Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-delivery of IL-1Ra and SOX9 via AAV inhibits inflammation and promotes cartilage repair in surgically induced osteoarthritis animal models

Abstract

Osteoarthritis (OA), a prevalent joint disorder, can lead to disability, with no effective treatment available. Interleukin-1 (IL-1) plays a crucial role in the progression of OA, and its receptor antagonist (IL-1Ra), a natural IL-1 inhibitor, represents a promising therapeutic target by obstructing the IL-1 signaling pathway. This study delivered IL-1Ra via adeno-associated virus (AAV), a gene therapy vector enabling long-term protein expression, to treat knee osteoarthritis (KOA) in animal models. scAAV-oIL-1Ra-I1/2 injected directly into the joint in both MMT/ACLT-induced KOA model rat improved abnormal gait (increasing footprint area and pressure), subchondral bone lesions, and significantly reduced cartilage wear and pathological scores. In the MMT-induced KOA rabbit model, weight-bearing asymmetry (indicating pain) improved after 8 weeks of scAAV-oIL-1Ra-I1/2 administration, and X-ray showed decreased K-L scores (severity grade), reduced cartilage loss, and lower pathology scores compared to untreated animals. Additionally, sex-determining region Y-type high mobility group box 9 (SOX9) was co-delivered with IL-1Ra via AAV in ACLT + MMT-induced KOA rats. The combined treatment significantly alleviated subchondral bone lesions, cartilage destruction, synovial inflammation, and pathological scores, demonstrating superior efficacy compared to either treatment administered alone. Co-delivering IL-1Ra and SOX9 inhibited IL-1 mediated inflammatory signaling, maintained cartilage homeostasis, and promoted its repair in KOA models, suggesting potential for clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AAVJ4 was screened as the novel joint-tropic AAV capsid for KOA gene therapy. Immunofluorescence staining on mouse joints and β-gal staining on rat DRGs were performed after 3 weeks of intra-articular injection with various rAAV capsids delivering the GFP or LacZ gene.
Fig. 2: AAVJ4 was screened as the novel joint-tropic AAV capsid for KOA gene therapy. Immunofluorescence staining on macaque joints after 4 weeks of intra-articular injection with various rAAV capsids delivering the GFP gene.
Fig. 3: AAVJ4 delivering IL-1Ra effectively inhibited inflammation in vitro.
Fig. 4: scAAV-oIL-1Ra-I1/2 gene therapy improved behavioral performance and mitigated KOA severity in surgery-induced model rats.
Fig. 5: scAAV-oIL-1Ra-I1/2 gene therapy alleviated pain and pathology of joints in MMT-induced model rabbits.
Fig. 6: ssAAV-SOX9 promoted the production of chondrocyte extracellular matrix in vitro.
Fig. 7: Combination gene therapy of scAAV-oIL-1Ra-I1/2 and ssAAV-SOX9 improved KOA pathology in ACLT + MMT-induced model rats.
Fig. 8: Combination gene therapy of scAAV-oIL-1Ra-I1/2 and ssAAV-SOX9 exhibited anti-inflammation and promoted chondrogenesis in KOA rats.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors, Dr. Wu or Dr. Xiao, upon reasonable request.

References

  1. Chen D. Osteoarthritis: a complicated joint disease requiring extensive studies with multiple approaches. J Orthop Translat. 2022;32:130.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li Y, Xie W, Xiao W, Dou D. Progress in osteoarthritis research by the National Natural Science Foundation of China. Bone Res. 2022;10:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Austine J, Nair S, Mirza K. Perspective of orthopedists on pain management in osteoarthritis: a qualitative study. Indian J Palliat Care. 2016;22:410–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vincent TL, Alliston T, Kapoor M, Loeser RF, Troeberg L, Little CB. Osteoarthritis pathophysiology: therapeutic target discovery may require a multifaceted approach. Clin Geriatr Med. 2022;38:193–219.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.

    Article  PubMed  Google Scholar 

  7. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33–42.

    Article  CAS  PubMed  Google Scholar 

  8. Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal. 2019;53:212–23.

    Article  CAS  PubMed  Google Scholar 

  9. Qian M, Shi Y, Lu W. LINC00707 knockdown inhibits IL-1β-induced apoptosis and extracellular matrix degradation of osteoarthritis chondrocytes by the miR-330-5p/FSHR axis. Immunopharmacol Immunotoxicol. 2022;44:671–81.

    Article  CAS  PubMed  Google Scholar 

  10. Mehta S, Akhtar S, Porter RM, Önnerfjord P, Bajpayee AG. Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture. Arthritis Res Ther. 2019;21:238.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Iqbal I, Fleischmann R. Treatment of osteoarthritis with anakinra. Curr Rheumatol Rep. 2007;9:31–35.

