Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systemically delivered lipid nanoparticle-mRNA encoding lysosomal acid β-glucosidase restores the enzyme deficiency in a murine Gaucher disease model

Abstract

Gaucher disease (GD) is a rare genetically inherited illness caused by loss of lysosomal acid β-glucosidase (β-GCase) that leads to progressive accumulation of substrates, sphingolipid glucosylceramide (GL1) and glucosylsphingosine (lyso-GL1). The protein-based enzyme replacement therapy (ERT) requires frequent dosing due to short drug half-life causing challenges in long-term patient compliance. JCXH-301 is a lipid nanoparticle (LNP) encapsulated messenger RNA (mRNA) encoding β-GCase. Intravenous administration of JCXH-301 delivered the target mRNA to various tissues in mice with intracellular expression of β-GCase predominantly in macrophages and dendritic cells in the spleen and bone marrow. In GBA1 D427V homozygous mice treated with JCXH-301, the dose-dependent in vivo production of functional β-GCase resulted in reduction of serum lyso-GL1, a key biomarker of GD. The therapeutic effect of JCXH-301 was sustained for a duration significantly longer than that of protein-based ERT Cerezyme. JCXH-301 administration induced minimal pro-inflammatory cytokines in the liver and spleen. Taken together, these results provide proof-of-concept for using LNP-delivered mRNA as a new drug modality to restore the β-GCase genetic deficiency for GD treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and characterization of JCXH-301m.
Fig. 2: Distribution of JCXH-301m after i.v. administration in naïve mice.
Fig. 3: Expression of β-GCase in GBA1 D427V mice after i.v. administration of JCXH-301m or Cerezyme.
Fig. 4: Enzymatic activity of β-GCase in GBA1 D427V mutant mice after i.v. administration of JCXH-301m or Cerezyme.
Fig. 5: Effect of multiple injections of JCXH-301m or Cerezyme in GBA1 D427V mutant mice.
Fig. 6: The human β-GCase protein level and enzymatic activity in GBA1 D427V mutant mice after i.v. injection of JCXH-301.

Similar content being viewed by others

Data availability

The sequences generated in this study are available in the NCBI database (Accession Gene ID. 2629 and 14466). The other data related to this study are available from the corresponding author upon request, with the permission of Immorna Biotechnology/Immorna Biotherapeutics.

References

  1. Sheth J, Bhavsar R, Mistri M, Pancholi D, Bavdekar A, Dalal A, et al. Gaucher disease: single gene molecular characterization of one-hundred Indian patients reveals novel variants and the most prevalent mutation. BMC Med Genet. 2019;20:31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, et al. A review of gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:441.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vardi A, Zigdon H, Meshcheriakova A, Klein AD, Yaacobi C, Eilam R, et al. Delineating pathological pathways in a chemically induced mouse model of Gaucher disease. J Pathol. 2016;239:496–509.

    Article  CAS  PubMed  Google Scholar 

  4. Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat. 2008;29:567–83.

    Article  CAS  PubMed  Google Scholar 

  5. Cox TM, Cachon-Gonzalez MB. The cellular pathology of lysosomal diseases. J Pathol. 2012;226:241–54.

    Article  CAS  PubMed  Google Scholar 

  6. Panicker LM, Miller D, Awad O, Bose V, Lun Y, Park TS, et al. Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development. Stem Cells. 2014;32:2338–49.

    Article  CAS  PubMed  Google Scholar 

  7. Kishnani PS, Al-Hertani W, Balwani M, Goker-Alpan O, Lau HA, Wasserstein M, et al. Screening, patient identification, evaluation, and treatment in patients with Gaucher disease: Results from a Delphi consensus. Mol Genet Metab. 2022;135:154–62.

    Article  CAS  PubMed  Google Scholar 

  8. Weinreb NJ. Imiglucerase and its use for the treatment of Gaucher’s disease. Expert Opin Pharmacother. 2008;9:1987–2000.

