Table 2 Essential factors of moment expressions.

From: Linkage disequilibrium under polysomic inheritance

 

\({{{\mathrm{E}}}}(\hat D_w^2)\)

\({{{\mathrm{E}}}}(\hat D_b^2)\)

\({{{\mathrm{E}}}}(\hat D_w\hat D_b)\)

\({{{\mathrm{E}}}}(\hat D^2)\)

\({{{\mathrm{E}}}}({{{\hat{\mathrm \Delta }}}}^2)\)

\({{{\mathrm{E}}}}\left( {\hat Q} \right)\)

\({{{\mathrm{E}}}}\left( {\hat R} \right)\)

Divisor

\({{{\Phi }}_1}{{\Theta }}_1\)

\(n^2v^2 \times \)

\((2 + vv_2)\)

\(\lambda _7\)

\( - nv \times \)

\((vv_1 + \lambda _1)\)

\(v_1^2\lambda _5\)

\(2v^2n_1^2v_1^2\)

\(2v_1^2\)

\(2v^2n_1^2v_1^2\)

\(n^3v^3v_1{{{\mathrm{/}}}}Q\)

\({{{\Phi }}_2}{{\Theta }}_2\)

\(n^2v^2\)

\(2\)

\( - nv\)

\(\lambda _5\)

\(v^2\lambda _2\)

\(2\)

\(2v^2\)

\(n^3v^2{{{\mathrm{/}}}}n_1Q\)

\({{\Gamma }}_1\)

\( - 2n^2v^2\)

\( - 2\lambda _1\)

\(nv(1 + \lambda _4)\)

\( - 2v_1\lambda _3\)

\(2v^2v_1\lambda _2\)

\(4v_1\)

\(4v^2v_1\)

\(n^3v^2{{{\mathrm{/}}}}n_1Q\)

\({{\Gamma }}_2\)

\(0\)

\( - 2\lambda _1\)

\( - nvv_2\)

\( - 2v_1\lambda _3\)

\( - 4v^2n_1v_1\)

\(4v_1\)

\( - 4v^2n_1v_1\)

\(n^3v^2/2n_1Q\)

\({{\Gamma }}_3\)

\(0\)

\(4\)

\( - nv\)

\( - 2\lambda _3\)

\( - 2v^2n_2\)

\(4\)

\(4v^2\)

\(n^3v/n_1n_2Q\)

\({{\Gamma }}_4\)

\( - 2n^2v^2v_2\)

\(2\lambda _1\lambda _4\)

\(\lambda _6\)

\( - 2v_1^2\lambda _3\)

\(4v^2n_1^2v_1^2\)

\(4v_1^2\)

\(4v^2n_1^2v_1^2\)

\(n^3v^3v_1/v_2Q\)

\({{\Delta }}_1\)

\(n^2v^2\)

\(\lambda _7\)

\( - nv\lambda _4\)

\(2v_1^2\)

\(v^2v_1^2\lambda _2\)

\(2v_1^2\)

\(2v^2v_1^2\)

\(n^3v^2/n_1Q\)

\({{\Delta }}_2\)

\(0\)

\(1\)

\(0\)

\(1\)

\(v^2\)

\(1\)

\(v^2n_1^2\)

\(n^3v^2/n_1v_1^2Q\)

\({{\Delta }}_3\)

\(0\)

\( - 2\lambda _1\)

\(nv\)

\(4v_1\)

\( - 2v^2n_2v_1\)

\(4v_1\)

\(4v^2v_1\)

\(n^3v/n_1n_2Q\)

\({{\Delta }}_4\)

\(0\)

\(v_1\)

\(0\)

\(v_1\)

\(v^2v_1\)

\(v_1\)

\( - v^2n_1v_1\)

\(n^3v/2n_1n_2Q\)

\({{\Delta }}_5\)

\(0\)

\(1\)

\(0\)

\(1\)

\(v^2\)

\(1\)

\(v^2\)

\(n^3/n_1n_2n_3Q\)

\({{\Delta }}_6\)

\(n^2v^2\)

\(\lambda _4^2\)

\( - nv\lambda _4\)

\(v_1^2\)

\(v^2n_1^2v_1^2\)

\(v_1^2\)

\(v^2n_1^2v_1^2\)

\(n^3v^3v_1/v_2v_3Q\)

\({{\Delta }}_7\)

\(0\)

\( - 2\lambda _4\)

\(nv\)

\(2v_1\)

\( - 2v^2n_1v_1\)

\(2v_1\)

\( - 2v^2n_1v_1\)

\(n^3v^2/2n_1v_2Q\)

  1. For brevity, we denote \(n - i\) by \(n_i\) and \(v - i\) by \(v_i\), and let \(\lambda _1 = n_2v + 2\), \(\lambda _2 = nn_2 + 2\), \(\lambda _3 = nv - 2\), \(\lambda _4 = vn_1 + 1\), \(\lambda _5 = 2 + nv\lambda _3\), \(\lambda _6 = nv[2 + \left( {\lambda _3 - \lambda _4} \right)\left( {1 + \lambda _4} \right)]\), \(\lambda _7 = 2 + 2n_2v + \lambda _2v^2\).