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In this study, we address the mate selection problem in the hybridization stage of a breeding pipeline, which constitutes the multi-
objective breeding goal key to the performance of a variety development program. The solution framework we formulate seeks to
ensure that individuals with the most desirable genomic characteristics are selected to cross in order to maximize the likelihood of
the inheritance of desirable genetic materials to the progeny. Unlike approaches that use phenotypic values for parental selection
and evaluate individuals separately, we use a criterion that relies on the genetic architecture of traits and evaluates combinations of
genomic information of the pairs of individuals. We introduce the expected cross value (ECV) criterion that measures the expected
number of desirable alleles for gametes produced by pairs of individuals sampled from a population of potential parents. We use
the ECV criterion to develop an integer linear programming formulation for the parental selection problem. The formulation is
capable of controlling the inbreeding level between selected mates. We evaluate the approach or two applications: (i) improving
multiple target traits simultaneously, and (ii) finding a multi-parental solution to design crossing blocks. We evaluate the
performance of the ECV criterion using a simulation study. Finally, we discuss how the ECV criterion and the proposed integer linear
programming techniques can be applied to improve breeding efficiency while maintaining genetic diversity in a breeding program.
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INTRODUCTION

Plant and animal breeding consists of methodologies for the
creation, selection, and fixation of superior phenotypes to fulfill
the breeding goals of increasing productivity and financial returns,
improving welfare, and reducing environmental impact Old-
enbroek and van der Waaij (2015). Traditionally, breeders achieve
these goals by identifying the individuals with desirable pheno-
types and crossing them to produce the segregation of
phenotypes in a new generation that allows further selection for
advancement. This breeding strategy is perpetuated because
high-volume crossing and evaluation led to the identification of
the iconic Green Revolution varieties that successfully doubled rice
and wheat yields from the 1960s to 1990s (Hesser 2006), despite
the inevitable inefficiency of producing a high number of failed
crosses. However, the future of food security and livestock will be
driven not only by the demand but also by severe competition
with other uses of land and water resource (Cassandro 2020).
Therefore, more efficient breeding strategies ought to be
considered because making many crosses with the knowledge
that most fail is not justified either by theory or comparative
experiments, and is also socially unacceptable.

Ultimately, the overall objective of a breeding program is to
produce lines and varieties that are genetically homogeneous and
perform at a high level, with end-use quality supportive of the
intended market class. A wheat breeding pipeline, for instance,
would begin with assembling parental stocks with a careful

examination of available germplasm and donor traits. In principle,
this is to construct and partition parental stocks respective to a
specific goal or goals, to create the genetic variability needed for
producing an adapted, high-yielding pure-line variety with
perceived quality demands in the future marketplace.

With the continued advancement of genomic technologies and
steady decline in genotyping costs, breeders are now able to take
full advantage of the availability of genetic information embedded
in the genome (Hayes et al. 2009; Heffner et al. 2010).
Nevertheless, except for the potential application of a higher
selection intensity with GEBVs (genomic estimated breeding
values) (Meuwissen et al. 2001), experimental data for the optimal
number of crosses as well as the optimal numbers of progeny to
sample from each cross required for selection as the initial
investment to fulfill the breeding goal have not been reported in
the literature (Donald 1968). This is unsurprising given that the
number of individuals a breeding program can phenotypically
evaluate is resource-limited (Rincent et al. 2017). For example,
consider a single cross of two genetically distinct parental lines
with 100 QTLs associated with variability among multiple
desirable traits. Assuming independent assortment and co-
dominance, the complete population from this single pair of
founders will consist of 3'%°=5.1 x 10* genotypic combinations.
Even considering a moderate number of 200 wheat lines in the
parental stocks, the number of combinations to be evaluated in
the field is astronomically high (Beans 2020). Consequently,
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analytical approaches based on operations research, mathematical
optimization, and statistical learning to optimize breeding
decision-making have gained prominence over the years (Byrum
2015; Byrum et al. 2017, 2016; Johnson et al. 1988; Kusmec et al.
2021).

There are two essential steps to addressing this problem using
mathematical optimization. The first is to define a fitness criterion
to evaluate individuals or crosses based on genetic information.
The second step is to devise a mathematical optimization
framework that incorporates the fitness criterion along with other
essential requirements of the breeding program, and whose
objective is to find the individuals or crosses that maximize the
fitness criterion. The mathematical optimization framework, while
faithfully capturing the various breeding requirements and
objectives, must also be computationally viable in order for it to
be useful in practice.

In contrast to addressing these breeding challenges in a
traditional phenotype-centric paradigm, genetic improvement
can also be more efficiently achieved by transferring desirable
alleles from parents to progeny as a genetic process while
avoiding alleles that show antagonistic pleiotropic effects. There-
fore, our aim is to devise a multi-objective mathematical
optimization framework that targets more than one phenotype
and generates multiple crosses that identify a set of best parental
pairs from populations to address multiple breeding goals
simultaneously.

As it is to be expected in any non-trivial multi-criteria decision-
making setting, the criteria (breeding objectives) can be mutually
conflicting, making it challenging to design an effective multi-
objective optimization framework. For example, yield production
in wheat has been found to be negatively correlated with grain
protein content (Simmonds 1995), which is an essential factor for
its commercial demand (Visscher et al. 1996). This makes
concurrently fulfilling breeding goals of high yielding and protein
content difficult. The negative correlation between the mass of
beef cows and various measures of fertility and stayability could
have attributed to the increasing concerns about compromised
reproductive efficiency as a result of selection for growth (Berry
and Evans 2014; Mwansa et al. 2002).