    Article  CAS  PubMed  Google Scholar 

  9. Murugesan V, Chuang W-L, Liu J, Lischuk A, Kacena K, Lin H, et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am J Hematol. 2016;91:1082–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gary SE, Ryan E, Steward AM, Sidransky E. Recent advances in the diagnosis and management of Gaucher disease. Expert Rev Endocrinol Metab. 2018;13:107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yap TL, Velayati A, Sidransky E, Lee JC. Membrane-bound alpha-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Mol Genet Metab. 2013;108:56–64.

    Article  CAS  PubMed  Google Scholar 

  12. Badieyan ZS, Evans T. Concise review: application of chemically modified mRNA in cell fate conversion and tissue engineering. Stem Cells Transl Med. 2019;8:833–43.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nelson J, Sorensen EW, Mintri S, Rabideau AE, Zheng W, Besin G, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020;6:eaaz6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaidyanathan S, Azizian KT, Haque A, Henderson JM, Hendel A, Shore S, et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids. 2018;12:530–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu S, Yang K, Li R, Zhang L. mRNA vaccine era-mechanisms, drug platform and clinical prospection. Int J Mol Sci. 2020;21:6582.

  16. Martini PGV, Guey LT. A new era for rare genetic diseases: messenger RNA therapy. Hum Gene Ther. 2019;30:1180–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bernal JA. RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. J Cardiovasc Transl Res. 2013;6:956–68.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berraondo P, Martini PGV, Avila MA, Fontanellas A. Messenger RNA therapy for rare genetic metabolic diseases. Gut. 2019;68:1323–30.

    Article  CAS  PubMed  Google Scholar 

  19. An D, Frassetto A, Jacquinet E, Eybye M, Milano J, DeAntonis C, et al. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine. 2019;45:519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dekker N, van Dussen L, Hollak CEM, Overkleeft H, Scheij S, Ghauharali K, et al. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood. 2011;118:e118–e27.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Polinski NK, Martinez TN, Gorodinsky A, Gareus R, Sasner M, Herberth M, et al. Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLOS ONE. 2021;16:e0252325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM, et al. CNS expression of glucocerebrosidase corrects -synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA. 2011;108:12101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu YH, Quinn B, Witte D, Grabowski GA. Viable mouse models of acid beta-glucosidase deficiency: the defect in Gaucher disease. Am J Pathol. 2003;163:2093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu Y-H, Sun Y, Barnes S, Grabowski GA, Schiffmann R. Comparative therapeutic effects of velaglucerase alfa and imiglucerase in a Gaucher disease mouse model. PloS ONE. 2010;5:e10750.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng W, Du S, Tian M, Xu W, Tian Y, Li T, et al. Lepidium meyenii Walp exhibits anti-inflammatory activity against ConA-induced acute hepatitis. Mediat Inflamm. 2018;2018:8982756.

    Article  Google Scholar 

  26. Ji YR, Kim HJ, Bae KB, Lee S, Kim MO, Ryoo ZY. Hepatic serum amyloid A1 aggravates T cell-mediated hepatitis by inducing chemokines via Toll-like receptor 2 in mice. J Biol Chem. 2015;290:12804–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Fost M, Aerts JM, Hollak CE. Gaucher disease: from fundamental research to effective therapeutic interventions. Neth J Med. 2003;61:3–8.

    PubMed  Google Scholar 

  28. Campbell TN, Choy FY. Knockdown of chimeric glucocerebrosidase by green fluorescent protein-directed small interfering RNA. Genet Mol Res. 2004;3:282–7.

    CAS  PubMed  Google Scholar 

  29. Cox TM. Gaucher disease: clinical profile and therapeutic developments. Biologics. 2010;4:299–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kido J, Sugawara K, Nakamura K. Gene therapy for lysosomal storage diseases: current clinical trial prospects. Front Genet. 2023;14:1064924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hughes DA, Ferrante F. GALILEO-1: a phase I/II safety and efficacy study of FLT201 gene therapy for Gaucher Disease Type 1. Future Rare Dis. 2023;3:FRD35.

