, MH., Fan, D., Tu, HF. et al. Electroporation-mediated novel albumin-fused Flt3L DNA delivery promotes cDC1-associated anticancer immunity. Gene Ther 32, 277–286 (2025). https://doi.org/10.1038/s41434-024-00497-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41434-024-00497-3

This article is cited by

Search

Quick links