    Article  CAS  PubMed  Google Scholar 

  12. Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduction Targeted Therapy. 2024;9:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evans CH, Gouze JN, Gouze E, Robbins PD, Ghivizzani SC. Osteoarthritis gene therapy. Gene Ther. 2004;11:379–89.

    Article  CAS  PubMed  Google Scholar 

  15. Candela ME, Yasuhara R, Iwamoto M, Enomoto-Iwamoto M. Resident mesenchymal progenitors of articular cartilage. Matrix Biol. 2014;39:44–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gugjoo MB, Fazili MR, Gayas MA, Ahmad RA, Dhama K. Animal mesenchymal stem cell research in cartilage regenerative medicine - a review. Vet Q. 2019;39:95–120.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Wu S, Zhu Y, Chu CQ. Long-term durable repaired cartilage induced by SOX9 in situ with bone marrow-derived mesenchymal stem cells. Int J Med Sci. 2021;18:1399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lange C, Madry H, Venkatesan JK, Schmitt G, Speicher-Mentges S, Zurakowski D, et al. rAAV-mediated sox9 overexpression improves the repair of osteochondral defects in a clinically relevant large animal model over time in vivo and reduces perifocal osteoarthritic changes. Am J Sports Med. 2021;49:3696–707.

    Article  PubMed  Google Scholar 

  19. Jotanovic Z, Mihelic R, Sestan B, Dembic Z. Emerging pathways and promising agents with possible disease-modifying effect in osteoarthritis treatment. Curr Drug Targets. 2014;15:635–61.

    Article  CAS  PubMed  Google Scholar 

  20. Chen B, Qin J, Wang H, Magdalou J, Chen L. Effects of adenovirus-mediated bFGF, IL-1Ra, and IGF-1 gene transfer on human osteoarthritic chondrocytes and osteoarthritis in rabbits. Exp Mol Med. 2010;42:684–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tao K, Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Madry H, et al. rAAV-mediated combined gene transfer and overexpression of TGF-β and SOX9 remodels human osteoarthritic articular cartilage. J Orthop Res. 2016;34:2181–90.

    Article  CAS  PubMed  Google Scholar 

  22. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci USA. 2009;106:3946–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72:2224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kimmerling KA, Gomoll AH, Farr J, Mowry KC. Amniotic suspension allograft improves pain and function in a rat meniscal tear-induced osteoarthritis model. Arthritis Res Ther. 2022;24:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brenneis C, Menges S, Westhof A, Lindemann S, Thudium CS, Kleinschmidt-Doerr K. Colony housing promotes structural and functional changes during surgically induced osteoarthritis in rats. Osteoarthr Cartil Open. 2020;2:100100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang K, Cai HL, Zhang PL, Wu LD. Comparison between two rabbit models of posttraumatic osteoarthritis: a longitudinal tear in the medial meniscus and anterior cruciate ligament transection. J Orthop Res. 2020;38:2721–30.

    Article  PubMed  Google Scholar 

  27. Swearingen CA, Chambers MG, Lin C, Marimuthu J, Rito CJ, Carter QL, et al. A short-term pharmacodynamic model for monitoring aggrecanase activity: injection of monosodium iodoacetate (MIA) in rats and assessment of aggrecan neoepitope release in synovial fluid using novel ELISAs. Osteoarthritis Cartilage. 2010;18:1159–66.

    Article  CAS  PubMed  Google Scholar 

  28. Hernandez-Garcia CM, Chiera JM, Finer JJ. Robotics and dynamic image analysis for studies of gene expression in plant tissues. J Vis Exp. 2010;39:1733.

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  30. Conaghan PG, Cook AD, Hamilton JA, Tak PP. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol. 2019;15:355–63.

    Article  PubMed  Google Scholar 

  31. Lefebvre V, Angelozzi M, Haseeb A. SOX9 in cartilage development and disease. Curr Opin Cell Biol. 2019;61:39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamandé SR, Bateman JF. Genetic disorders of the extracellular matrix. Anat Rec. 2020;303:1527–42.

    Article  Google Scholar 

  33. Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol. 2018;40:59–66.

    Article  CAS  PubMed  Google Scholar 

  34. Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res. 2021;83:100915.

    Article  CAS  PubMed  Google Scholar 

  35. Yoon DS, Lee KM, Cho S, Ko EA, Kim J, Jung S, et al. Cellular and tissue selectivity of AAV serotypes for gene delivery to chondrocytes and cartilage. Int J Med Sci. 2021;18:3353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Q, Luo H, Zhou C, Yu H, Yao S, Fu F, et al. Comparative intra-articular gene transfer of seven adeno-associated virus serotypes reveals that AAV2 mediates the most efficient transduction to mouse arthritic chondrocytes. PLoS ONE. 2020;15:e0243359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kyostio-Moore S, Berthelette P, Cornell CS, Nambiar B, Figueiredo MD. Hyaluronic acid synthase-2 gene transfer into the joints of Beagles by use of recombinant adeno-associated viral vectors. Am J Vet Res. 2018;79:505–17.