    Article  CAS  Google Scholar 

  32. Rastall DP, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. Appl Clin Genet. 2015;8:157–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sevin C, Deiva K. Clinical trials for gene therapy in lysosomal diseases with CNS involvement. Front Mol Biosci. 2021;8:624988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du S, Ou H, Cui R, Jiang N, Zhang M, Li X, et al. Delivery of glucosylceramidase beta gene using AAV9 vector therapy as a treatment strategy in mouse models of gaucher disease. Hum Gene Ther. 2019;30:155–67.

    Article  CAS  PubMed  Google Scholar 

  35. Tucci F, Scaramuzza S, Aiuti A, Mortellaro A. Update on clinical ex vivo hematopoietic stem cell gene therapy for inherited monogenic diseases. Mol Ther. 2021;29:489–504.

    Article  CAS  PubMed  Google Scholar 

  36. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;102:263.

    Article  CAS  PubMed  Google Scholar 

  37. Dahl M, Smith EMK, Warsi S, Rothe M, Ferraz MJ, Aerts J, et al. Correction of pathology in mice displaying Gaucher disease type 1 by a clinically-applicable lentiviral vector. Mol Ther Methods Clin Dev. 2021;20:312–23.

    Article  CAS  PubMed  Google Scholar 

  38. Corbau R, Miranda C, Comper F, Kalcheva P, Chisari E, Cocita C, et al. FLT201: an AAV-mediated gene therapy for type 1 Gaucher disease designed to target difficult to reach tissues. Mol Genet Metab. 2021;132:S28–S9.

    Article  Google Scholar 

  39. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koeberl D, Schulze A, Sondheimer N, Lipshutz GS, Geberhiwot T, Li L, et al. Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature. 2024;628:872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cohn DM, Gurugama P, Magerl M, Katelaris CH, Launay D, Bouillet L, et al. CRISPR-based therapy for hereditary angioedema. N. Engl J Med. 2025;392:458–67.

    Article  CAS  PubMed  Google Scholar 

  42. Pharmacoeconomic Review Report: Eliglustat (Cerdelga): (Sanofi Genzyme): Indication: Gaucher Disease Type 1 [Internet]. CADTH Common Drug Reviews. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2017.

Download references

Acknowledgements

We thank Shanghai Model Organisms Center Inc. and Ms. Dongli Liang of Shanghai Jiaotong University for their expert assistance in mouse experiments. We thank Mr. Ji Xu and Ms. Yanqi Su for the logistical support.

Funding

The study was fully funded by Immorna Biotechnology/Immorna Biotherapeutics.

Author information

Authors and Affiliations

Authors

Contributions

Z.W., Z.G., S.W., Y.C., and Y.L. developed the concept and designed the studies. S.W. and Z.Z performed the experiments and curated the data. S.W., Z.Z., and Y.C. analyzed the data. S.W., Y.C., X.Q., and Y.L. wrote the manuscript. All the authors reviewed the manuscript and agreed this version to be published.

Corresponding author

Correspondence to Yuanqing Liu.

Ethics declarations

Competing interests

All authors are employees of Immorna Biotechnology/Immorna Biotherapeutics. Z.W., Y. L., and Z. G. are inventors to the Chinese patent CN118903476B.

Ethics approval statement

All animal experiments were performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals and relevant Chinese laws and regulations. All animal use adhered to the IACUC guidelines for animal ethics and welfare. The in vivo experiment protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiaotong University, China (authorization number: A2022044), and Shanghai Model Organisms Center, Inc., China (authorization number: No. 2020-0047).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, S., Chen, Y. et al. Systemically delivered lipid nanoparticle-mRNA encoding lysosomal acid β-glucosidase restores the enzyme deficiency in a murine Gaucher disease model. Gene Ther (2025). https://doi.org/10.1038/s41434-025-00549-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-025-00549-2

Search

Quick links