Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apolipoprotein E deficiency leads to the polarization of splenic macrophages towards M1 phenotype by increasing iron content

Abstract

Apolipoprotein E (ApoE) plays a crucial role in iron homeostasis in the body, while macrophages are the principal cells responsible for handling iron in mammals. However, it is unknown whether ApoE can affect the functional subtypes and the iron handling capacity of splenic macrophages (SM). Here, we investigated the effects of ApoE deficiency (ApoE−/−) on the polarization and iron content of SM and its potential mechanisms. ApoE−/− was found to induce a significant increase in the expressions of M1 marker genes CD86, IL-1β, IL-6, IL-12, TNF-α and iNOS and a reduction in M2 marker genes CD206, Arg-1, IL-10 and Ym-1 in SM of mice aged 28 weeks, Meanwhile, ApoE−/− caused a significant increase in iron content and expression of ferritin, transferrin receptor 1 (TfR1), iron regulatory protein 1 (IRP1) and heme oxygenase-1 (HO-1) and a reduction in ferroportin1 (Fpn1) in spleen and/or SM of mice aged 28 weeks. It was concluded that ApoE−/− can increase iron content through increased iron uptake mediated by TfR/ IRPs and decreased iron release mediated by Fpn1, leading to polarization of the SM to M1 phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of ApoE deficiency on spleen size and color, spleen weight, body weight, iron content, and iron levels in splenic macrophages.
Fig. 2: ApoE deficiency up-regulated the expression of Ft-L, Ft-H and TfR1, and down-regulated the expression of Fpn1 in the splenic macrophages.
Fig. 3: ApoE deficiency up-regulated IRPs, Nrf2 and HO-1 protein but not hepcidin mRNA expression in splenic macrophages.
Fig. 4: ApoE deficiency led to the polarization of splenic macrophages towards M1 phenotype.
Fig. 5: ApoE deficiency up-regulated the expression of IL-1β, IL-6, IL-12, TNFα, and iNOS and ROS production and downregulated the expression of IL-10, Arg-1, and Ym-1 in splenic macrophages.
Fig. 6

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

References

  1. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63:287303.

    Google Scholar 

  2. Ayton S, Faux NG, Bush AI. Alzheimer’s Disease Neuroimaging Initiative. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun. 2015;6:6760.

    CAS  PubMed  Google Scholar 

  3. Mahoney-Sanchez L, Belaidi AA, Bush AI, Ayton S. The complex role of apolipoprotein E in Alzheimer’s disease: an overview and update. J Mol Neurosci. 2016;60:325–35.

    CAS  PubMed  Google Scholar 

  4. Guerreiro R, Ross OA, Kun-Rodrigues C, Hernandez DG, Orme T, Eicher JD, et al. Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol. 2018;17:64–74.

    PubMed  Google Scholar 

  5. Lee TS, Shiao MS, Pan CC, Chau LY. Iron-deficient diet reduces atherosclerotic lesions in apoE-deficient mice. Circulation. 1999;99:1222–9.

    CAS  PubMed  Google Scholar 

  6. Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol. 2004;24:1006–14.

    CAS  PubMed  Google Scholar 

  7. Yu T, Parks BW, Yu S, Srivastava R, Gupta K, Wu X, et al. Iron-ion radiation accelerates atherosclerosis in apolipoprotein E-deficient mice. Radiat Res. 2011;175:766–73.

    CAS  PubMed  Google Scholar 

  8. Ma J, Ma HM, Shen MQ, Wang YY, Bao YX, Liu Y, et al. The role of iron in atherosclerosis in apolipoprotein E deficient mice. Front Cardiovasc Med. 2022;9:857933.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo Q, Qian C, Qian ZM. Iron metabolism and atherosclerosis. Trends Endocrinol Metab. 2023;34:404–13.

    CAS  PubMed  Google Scholar 

  10. Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA. Iron regulates apolipoprotein E expression and secretion in neurons and astrocytes. J Alzheimers Dis. 2016;51:471–87.