In this study, we propose a new fitness criterion called the
expected cross value (ECV) that is inspired by a related fitness
criterion called predicted cross value (PCV) introduced by Han et al.
(2017). ECV returns a probabilistic measure of the fitness of the
progeny of a specific pair of individuals based on the genetic
architecture of trait variation. We consider the complexity of
genetic architecture that underlies agronomic performance
characteristics and develop an integer linear programming
formulation of the parental pair selection problem that optimizes
the ECV criterion. We further extend its capability to select
multiple pairs of parents. Our optimization framework is based on
the genetic transmission of all detectable genetic loci and can
mitigate the potential impact of crossing within highly related
individuals. Based on simulation studies, we demonstrate that
using ECV as a fitness criterion would address the limitations of
other related approaches for mate selection problems, and our
multi-objective methodology can simultaneously improve a group
of target phenotypic traits.

METHODS

We begin with some preliminaries needed to formally define the expected
cross value (ECV) as a new fitness criterion for the mate selection problem.
Considering all diploid and polyploid species that may behave as diploids
cytologically, e.g., bread wheat (Riley and Chapman 1958), we assume that
the variability of target traits is governed by segregating alleles at N
different loci of all chromosomes in the genome. We use the index set
notation [al: ={1, 2, ..., a} for a positive integer a, and define the genotype
matrix next.
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Definition 1. Given an individual k, we define its genotype matrix L¥ as an
N x 2 binary matrix with the i, j-th entry for every i € [N] and j € [2] given by:

(M

. 1, ifthealleleinlocusiof gamete from parent;is desirable,
W70, otherwise.

Genotype matrix information of all individuals is an input for the ECV.
Hereafter, we refer to the allele in QTL i as the i-th allele for ease of discussion.
In our simulations, alleles are desirable when they enhance the trait value,
assuming larger the positive value, the better. Observe that each column of ¥
represents a gamete from one of the parents of individual k.

We model how alleles transfer from parents to children, i.e., how a
gamete inherits alleles from the parent, by using a random N-dimensional
binary vector J, with each component being a random variable J; for each
i € [N] defined as follows:

Ji= { o
1,
()

For a given individual k and QTL i, random variable J; determines which of
the gametes that comprise the genome of individual k will transfer the
allele in the i-th locus.

if the i-th allele is transferred from the first column of L¥ to the gamete,
otherwise.

Definition 2. (Han et al. (2017)). We say that the random vector J € {0, 1w
follows an inheritance distribution with parameters r € [0, 0.5V and do,
denoted by J ~ Z(r,ap), if and only if

PI’(J1 = 0) = Qo, PI’(J] = 1) =1- do, (3)

PF(J,' :J,',1) =1—-riq, PI’(J,' =1 —J,',1) =ri,, Vie [N] andi > 2.

(4)

In Definition 2, the (N — 1)-dimensional vector r € [0,0.5]""" represents

the recombination frequencies between the consecutive pairs of loci. The
value of r; is the probability that the i-th and (i + 1)-th alleles come from
different gametes that comprise the genome of individual k. Note that if
r;=0 for all i€ [N—1], then the gamete produced by individual k is
identical to exactly one of the parental gametes, while the maximum
possible recombination between gametes is expected to be observed
when r;=0.5 for all ie [N —1].

Deriving the closed-form marginal inheritance distributions
Given J ~ Z(r,ao), we now derive the marginal distribution of J; for each
i € [N]. The closed-form expressions so obtained then allow us to compute
the expectations required to obtain a general closed-form expression for
the ECV. For each i € [N], define the recursive function ¢, : RV-"—R as
follows:

$i(r) =0, ¢y(r)=r1, (5)

Gi(r) =rici+ (1 =2ri1);_4(r), Vi € {3,4, ... ,N}. (6)

Proposition 1. Suppose that J ~ Z(r,a). Then, for each i€ [N], the
marginal distribution of J; satisfies the following equations:

Pr(Ji =0) = ap + (1 — 2a0)¢h;(r), (7a)

Pr(Ji=1)=1—ao+ (2a0 — 1)¢;(r). (7b)

Proposition 1 (proved in the Supplementary Information) establishes the
marginal distributions through a recursion, which can be used to obtain a
closed-form expression. This result can be further simplified using the laws
of inheritance that the allele pairs of a locus segregate randomly during
meiosis, and each allele transmits to the gamete with equal probability.
Specifically, Proposition 1 then implies the following corollary.
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Corollary 1. Assume that Mendel's second law holds and a, = 0.5. Then,

Pr(J; = 0) = Pr(Ji = 1) = 0.5, Vi € [N]. ®
Furthermore,
E(J;) = 0x Pr(J; = 0) + 1x Pr(J; = 1) = 0.5, Vi € [N], )

where [E(-) represents the expectation operator.

The gamete and loss functions

The inheritance distribution characterizes the source of alleles transmitted
from a parent to its gametes. Therefore, we can define a so-called gamete
function to specify the alleles in the gamete according to the inheritance
distribution. Given this gamete function, we derive a closed-form
expression for the ECV of a pair of individuals.

Definition 3. (Han et al. (2017)). Given an individual with genotype matrix L
and a vector J ~ Z(r,qo), the vector-valued gamete function gam: (L, J) —
g outputs the binary gamete vector g defined as follows for each i [N]:

[l i4=0, o
I =Ly, ifs=1.

Equivalently, g;=L;1(1 —J) + L;2J;.

Suppose we have two individuals with genotype matrices L' and L2, and
two independent random vectors J', > ~ Z(r, o). By crossing these two
individuals, the genotype matrix for a child in the progeny is given by
matrix [g1, gz] where g1 = gam(L1,J1) and gZ: gam(Lz,Jz). Then, the
gamete that is produced by a child of this progeny for the next generation
is given by:

g* =gam([g',g°], ), an

where 2 ~ Z(r,a) is independent of J' and /% Below, we define a loss
function in terms of the g°> gamete vector that will lead us to the ECV
criterion.

