Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcript-targeted antigen mapping reveals the potential of POSTN splicing junction epitopes in glioblastoma immunotherapy

Abstract

Tumor antigens are crucial for T-cell mediated immunotherapy, but identified antigens for gliomas remain limited. Aberrant splicing variants are commonly expressed in tumors, resulting in unique tumor isoforms with potential antigenic properties. Herein, we analyzed multi-omics data from 587 glioma patients and assembled a library of putative tumor-enriched isoform antigens (TIA) and corresponding peptides presented on each HLA-I allele. We constructed an individual-specific TIA peptide candidate repertoire for each patient based on their TIA expression and HLA-I haplotypes. TIAs were highly expressed, enriched with glioma malignancy, and demonstrated strong HLA-binding affinity. We focused on periostin isoform-203 (POSTN-203), which was associated with poor survival of patients and contained multiple predicted HLA-restricted peptide epitopes. A selected HLA-A11-restricted peptide from POSTN-203 (POSTN-203A11) induced antigen-specific T-cell responses against both peptide-pulsed and POSTN-203-expressing glioma cells in an HLA-specific manner. Our findings highlight TIAs as a promising source of immunogenic antigens and POSTN-203 as a potential promising target for glioma immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TIA identification and its distribution.
Fig. 2: TIA peptides were presented on MHC-I molecules in glioma.
Fig. 3: POSTN-203 (ENST00000379747) is a good TIA candidate for GBM.
Fig. 4: Immunogenicity test on POSTN-203 derived candidate TIA peptide.
Fig. 5: POSTN-203A11-primed T-cell responses rely on time and T-cell density.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available in the TCGA (https://www.cancer.gov/tcga/), CGGA (https://www.cgga.org.cn), and SRA (https://www.ncbi.nlm.nih.gov/sra/) repository.

Code availability

The code used in this study is available from the corresponding author upon reasonable request.

References

  1. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clinicians. 2021;71:381–406.

    Article  Google Scholar 

  2. Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3:911–26.

    Article  CAS  PubMed  Google Scholar 

  3. Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023;20:359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C, Shih YP, et al. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. N Engl J Med. 2022;386:2112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Platten M, Bunse L, Wick A, Bunse T, Le Cornet L, Harting I, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592:463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olson DJ, Odunsi K. Adoptive Cell Therapy for Nonhematologic Solid Tumors. J Clin Oncol. 2023;41:3397–407.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, et al. Clonal evolution of glioblastoma under therapy. Nature Genet. 2016;48:768–76.

    Article  CAS  PubMed  Google Scholar 

  9. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.

    Article  CAS  PubMed  Google Scholar 

  10. Rahme GJ, Javed NM, Puorro KL, Xin S, Hovestadt V, Johnstone SE, et al. Modeling epigenetic lesions that cause gliomas. Cell. 2023;186:3674–3685.e14.

  11. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;565:240–5.

    Article  CAS  PubMed  Google Scholar 

  12. Dolgin E. Personalized cancer vaccines pass first major clinical test. Nat Rev Drug Discov. 2023;22:607–9.

    Article  CAS  PubMed  Google Scholar 

  13. Khattak A, Weber JS, Meniawy T, Taylor MH, Ansstas G, Kim KB, et al. Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial. J Clin Oncol. 2023;41:LBA9503–LBA.

    Article  Google Scholar 

  14. Ahluwalia MS, Reardon DA, Abad AP, Curry WT, Wong ET, Figel SA, et al. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J Clin Oncol. 2023;41:1453–65.

    Article  CAS  PubMed  Google Scholar 

  15. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brooks AN, Choi PS, de Waal L, Sharifnia T, Imielinski M, Saksena G, et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PloS One. 2014;9:e87361.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell. 2018;34:211–24.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565:234–9.

    Article  CAS  PubMed  Google Scholar 

  19. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71.

    Article  PubMed  Google Scholar 

  21. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thul PJ, Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018;27:233–44.

    Article  CAS  PubMed  Google Scholar 

  23. Jain A, Tuteja G. TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics. 2019;35:1966–7.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma Patients. Genomics Proteom Bioinforma. 2021;19:1–12.

    Article  CAS  Google Scholar 

  25. Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T. Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Sci data. 2017;4. 170024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL, et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res. 2014;24:1765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25:462–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50:D988–d95.

    Article  CAS  PubMed  Google Scholar 

  29. Neidert MC, Kowalewski DJ, Silginer M, Kapolou K, Backert L, Freudenmann LK, et al. The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy. Acta Neuropathologica. 2018;135:923–38.

    Article  CAS  PubMed  Google Scholar 

  30. Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, et al. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Molecular Cell Proteom. 2019;18:1255–68.

    Article  CAS  Google Scholar 

  31. Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep. 2017;21:1399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee AH, Sun L, Mochizuki AY, Reynoso JG, Orpilla J, Chow F, et al. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat Commun. 2021;12. 6938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 2014;30:3310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020;48:D948–d55.

    CAS  PubMed  Google Scholar 

  36. Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics. 2010;62:357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic acids Res. 2020;48:W449–w54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nilsson JB, Kaabinejadian S, Yari H, Peters B, Barra C, Gragert L, et al. Machine learning reveals limited contribution of trans-only encoded variants to the HLA-DQ immunopeptidome. Commun Biol. 2023;6:442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, et al. Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell. 2020;183:818–34.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghorani E, Rosenthal R, McGranahan N, Reading JL, Lynch M, Peggs KS, et al. Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann Oncol. 2018;29:271–9.