    CAS  PubMed  Google Scholar 

  11. Britton LJ, Bridle K, Jaskowski LA, He J, Ng C, Ruelcke JE, et al. Iron inhibits the secretion of apolipoproteine in cultured human adipocytes. Cell Mol Gastroenterol Hepatol. 2018;6:215–e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch JR, Morgan D, Mance J, Matthew WD, Laskowitz DT. Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J Neuroimmunol. 2001;114:107–13.

    CAS  PubMed  Google Scholar 

  13. Frühbeck G. The adipose tissue as a source of vasoactive factors. Curr Med Chem Cardiovasc Hematol Agents. 2004;2:197–208.

    PubMed  Google Scholar 

  14. Zhu Y, Kodvawala A, Hui DY. Apolipoprotein E inhibits toll-like receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms. Biochem J. 2010;428:47–54.

    CAS  PubMed  Google Scholar 

  15. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108:3204–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109:353–8.

    PubMed  Google Scholar 

  17. Qian ZM, He X, Liang T, Wu KC, Yan YC, Lu LN, et al. Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol. 2014;50:811–20.

    CAS  PubMed  Google Scholar 

  18. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang L, Yang Y, Chen Y, Xu Y, Peng J. Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev. 2022;187:114394.

    CAS  PubMed  Google Scholar 

  20. Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34:455–65.

    PubMed  Google Scholar 

  21. Marro S, Chiabrando D, Messana E, Stolte J, Turco E, Tolosano E, et al. Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica. 2010;95:1261–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Korolnek T, Hamza I. Macrophages and iron trafficking at the birth and death of red cells. Blood. 2015;125:2893–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Soares MP, Hamza I. Macrophages and iron metabolism. Immunity. 2016;44:492–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage “ferrostat. JCI Insight. 2020;5:e132964.

    PubMed  PubMed Central  Google Scholar 

  25. A-Gonzalez N, Castrillo A. Origin and specialization of splenic macrophages. Cell Immunol. 2018;330:151–8.

    CAS  PubMed  Google Scholar 

  26. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Ann Rev Immunol. 2009;27:451–83.

    CAS  Google Scholar 

  27. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.

    CAS  PubMed  Google Scholar 

  28. Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab. 2012;15:432–7.

    CAS  PubMed  Google Scholar 

  29. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.

    CAS  PubMed  Google Scholar 

  30. Ma J, Qian C, Bao Y, Liu MY, Ma HM, Shen MQ, et al. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol. 2021;40:101865.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol. 2023;64:102779.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Qian ZM, Xiao DS, Ke Y, Liao QK. Increased nitric oxide is one of the causes of changes of iron metabolism in strenuously exercised rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R739–43.

    CAS  PubMed  Google Scholar 

  33. Xu GJ, Hannappel E, Morgan J, Hempstead J, Horecker BL. Splenic macrophages were isolated from mouse spleen according to synthesis of thymosin beta 4 by peritoneal macrophages and adherent spleen cells. Proc Natl Acad Sci USA. 1982;79:4006–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang YZ, Ke Y, Du JR, Halpern GM, Ho KP, Zhu L, et al. Increased divalent metal transporter 1 expression might be associated with the neurotoxicity of L-DOPA. Mol Pharm. 2006;69(3):968–74.

    CAS  Google Scholar 

  35. Du F, Qian ZM, Gong Q, Zhu ZJ, Lu L, Ke Y. The iron regulatory hormone hepcidin inhibits the expression of iron release as well as iron uptake proteins in J774 cells. J Nutr Biochem. 2012;23:1694–700.

    CAS  PubMed  Google Scholar 

  36. Qian ZM, Chang YZ, Leung G, Du JR, Zhu L, Wang Q, et al. Expression of ferroportin1, hephaestin and ceruloplasmin in rat heart. Biochim Biophys Acta. 2007;1772:527–32.

    CAS  PubMed  Google Scholar 

  37. Zhou YF, Zhang C, Yang G, Qian ZM, Zhang MW, Ma J, et al. Hepcidin protects neuron from hemin-mediated injury by reducing iron. Front Physiol. 2017;8:332.

    PubMed  PubMed Central  Google Scholar 

  38. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.

    CAS  PubMed  Google Scholar 

  39. Galy B, Ferring-Appel D, Kaden S, Gröne HJ, Hentze MW. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab. 2008;7:79–85.