Definition 4. Suppose L' and [? are the genotype matrices of two
individuals and let /X k=1, 2,3, be independent random vectors following
the distribution Z(r, ap) for some given r and ay. Let gk: gam(Lk,Jk) for
k=1,2 and g*>=gam(lg', g°], ). We define the loss function associated
with L', L2 r, and dp as the following random variable:

g (12)

-

N
loss(L',L2,r,ap) = 2(1 -g})=N-
=]

i=1

The loss function counts the number of undesirable alleles in the
gamete g>. If the loss function is equal to 0, then all alleles in g* are
desirable, while the opposite is true if it is equal to N. Before deriving our
ECV criterion, we introduce the related PCV criterion of Han et al. (2017).

Definition 5. (Han et al. (2017)). Let L' and L? be the genotype matrices of
two individuals, and let r and ag be given. Define the gamete g° using Eq.
(11). Then, the PCV associated with L', L2, r, and aj is the probability that
the gamete g> contains only desirable alleles. That is,

PCV(L', L%, r,a0) = Pr(loss(L", L%, r,ap) = 0). (13)

The expected cross value criterion

Next, we use the loss function in Definition 4 to define the ECV, an
alternative criterion to PCV, based on allelic information of individuals. The
measure depends on the gamete g* defined in Eq. (11) and can evaluate a
pair of individuals that could be mated.

Definition 6. For a selected pair of individuals with genotype matrices L'
and L2, the ECV is the expected number of desirable alleles in gamete g*
defined in Equation (11). As the loss function represents the number of
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undesirable alleles in g*, the ECV can be computed as:

N
ECV(L',L2,r,a0) = N — E(loss(L', L2, r,a0)) = [E(Z g?). (14)

i=1

A pair of individuals with the highest ECV value could be selected as
parents for crossing. Theorem 1 (proved in the Supplementary Informa-
tion) constitutes our main result that provides a closed-form expression for
calculating ECV for a pair of parents.

Theorem 1. Assume Mendel's second law holds true and let L' and L? be
the genotype matrices of two individuals. The ECV corresponding to the
desired phenotypic trait can be computed using the following equation:

N
ECV(L',(2,r,0.5) =025 (L], + L}, + L} +17,). (15)
i=1

Remark 1. Without relying on Mendel's second law, the ECV can still be
computed in closed-form more generally as:

= (L + (1 = a0 + (200 ~ DL — 2L}y +12,)

i=1

ECV(L', 12,1, ap)

+[1 —ao + (2a — 1)451(’)]2(% +L =L, - L:21))

Theorem 1 provides a closed-form expression for the ECV criterion that
enables us to formulate the parental selection problem as an integer linear
program.

Single-trait parental selection problem

We develop an integer programming (IP) formulation for the parental
selection problem using the ECV criterion as the single optimization
objective (see Supplementary Formulation (27)) and the constraint system
(and decision variables) from the mixed-integer programming formulation
for the PCV introduced by Han et al. (2017). The formulation finds the best
pair of individuals maximizing the ECV criterion based on a desired
phenotypic trait. In addition, we restrict the inbreeding between selected
individuals by preventing pairs of individuals with a sufficiently large
inbreeding value from being selected as parents. By using the marker
genotype information we can construct the genomic matrix G that
quantifies the genomic relationship between any pair of individuals in the
population (VanRaden 2008). Any pair in the population that has a
genomic relationship (i.e., inbreeding value) higher than a pre-determined
parameter ¢, will be excluded from the set of feasible pairs using a family
of constraints we include in the formulation.

In a breeding program, we may also seek to find multiple pairs for
crossing, rather than just a single pair. In order to do so, we introduce
Supplementary Algorithm 1 that iteratively solves our IP formulation for
the single-trait parental pair selection problem. Note that solving the
Supplementary Formulation (27) will identify a pair of individuals as the
optimal solution for the problem. By adding “conflict constraints”
corresponding to this optimal pair to the formulation, we can exclude
just this optimal solution from the set of feasible solutions and reoptimize
to find the next optimal pair. We can repeat this process until the required
number of pairs have been chosen for the crossing program (assuming
that many solutions exist).

The flowchart in Fig. 1 illustrates the workflow of the proposed ECV
approach for mate selection problems for a single trait. The process begins
with an initial population where genetic marker and QTL information are
available for the selection of parental lines to assemble the crossing block
to advance specific breeding targets (Velu and Singh 2013). The ECV
criteria can be optimized over several generations (denoted by T in Fig. 1).
In each generation, genomic information related to QTLs and genetic
markers, along with a genetic relationship matrix (G) is used for
constructing the optimization model detailed in Supplementary Formula-
tion (27), and solving it to find an optimal set of mating pairs for crossing.
The workflow for solving the multi-trait parental selection by optimizing
the ECV metric mirrors the process in Fig. 1 for single-trait ECV
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Input: Initial population as generation 0.
Initialize the generation counter ¢ to 0.
Initialize the total number of generations T .

!

For each individual k, extract the genotype matrix
L% in generation c. Build matrix G of generation c.

|

Initialize set S of selected parents to be empty.
Initialize the number of crosses, nc, in generation c.

l

Define decision variables t and expected progeny
value x used in Formulation (27)

|

Construct the ECV objective function,

Equation (27a)

!