    Article  CAS  PubMed  Google Scholar 

  38. Vrouwe JPM, Meulenberg JJM, Klarenbeek NB, Navas-Cañete A, Reijnierse M, Ruiterkamp G, et al. Administration of an adeno-associated viral vector expressing interferon-β in patients with inflammatory hand arthritis, results of a phase I/II study. Osteoarthritis Cartilage. 2022;30:52–60.

    Article  CAS  PubMed  Google Scholar 

  39. Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine. 2014;70:185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mailhot B, Christin M, Tessandier N, Sotoudeh C, Bretheau F, Turmel R, et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J Exp Med. 2020;217:e20191430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiocco U, Vezzù M, Cozzi L, Todesco S. IL-1Ra (recombinant human IL-1 receptor antagonist) in the treatment of rheumatoid arthritis: the efficacy. Reumatismo. 2004;56:62–73.

    CAS  PubMed  Google Scholar 

  42. Watson Levings RS, Smith AD, Broome TA, Rice BL, Gibbs EP, Myara DA, et al. Self-complementary adeno-associated virus-mediated interleukin-1 receptor antagonist gene delivery for the treatment of osteoarthritis: test of efficacy in an equine model. Hum Gene Ther Clin Dev. 2018;29:101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Migliorini F, Giorgino R, Mazzoleni MG, Schäfer L, Bertini FA, Maffulli N. Intra-articular injections of ozone versus hyaluronic acid for knee osteoarthritis: a level I meta-analysis. Eur J Orthop Surg Traumatol. 2024;35:20.

    Article  PubMed  Google Scholar 

  44. Yang J, Wang X, Zhang Y, He R, Fu Z, Wang R, et al. Intra-articular injection of interleukin-8 neutralizing monoclonal antibody effectively attenuates osteoarthritis progression in rabbits. Cartilage. 2024 Mar 25:19476035241240361.

  45. Cucchiarini M, Terwilliger EF, Kohn D, Madry H. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer. J Cell Mol Med. 2009;13:2476–88.

    Article  PubMed  Google Scholar 

  46. Grässel S, Muschter D. Recent advances in the treatment of osteoarthritis. F1000Res. 2020;9:F1000 Faculty Rev–325.

  47. Stone A, Grol MW, Ruan MZC, Dawson B, Chen Y, Jiang MM, et al. Combinatorial Prg4 and Il-1ra gene therapy protects against hyperalgesia and cartilage degeneration in post-traumatic osteoarthritis. Hum Gene Ther. 2019;30:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, et al. SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage. 2015;23:2259–68.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Wu S, Zhu Y, Chu CQ. Exploiting joint-resident stem cells by exogenous SOX9 for cartilage regeneration for therapy of osteoarthritis. Front Med. 2021;8:622609.

    Article  Google Scholar 

  50. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 1996;78:721–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2021YFC2700803).

Author information

Authors and Affiliations

Contributions

Conceptualization, WX and XX, Methodology, ZKY, WX, and XX; Investigation, ZKY, YM, and SJB; Writing—Original Draft, ZKY; Writing—Review & Editing, ZKY, LXT, and WX; Funding Acquisition, WX, and XX.

Corresponding authors

Correspondence to Xiao Xiao or Xia Wu.

Ethics declarations

Competing Interests

We declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval and consent to participate

C57BL/6 J mice were obtained from Gempharmatech Co., Ltd. (Nanjing, China). Sprague-Dawley (SD) rats were purchased from Weitong Lihua Co., Ltd. (Beijing, China). New Zealand rabbits were purchased from Aoshima Kangda Aibo Biotechnology Co., Ltd. All experimental procedures involving mouse and rat animals were approved by the Ethical Committee of Shanghai Model Organisms Center, Inc. All experimental procedures involving rabbit animals were approved by the Ethical Committee of PharmaLegacy Laboratories (Shanghai) Co., Ltd. And all experimental procedures involving non-human primates were approved by the Ethical Committee of Kunming Medical University. No. SCXK (Yunnan) K2020-0006, Animal Ethics Code: kmmu20221596. All experiments conformed to relevant regulatory standards.

Consent for Publication

All the listed authors have participated in the study, and have seen and approved the submitted manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Yuan, M., Sun, J. et al. Co-delivery of IL-1Ra and SOX9 via AAV inhibits inflammation and promotes cartilage repair in surgically induced osteoarthritis animal models. Gene Ther 32, 211–222 (2025). https://doi.org/10.1038/s41434-025-00515-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41434-025-00515-y

Search

Quick links