    CAS  PubMed  Google Scholar 

  40. Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 2008;28:97–213.

    Google Scholar 

  41. Du F, Qian C, Qian ZM, Wu XM, Xie H, Yung WH, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase A pathway. Glia. 2011;59:936–45.

    PubMed  Google Scholar 

  42. Du F, Qian ZM, Luo Q, Yung WH, Ke Y. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol. 2015;52:101–14.

    CAS  PubMed  Google Scholar 

  43. Kanzaki H, Shinohara F, Kanako I, Yamaguchi Y, Fukaya S, Miyamoto Y, et al. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox Biol. 2016;8:186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Soares MP, Bach FH. Heme oxygenase-1: from biology to therapeutic potential. Trends Mol Med. 2009;15(2):50–8.

    CAS  PubMed  Google Scholar 

  45. Okabe Y, Medzhitov R. Tissue biology perspective on macrophages. Nat Immunol. 2016;17:9–17.

    CAS  PubMed  Google Scholar 

  46. Schultze JL, Schmieder A, Goerdt S. Macrophage activation in human diseases. Semin Immunol. 2015;27:249–56.

    CAS  PubMed  Google Scholar 

  47. Zhou YF, Wu XM, Zhou G, Mu MD, Zhang FL, Li FM, et al. Cystathionine β-synthase is required for body iron homeostasis. Hepatology. 2018;67:21–35.

    CAS  PubMed  Google Scholar 

  48. Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13:1096–101.

    CAS  PubMed  Google Scholar 

  49. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24–38.

    CAS  PubMed  Google Scholar 

  50. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    CAS  PubMed  Google Scholar 

  51. Nairz M, Schleicher U, Schroll A, Sonnweber T, Theurl I, Ludwiczek S, et al. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. Exp Med. 2013;210:855–73.

    CAS  Google Scholar 

  52. Gozzelino R, Soares MP. Coupling heme and iron metabolism via ferritin H chain. Antioxid Redox Signal. 2014;20:1754–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;275:61–203.

    Google Scholar 

  54. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA. 2005;102:1324–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Alam MZ, Devalaraja S, Haldar M. The heme connection: linking erythrocytes and macrophage biology. Front Immunol. 2017;8:33.

    PubMed  PubMed Central  Google Scholar 

  56. Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev. 2021;302:104–25.

    CAS  PubMed  Google Scholar 

  57. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    CAS  PubMed  Google Scholar 

  58. Corna G, Campana L, Pignatti E, Castiglioni A, Tagliafico E, Bosurgi L, et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica. 2010;95:1814–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol. 2010;40:824–35.

    CAS  PubMed  Google Scholar 

  60. Agoro R, Mura C. Inflammation-induced up-regulation of hepcidin and down-regulation of ferroportin transcription are dependent on macrophage polarization. Blood Cells Mol Dis. 2016;61:16–25.

    CAS  PubMed  Google Scholar 

  61. Cairo G, Recalcati S, Mantovani A, Locati M. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 2011;32:241–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Christopher Qian of the Chinese University of Hong Kong for assisting with the preparation and English revision of this manuscript.

Funding

The studies in our laboratories were supported by the National Natural Science Foundation of China (82003702, 31571195).

Author information

Authors and Affiliations

Authors

Contributions

Meng-Qi Shen: Conceptualization, Formal analysis, Methodology, Writing—original draft. Qian Guo: Conceptualization, Methodology, Supervision, Writing—review & editing. Wei Li: Conceptualization, Formal analysis, Methodology, Visualization, Writing—original draft. Zhong-Ming Qian: Conceptualization, Methodology, Supervision, Writing—review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qian Guo or Zhong-Ming Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal care and experimental protocols in this study were performed according to the Animal Management Rules of the Ministry of Health of China, and approved by the Animal Ethics Committees of Nantong University (NSFC31571195). All mice were sacrificed at 28 weeks old for the designed measurements.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, MQ., Guo, Q., Li, W. et al. Apolipoprotein E deficiency leads to the polarization of splenic macrophages towards M1 phenotype by increasing iron content. Genes Immun 25, 381–388 (2024). https://doi.org/10.1038/s41435-024-00290-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41435-024-00290-7

This article is cited by

Search

Quick links