Complete Formulation (27) by adding
constraints (27b)—(27g)

Yes
Solve Formulation (27) using Gurobi
optimizer and find optimal pairs k, Kk’
Add the pair {k, k'} to set S
Update Formulation (27) by
adding the constraints
tik+ o < 1and Yes
twt+tk<1
to avoid selecting previously
selected mating pairs No
Cross the selected mating pairs in S.
Increment generation counter ¢ <~ c+1
Output: Generation ¢ T
No

Fig. 1 A flowchart describing the overall process for single-trait ECV optimization producing n. mating pairs in each generation
c=1,2,...,T. The optimization formulation and equations referred in the flowchart are included in the Supplementary Information.

optimization. The key difference is that we solve the Supplementary
Formulation (29) via lexicographic optimization with user-specified
degradation tolerances as described in detail in the Supplementary
Information.

Multi-trait parental selection problem

In general, breeders may be interested in improving several phenotypic
traits simultaneously. In this case, we need to extend the ECV criterion to
account for multiple traits. We assume there are M target traits in the
breeding program and that the ¢-th desired trait for every ¢ €[M] is
affected by N, different QTL in the genome. For each individual we define
M genotype matrices, one for each trait. Each such matrix is an N, x 2
binary matrix in which each row represents the pair of alleles in the
corresponding genetic locus. Thus, we extend the previous definitions as
follows.

SPRINGER NATURE

Definition 7. For k € [K] and ¢ € [M], the genotype matrix L associated
with the k-th individual and the #-th trait is defined as:

Ko { 1 ifi-th allele of gamete from parent;jis desirable for trait/,

,.J. vie [N,j € [2.

0 otherwise.

(16)

Consider two individuals with genotype matrices L' and L*? for target
trait € € [M], and suppose that we have three independent random vectors
J', * and £ following an inheritance distribution Z(r,ap). Using the
definition of gamete function (10), the genotype matrix corresponding to
the ¢-th trait for a child in the progeny is represented by matrix [g'¢,g**]

where g"“=gam(L'J") and g*°=gam(L*¢,/’). The gamete that is
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produced by this progeny for the next generation is then given by:
g* = gam([g", g*'], P). a7

Definition 8. For the ¢-th target trait and a selected pair of individuals with
genotype matrices LY and L*¢, the ECV’ is the expected number of
desirable alleles of trait ¢ in gamete g**. Following Equation (17), ECV*, for
each ¢ € [M] is defined as:

, N
ECVA (LM, 12 r,a0) = N¢ — E(loss(L", L%, r, ap)) = [E(Z g,“). (18)
i=1

Following Theorem 1, we can obtain a closed-form expression for ECV*
function.

Theorem 2. Assume Mendel’s second law holds true and let € € [M]. Then,
for a selected pair of individuals with genotype matrices L' and L*¢, the
ECV corresponding to the ¢-th target phenotypic trait can be computed as:

N ,
EQV/ (L', 124,r,0.5) = 0.25 Y (Ll{ +L]3 + L7 +L73). (19)

i=1

Ideally, a breeding program would like to select parental pair(s) that
simultaneously optimize all the ECV? functions. Such an optimum is not
likely to exist in practice because some phenotypic traits are negatively
correlated. Therefore, improving one trait might worsen others. In order to
achieve a reasonable trade-off, one turns to the theory of multi-objective
optimization.

Consider a vector of objective functions F(t, x) = (fi(t, x"), h(t,
X, ..., fult, X)) where f,(t, x°) denotes the ECV function (19) corresponding
to ¢-th trait. Supplementary Formulation (29) for the multi-trait parental
selection problem seeks to find a pair of individuals that will “maximize”
the vector-valued objective function. Similar to the single-trait optimiza-
tion model, this formulation also excludes pairs of individuals with
genomic relationship exceeding the tolerance threshold from the set of
feasible solutions. Furthermore, as explained in the previous section, this
approach can also be extended to select multiple parental pairs for the
breeding program by iteratively adding conflict constraints. The differ-
ences lie in the handling of multiple traits, especially in the vector objective
function.

Multi-objective or vector optimization problems are commonly handled
by scalarization—converting the vector optimization problem into one or
more scalar optimization problems (Miettinen 2012; Sawaragi et al. 1985);
see survey by Miettinen et al. (2016) for interactive and other methods.
One approach is to use a weighted combination of the individual objective
functions to produce an optimization problem with a scalar objective. The
weights, which are predetermined by the user, need to be carefully chosen
to ensure they reflect the relative importance of the individual objectives
and also scale them appropriately as necessary. Another approach,
lexicographic optimization, prioritizes the objective functions based on
their importance and optimizes them sequentially, starting with the most
important. While optimizing lower priority objectives, we restrict the
feasible region to only those solutions that will not degrade the higher
priority objectives, or limit their degradation by user-specified tolerances.

The weighted sum approach, where we aggregate the individual
objectives into a single objective using user-defined weights, requires a
vector of weights that capture the importance of each phenotypic trait in
the breeding program. In practice, it is difficult to identify a precise and
meaningful weight for each trait as there are many factors of the breeding
program (some of them potentially unknown) that might play a role in
defining it. By contrast, it might be simpler for a breeding program to order
the traits based on their importance.

The lexicographic optimization approach is not without drawbacks, as it
could degenerate into single-objective optimization with the highest
priority objective if we subsequently allow no degradation of higher
priority objectives. In the worst case, if the first objective has a unique
optimal solution and we tolerate no degradation on the first objective, the
subsequent objectives are irrelevant. The use of tolerance is therefore
important as it allows limited degradation of a higher priority objective
when optimizing a lower priority objective, but allows for a larger feasible
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solution space for the lower priority objective (when compared against
using zero tolerance). Hence, we will be using lexicographic maximization
with positive tolerances in solving Supplementary Formulation (29).