    Article  CAS  PubMed  Google Scholar 

  41. Rech AJ, Balli D, Mantero A, Ishwaran H, Nathanson KL, Stanger BZ, et al. Tumor Immunity and Survival as a Function of Alternative Neopeptides in Human Cancer. Cancer Immunol Res. 2018;6:276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer cell. 2017;32:42–56.e6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Benoit Bouvrette LP, Bovaird S, Blanchette M, Lécuyer E. oRNAment: a database of putative RNA binding protein target sites in the transcriptomes of model species. Nucleic acids Res. 2020;48:D166–d73.

    PubMed  Google Scholar 

  44. Wölfl M, Greenberg PD. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat Protoc. 2014;9:950–66.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol. 2022;22:751–64.

    Article  CAS  PubMed  Google Scholar 

  46. Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–36.

    Article  CAS  PubMed  Google Scholar 

  47. Sercarz EE, Maverakis E. MHC-guided processing: binding of large antigen fragments. Nat Rev Immunol. 2003;3:621–9.

    Article  CAS  PubMed  Google Scholar 

  48. Maiers M, Gragert L, Klitz W. High-resolution HLA alleles and haplotypes in the United States population. Human Immunol. 2007;68:779–88.

    Article  CAS  Google Scholar 

  49. Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23:135–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wernaart D, Fumagalli A, Agami R. Molecular mechanisms of non-genetic aberrant peptide production in cancer. Oncogene. 2024;43:2053–62.

  51. Wang L, Ge J, Lan Y, Shi Y, Luo Y, Tan Y, et al. Tumor mutational burden is associated with poor outcomes in diffuse glioma. BMC Cancer. 2020;20. 213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muquith M, Espinoza M, Elliott A, Xiu J, Seeber A, El-Deiry W, et al. Tissue-specific thresholds of mutation burden associated with anti-PD-1/L1 therapy benefit and prognosis in microsatellite-stable cancers. Nature Cancer. 2024;5:1121–9.

  53. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. New Engl J Med. 2017;377:2500–1.

    Article  PubMed  Google Scholar 

  54. Behnan J, Finocchiaro G, Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain J Neurol. 2019;142:847–66.

    Article  Google Scholar 

  55. Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M, et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2017;215:141–57.

    Article  PubMed  Google Scholar 

  56. Zhang J, Caruso FP, Sa JK, Justesen S, Nam DH, Sims P, et al. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. Commun Biol. 2019;2:135.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Barthel FP, Johnson KC, Varn FS, Moskalik AD, Tanner G, Kocakavuk E, et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature. 2019;576:112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiong Z, Yang Q, Li X. Effect of intra- and inter-tumoral heterogeneity on molecular characteristics of primary IDH-wild type glioblastoma revealed by single-cell analysis. CNS Neurosci Therapeutics. 2020;26:981–9.

    Article  CAS  Google Scholar 

  59. Migliorini D, Dutoit V, Allard M, Grandjean Hallez N, Marinari E, Widmer V, et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro Oncol. 2019;21:923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biol. 2015;17:170–82.

    Article  CAS  PubMed  Google Scholar 

  61. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H, Gannon PO, et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Computational Biol. 2017;13:e1005725.

    Article  Google Scholar 

  64. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29:330–6.

    Article  CAS  PubMed  Google Scholar 

  65. Schoen RE, Boardman LA, Cruz-Correa M, Bansal A, Kastenberg D, Hur C, et al. Randomized, Double-Blind, Placebo-Controlled Trial of MUC1 Peptide Vaccine for Prevention of Recurrent Colorectal Adenoma. Clinical Cancer Res. 2023;29:1678–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible through the generous support from the Botha-Chan Research Fund (IFP, GK), Brain Tumor Funders’ Collaborative (IFP, GK), the Ellie Kavalieros DIPG Research Fund (IFP, GK), Haley Weiss Memorial Fund (IFP, GK), and the Scientific Program Fund of the UPMC Children’s Hospital Foundation (IFP, GK). This research was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483.

Author information

Authors and Affiliations

Authors

Contributions

ZX conceptualized the study, designed the analysis workflow, conducted the data analysis and experiment validation, reviewed the data and assisted with data interpretation, and drafted the manuscript. CTS assisted with the experiment. CRK assisted with the experiment. JR assisted with the experiment. LS assisted with the experiment. RES assisted with the experiment. AH assisted with the experiment. BH reviewed the data and assisted with data interpretation. SA conceptualized the study. DR reviewed the data and assisted with data analysis and interpretation. POZ reviewed the data and assisted with data interpretation. TGF reviewed the data and assisted with data interpretation. IFP reviewed the data and assisted with data interpretation. XL reviewed the data and assisted with data interpretation and supervised the study. IR designed the analysis workflow, assisted with the experiment, reviewed the data and assisted with data interpretation, and drafted the manuscript. GK conceptualized the study, designed the analysis workflow, reviewed the data and assisted with data interpretation, supervised the study, and drafted the manuscript. All authors reviewed, edited, and approved the final manuscript.

Corresponding author

Correspondence to Gary Kohanbash.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was conducted in compliance with the University of Pittsburgh Institutional Review Board guidelines as an exempt study. All participants provided their written informed consent (STUDY24050018). All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Z., Sneiderman, C.T., Kuminkoski, C.R. et al. Transcript-targeted antigen mapping reveals the potential of POSTN splicing junction epitopes in glioblastoma immunotherapy. Genes Immun 26, 190–199 (2025). https://doi.org/10.1038/s41435-025-00326-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41435-025-00326-6

Search

Quick links