Assume without loss of generality that the vector of objective functions,
F(t,x) = (fo(t,x")Y,_,, is already in decreasing order of importance. Thus
trait € is more important than trait € + 1, for each € € [M — 1]. The solver
we use in our computational studies is capable of lexicographic
optimization with degradation tolerances for objectives specified by the
decision maker. Let us denote these tolerances by = (14, T, ..., Ty), Where
T, €[0, 1] for each trait € € [M]. The solver optimizes the first objective
function f;(t,x) and then, among those feasible solutions within a factor
(1 — 1) of the optimal objective value of the first objective function,
optimizes the second objective function. This process is repeated until the
last objective is optimized. In particular, this method assures that the
optimal solution for the ¢-th objective, for ¢ =2, ..., M, is within a factor
(1 —1;) of the optimal value of the i-th objective, for every i € [¢ — 1]. As
fult, X is the last objective function to optimize, there is no need for a
tolerance Ty, and hence we set 1y, = 0 for all our experiments.

Simulation study

Simulations were conducted to evaluate the performance of ECV
compared to other parent selection approaches using phenotypes and
breeding values (GEBV). Two simulation experiments were considered in
this study. First, we considered a single-trait optimization problem to solely
improve Trait 1, simulated as a mixture of traits with oligogenic and
polygenic genetic architectures. Next, we examined a multiple-trait parent
selection problem where the breeding program was tasked to simulta-
neously improve all traits of interest. In this experiment, we simulated a
polygenic architecture for Trait 3, representing a trait such as yielding
capacity that is usually governed by a large number of loci where each
allele has a small impact on the expression of the trait and in a negative
genetic correlation with Trait 1, in addition to an oligogenic phenotype
(Trait 2) that may imitate the genetic architecture underlying disease
resistance.

For all experiments, two metrics were reported from the simulations,
average desirable allele frequency and average phenotypic trait values of
the progeny, to compare the performance of the methods in each
generation. We also recorded the average genomic relationship for the
selected individuals for all three approaches. In the case of multi-parental
pair selection, we sorted pairs of individuals based on the summation of
their trait values or GEBVs and made selection decisions based on the
summations of trait values. Moreover, by default, there was no control over
the genomic relationship between selected parent pairs for the phenotypic
selection and GEBV selection approaches; however, we assumed that self-
crossing is not a feasible choice in these approaches.

The QU-GENE engine and QuLinePlus proposed by Ali et al. (2020) were
used to simulate initial populations and the progeny in the subsequent
generations. The QU-GENE engine establishes the initial population with
inputs of genetic effects for segregating alleles, recombination frequencies
and the number of desired individuals. We considered an initial population
such that the allele frequency at all loci was set at 0.5. In our experiments,
QuLinePlus took the genotypic information of a population and a list of
selected pairs, simulated the progeny by crossing the selected parental
pairs, and output genotypic and phenotypic information for all individuals
in the subsequent generation. The GEBVs were calculated using the
“rrBLUP” package (Endelman 2011). The Gurobi Optimization Solver
(Gurobi Optimization, LLC 2024) was used to solve the integer linear
programming formulations that were implemented in the Python
programming language.

The initial population consisted of 10,000 individuals, with 200 biallelic
genetic loci and 100 markers. Of these, 40 genetic loci had effects on Trait
1, 10 on Trait 2, and 70 on Trait 3. The markers had no genetic effects on
any of the traits. Trait 3 and Trait 1 share 20 common loci with pleiotropic
effects, which resulted in a negative correlation between those phenotypic
traits. We conducted all of the experiments for four generations and for
each cross we simulated 100 progeny for the next generation. We
performed two sets of simulation studies, assuming a consistent growing
environment across generations. In the first simulation study, the number
of parental pairs that we chose from the initial population, generations
one, two, and three, was 50, 10, 5, and 5, respectively. Thus, the population
size in the simulation studies for generations one, two, three and four
were, respectively, 5000, 1000, 500, and 500, respectively.

To further investigate the effectiveness of our methodology, we
explored the impact of selection intensity in our second simulation study.
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Scenario A imposed a higher selection intensity with 50 crosses made from
the initial population (generation 0), and 10, 3, and 3, respectively, for
generations one, two, and three. For intermediate selection intensity
(Scenario B, same as the first simulation study), from the initial population,
generations one, two, and three, we chose 50, 10, 5, and 5 parental pairs,
respectively. Finally, in Scenario C, representing a case of reduced selection
intensity, the numbers of parental pairs selected in generation one was 25,
and 5 parental pairs for the generations two and three.

RESULTS
The single-trait simulation results over five generations are
summarized in Fig. 2. For all traits considered, ECV significantly
increased the proportion of desirable alleles (see Fig. 2a) while
showing the capacity to regulate the relatedness within the
breeding population by avoiding crossing closely related indivi-
duals (see Fig. 2c). Further, although statistically insignificant,
genetic crosses done by phenotypically superior individuals
returned the lowest means of the progeny in all traits, compared
to genetics-informed approaches, like GEBVs and ECV (see Fig. 2b).
However, populations generated by ECV provided a greater
potential for advancing individuals with larger phenotypic values.
Single-trait optimization does not guarantee improvement for
phenotypes other than the target trait. Figure 3 shows boxplots
for Trait 2 and Trait 3 when we optimize Trait 1 in a single-trait ECV
optimization framework. The frequency for the desirable allele
(Fig. 3a) as well as the phenotypic values (Fig. 3b) remained
unimproved for Trait 2. The scenario could be worse if target traits
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are determined by QTLs with antagonistic pleiotropic effects. This
can be seen in Fig. 3¢, d, which depict a significant decrease in the
proportion of desirable alleles and phenotypic values of Trait 3 as
a result of optimizing for Trait 1.

For multi-trait parental selection based on ECV, we employed
the lexicographic multi-objective  optimization approach
described earlier. The tolerances were chosen based on pre-
liminary experiments as follows: let 7;. denote the degradation
tolerance for optimization objective i in generation ¢, then we
used 1;0=0.17,7;;, =0.05,71,=0.051,3=0.05 and 1,0 =0.00,
75,1 =0.00, 75, = 0.00, 7,3 = 0.05. In general, the tolerance para-
meters can be calibrated to have the desired impact on the model.
The results in Fig. 4 show the advantage of using ECV. Despite the
negative genetic correlation, ECV was able to increase the
desirable allele frequency to 0.70 (+0.02), 0.65 (+0.08), and
0.72 (£0.01), for Trait 1, Trait 2, and Trait 3, respectively. In
contrast, the impact of negative correlation between Trait 3 and
Trait 1 was most obvious when the phenotypic selection was used,
leading to a significant loss of desirable allele for Trait 1 (see Fig.
4a). Similarly, ECV improved phenotypic values of the progeny for
all traits simultaneously, whereas no improvement for Trait 1 and
Trait 2 was found using phenotypic selection in our simulations
when the tolerances were set slightly favoring Trait 3. It is
noteworthy that a genomics-informed selection method, GEBV,
returned comparable results to ECV for Trait 1. This benefit of
GEBV, however, is at the expense of genetic diversity, as shown in
Fig. 5. Genomic relatedness (VanRaden 2008) has increased
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noticeably over the four generations using the GEBV selection
method.

Figure 6 displays the boxplots for the three selection intensity
scenarios A, B, and C introduced in the Simulation study, focusing
on the proportion of desirable alleles as the performance metric.
In the early generations, particularly generation 2, our proposed
ECV approach outperformed other selection strategies, most
evidently for Traits 1 and 3 in the implementation of multiple trait
selection. As the generations advanced, the ECV approach
continued to excel in Scenarios B and C, resulting in higher

SPRINGER NATURE

proportion of desirable alleles for Traits 1 and 3. In Scenario A,
where selection intensity was higher and ECV selection method
was not dominant, the method still yielded replications with a
greater proportion of desirable alleles compared to other
strategies, despite the genomic relationship constraints inherent
in the ECV method. Furthermore, in the last generation under
scenario A, the mean (+ standard deviation) of genomic related-
ness over all replications for the ECV, GEBV, and Phenotypic
selection approaches are 0.15(+0.04), 0.42(%0.10), and
0.25(+ 0.10), respectively. These results illustrate the effectiveness
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of our ECV optimization framework, with its explicit constraints
limiting genomic relatedness, in managing genomic relatedness
over generations when selection intensity is higher, while
improving desirable breeding traits. The impact of higher
selection intensity, however, led to greater variability in the
proportion of desirable alleles in Trait 3 of Scenario A, which could
be due to the drift effect of the smaller breeding population size
(Turner-Hissong et al. 2020).

DISCUSSION

The principal objective of breeding is to combine as many
desirable traits as possible into a genotype that can be distributed
to farmers, producers or breeders. For example, in plant breeding
the breeders are tasked with developing elite genotypes that
display desirable use characteristics including high yields, disease
resistance, and are also well-adapted to a range of environmental
conditions (Breseghello and Coelho 2013). These desirable
characteristics are typically possessed by multiple founders. By
mixing and recombining founder genomes, the distribution of
these desirable phenotypes observed in the offspring, owing to
the segregation of alleles often distributed throughout the
genome, allow breeders to identify superior individuals for
subsequent breeding, widespread evaluations, and sales.

However, when these desired characteristics differ in variability,
heritability, economic importance, and are correlated with other
phenotypes and genotypes, effective mating designs capable of
improving multiple traits simultaneously can be challenging to
identify (Johnson et al. 1988). This breeding process is also
ineffective as breeders tend to make hundreds or thousands of
crosses, of which only a few are advanced in the subsequent years
(Witcombe et al. 2013). Traditionally, these objectives are achieved
by breeding from the “best"—the best being determined by their
own phenotypic values (Akdemir et al. 2019; Allard 1999). More
advanced techniques, such as pedigree-based (Gianola and
Fernando 1986; Henderson 1984), marker-based genetic value
predictions (Bernardo and Charcosset 2006; Hospital and Char-
cosset 1997; Lande and Thompson 1990), and mating designs by
genomic information (Akdemir and Sénchez, 2016) are also
available.

Beginning with the work of Johnson et al. (1988), mathematical
programming approaches have facilitated the improvement of
genetic traits through the use of mathematical optimization
models that aid breeders in making better decisions in selecting

Heredity (2024) 133:113-125

Genomic relatedness for multiple trait improvement based on ECV, phenotypic and GEBV selection methods.

mating parents. Toro et al. (1991) solved mate selection problems
using linear programming techniques and demonstrated the
effectiveness of their approach within multiple ovulation and
embryo transfer (MOET) breeding schemes for dairy cattle with
the help of simulation studies. Jansen and Wilton (1985)
addressed the issue of factorial growth in the number of
combinations to cross by formulating and solving an integer
programming model to improve the overall progeny merit.

Moeinizade et al. (2019) recently proposed a single-trait
optimization of a “look ahead” metric that focuses on a
predetermined terminal generation to optimize mating decisions
for maximizing expected GEBVs in the terminal generation
without explicitly considering the impact of genetic erosion.
Amini et al. (2021) further improved this look-ahead framework by
prioritizing best individuals for crossing and using multiple
prediction algorithms to improve prediction accuracy. These
approaches are also complemented by Zhang and Wang (2022)
who proposed a “net present value” inspired mechanism for
discounting future gains, which values early-term genetic gains
more than those anticipated in the future. This was done to
overcome a drawback of the original look-ahead scheme by
Moeinizade et al. (2019), which can produce slow genetic gains in
the early generations and accelerating more rapidly as we
approach the terminal generation.

Byrum et al. (2016) report on their long-term development and
quantification of an unbiased genetic gain performance metric,
and pioneered its use in evaluating breeding projects as varieties
were developed. Byrum et al. (2016) and Byrum et al. (2017)
demonstrate the successful commercial use of advanced analytics
and operations research tools such as integer linear programming,
Monte Carlo simulation, and stochastic optimization by the
agriculture industry, which has served to further motivate its
broader use in many areas of crop and animal sciences; see also
(Byrum 2015, 2016).

Furthermore, when the breeding objective involves more than
one trait, a selection index of progeny merit was considered as a
linear function of estimated breeding values for each trait by
Allaire (1980). In animal breeding, for instance, the genetic merit of
calves is estimated as half of the sire’s and half of the dam’s
breeding value. An optimization-based procedure for mate
selection in animal breeding is introduced by Kinghorn
(1998, 2011) based on a mate selection criterion proposed by
Kinghorn and Shepherd (1999).

SPRINGER NATURE

121



P. Ahadi et al.

122

o
3
a

Phenotypic Selection_A
Phenotypic Selection_B
Phenotypic Selection_C
GEBYV Selection_A
GEBYV Selection_B
GEBYV Selection_C
ECV Selection_A

ECV Selection_B

ECV Selection_C

¢
[
¢
‘
¢+ ¢+
+

1 2

o
3
=)

o
=)
@

g
o
=)

Proportion of Desirable Alleles
g

o
2]
=)

4 o o
o N ~
a =} o

g
o
=]

Proportion of Desirable Alleles

0.55 ¢
¢+
0.50
3
0.45 ¢
¢+
0.40
1 2
C
0.8

e
3

4
o

Proportion of Desirable Alleles
o (=]
EN 12

o
w

Generation

Generation

Generation

Fig. 6 The effect of selection intensity represented by scenario A (higher intensity), scenario B (intermediate intensity), and scenario C
(lower intensity) on the proportion of desirable alleles. a Proportion of desirable alleles for Trait 3. b Proportion of desirable alleles for Trait 1.

¢ Proportion of desirable alleles for Trait 2.

In the genomics era, the parental selection problem has been
increasingly addressed with the use of genomic relationships (Sun
et al. 2013), heuristic searches for gene pyramiding (De Beukelaer
et al. 2015), and by modeling the recombination of desirable
alleles as a result of crossing (Han et al. 2017; Moeinizade et al.
2019). For the purpose of introgressing a small number of
desirable alleles from a donor to a recipient, Han et al. (2017)
proposed an efficient algorithm for calculating the PCV defined as

SPRINGER NATURE

the probability that a gamete of a random progeny from crossing
two genetic individuals would consist only of desirable alleles. In a
specific case where the desirable allele for the i-th locus is not
present in both parents (denoted by k and k/), such that
Lk, = L&, = ¥ = L¥, = 0, PCV will conclude that the ith compo-
nent of gamete g° is zero with probability one and hence
PCV(LK,L¥ r,ae) = 0. In this case, the individuals k and k7 will not
be selected, regardless whether or not there maybe be desirable
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alleles present in the rest of the genome. While such a result is
desirable for the goals of introgressing a small number of alleles
for traits like herbicide, disease, or insect resistance, it would be
inappropriate for identifying crosses that will have the best
opportunity to combine a large number of genetic alleles.
Considering the polygenic inheritance of agronomical perfor-
mance traits (Lynch and Walsh 1998; Scott et al. 2021), the PCV
approaches zero for all breeding parents as the number of loci
with desirable alleles increases. Consider the following probabil-
istic inequality (Fréchet inequality):

PCV(LY, LY r,ap = 0.5) = Pr(g} = 1Vi € [N]) < m{i@ Pr(g; =1).
e
(20)

Hence, the larger the value of N, the greater the chance Lf‘J =
Lk, =¥ = 1K, =0 for some QTL i. The PCV method could
therefore lead to indiscriminate mate selection for traits that have
hundreds or thousands of loci with desirable alleles because the
PCV value is (nearly) zero for essentially any choice of mates. This
observation motivated us to introduce our ECV criterion, especially
for breeding targets governed by a large number of genetic loci
and for non-introgression projects.

As Fig. 2a shows, our results demonstrated a significantly greater
capacity to increase desirable allele frequency compared to the
conventional phenotypic selection and the selection done by the
genomics-derived GEBV; and, the benefit of using ECV can be realized
in as short as two generations. Moreover, the greater range of trait
value distribution presents additional opportunities for breeders to
identify the superiors for population advancement (see Fig. 2b).

Based on our simulations, we observe that the breeding population
has gone from unrelated to essentially full-sibs in three generations of
selecting breeding parents based on GEBVs (see Fig. 2c). Compared to
the phenotypic selection, GEBV selection might have manifested a
rapid increase of relatedness by crossing individuals closely related to
the training population (Bassi et al. 2016; Forutan et al. 2018). Though
GEBYV selection might show a capacity to provide short-term genetic
gain, selecting breeding parents solely by GEBVs would lead to
undesirable consequences such as loss of genetic diversity, further
diminishing long-term genetic gain (Doekes et al. 2018; Jannink 2010).

To ensure the capacity to preserve multiple genetic lineages,
ECV allows for the selection of more than one pair of individuals,
and while self-crossing was not allowed in this study, our method
permitted the same individual to be crossed with multiple
breeding parents as long as the genomic relationship of the
parents was not greater than ¢, a parameter that breeders can use
to control how much inbreeding is acceptable.

Fundamental to all variety improvement programs is the
identification of the most efficient path to reach breeding
objectives (Akdemir et al. 2019; Bernardo 2002). However,
breeders are usually tasked with combining a suite of traits in
addition to yield and growth components. The negative genetic
correlations caused by the non-random association of alleles
underlying these breeding objectives impose additional chal-
lenges, as selecting based on one trait may adversely impact
another (Lynch and Walsh 1998). To simultaneously improve
multiple traits, phenotype-based selection indices have been
widely considered (Hazel et al. 1994; Hazel and Lush 1942; Jannink
et al. 2000; Moeinizade et al. 2020; Villanueva and Woolliams,
1997). Selecting breeding parents based on a selection index does
not necessarily choose the best genetics to recombine; further,
since the selection index applied is a weight assignment of target
phenotypes, such decisions could result in the loss of beneficial
alleles.

In this study, the proposed ECV framework is based on an allele
transmission process. Rather than relying on the phenotypes of
breeding parents, ECV identifies the crosses with the highest
likelihood of transmitting desirable alleles from pairs of parents to

Heredity (2024) 133:113-125

P. Ahadi et al.

the progeny. In the case where multiple traits need to be
considered simultaneously, ECV seeks the optimal combination of
alleles for all target phenotypes ordered by their importance,
while maintaining a customizable tolerance such that QTLs with
antagonistic pleiotropic gene action could remain in consideration
before the final breeding recommendation is made. Figures
4 and 6 showed that despite the negative correlation between
Traits 1 and 3, ECV was able to increase desirable allele frequency
for all traits in our simulation studies. In addition, as seen from Fig.
5, the inbreeding coefficient in the progeny was regulated as ECV
was optimized with the tolerance constraint on the genomic
relatedness between breeding parents. As genotyping has
become routine in breeding programs (Bentley et al. 2022; Hayes
and Goddard, 2010), the application of this constraint ought to be
considered to mitigate the multiple trait scenario in Fig. 4, where
the gain might be built at the expense of genetic diversity (Fig. 5),
a phenomenon also found in index selection methods (Akdemir
et al. 2019). If practical considerations favor breeding parents to be
selected from a narrow genetic pool, the constraint could be
moved to the objective as a penalty term.

Breeding programs develop elite genotypes that often demon-
strate similar essential genomic profiles of desirable end-use
characteristics, agronomical attributes, disease resistance
packages, as well as adaptation to the target environment.
Breeding among the elites can produce new variability as the
source of new cultivars with minimal risk of introducing
undesirable features. This variation may eventually be exhausted,
and new genes and alleles must be introduced. Identifying
beneficial alleles from un-adapted material itself has been
described as searching for a needle in a haystack (Pixley et al.
2014). Introgressing these novel alleles can also be risky because
the unwanted alleles in exotic germplasm may distrupt essential
allele combinations (Willcox et al. 2022); and, it requires a higher
institutional cost due to a greater number of crosses and longer
breeding cycle needed to achieve the breeding objectives
(Neyhart et al. 2019; Snelling et al. 2019). Based on our simulations,
we reckon that ECV can be an option.

Beyond animal and cereal crop breeding, we suspect that
implementing optimization-based methods like ECV could be
advantageous to breeding of genetically diverse, long-generation,
and slow reaction, cross-pollinated species, such as conifers. Tree
breeders generally establish open-pollinated seed orchards for
selection (White et al. 2007), and several mating designs have
been proposed (Namkoong, 1976; Zobel and Talbert 1984),
among which the polycross is considered as one of the most
cost-effective (Kumar et al. 2007; Lenz et al. 2020). The ability to
design the pollen pool while managing inbreeding with ECV will
provide the capacity to rapidly increase desirable allele frequen-
cies and, at the same time, avoid severe inbreeding depression for
conifer species (Berry and Evans 2014; Mwansa et al. 2002; Snelling
et al. 2019).

The conceptual framework we have introduced and our results
show that adopting multi-objective optimization tools from
operations research to solve breeding problems is highly
advantageous (Beans 2020; Cameron et al. 2017; Kusmec et al.
2021). Several improvements or extensions suggested next should
also be considered. When the pool of genetic diversity increases,
solving integer programming problems for ECV will require further
development to account for different distributions of crossover
events in different crosses (Dreissig et al. 2019; Jabbari et al. 2019;
Nachman 2002; Stapley et al. 2017). Furthermore, as multi-parent
populations like MAGIC (multi-parent advanced generation inter-
cross) have become a means to provide germplasm for breeding
programs (Scott et al. 2020), there is a need to expand
optimization frameworks such as ECV to consider multiple
parental lineages, which might also help guide the polycross
mating design in forestry (Frandsen 1940; Lambeth et al. 2001).
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Our proposed methodology relies on the the underlying
genetic information of the breeding population, such as QTLs
and genetic association of desirable traits. While affordable large-
scale genotyping and phenotyping technologies are becoming
accessible to breeding programs (Bassi et al. 2024; Reynolds et al.
2020), large breeding populations necessitate extensive genomic
information, which can be computationally demanding. Moreover,
integer linear programming is NP-hard in general, making it
challenging to solve very large-scale problems to optimality. In the
case of mate selection, the size of the population and the number
of genes directly influence the computational time, which implies
that massive datasets could make obtaining optimal solutions
unrealistic for practical applications. In such circumstances, we
may consider modifying our approach to solving the integer linear
program by employing decomposition techniques to address the
large-scale instances and likely settle for sub-optimal (but good
quality) feasible solutions.

Our simulations also indicate that the ECV selection frame-
work may result in higher performance variability when the
selection intensifies in earlier generations. To alleviate this issue,
we could either relax the genomic relatedness constraint
(smaller ¢) in earlier generations or intensify selection only in
advanced generations. Further, care must also be taken in
choosing the degradation tolerances 1, for each trait € € [M] in
the lexicographic multi-trait ECV optimization framework, which
will entail computational expenditure in terms of preliminary
computational experiments, which could become challenging at
larger scales.

DATA AVAILABILITY

The data and codes are available at: https://github.com/transgenomicsosu/ECV.
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