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Drivers of interlineage variability in mitogenomic evolutionary
rates in Platyhelminthes
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Studies of forces driving interlineage variability in the evolutionary rates (both sequence and architecture) of mitochondrial
genomes often produce contradictory results. Flatworms (Platyhelminthes) exhibit the fastest-evolving mitogenomic sequences
among all bilaterian phyla. To test the effects of multiple factors previously associated with different aspects of mitogenomic
evolution, we used mitogenomes of 223 flatworm species, phylogenetic multilevel regression models, and causal inference.
Thermic host environment (endothermic vs. ectothermic) had nonsignificant impacts on both sequence evolution and
mitogenomic size. Mitogenomic gene order rearrangements (GORR) were mostly positively correlated with mitogenomic size
(R2 ≈ 20–30%). Longevity was not (negatively) correlated with sequence evolution in flatworms. The predominantly free-living
“turbellaria” exhibited much shorter branches and faster-evolving mitogenomic architecture than parasitic Neodermata. As a result,
“parasitism” had a strong explanatory power on the branch length variability (>90%), and there was a negative correlation between
GORR and branch length. However, the stem branch of Neodermata comprised 63.6% of the total average branch length. This
evolutionary period was also marked by a high rate of gene order rearrangements in the ancestral Neodermata. We discuss how
this period of rapid evolution deep in the evolutionary history may have decoupled sequence evolution rates from longevity and
GORR, and overestimated the explanatory power of “parasitism”. This study shows that impacts of variables often vary across
lineages, and stresses the importance accounting for the episodic nature of evolutionary patterns in studies of mitogenomic
evolution.
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INTRODUCTION
Evolutionary rates of mitochondrial genomes (mitogenomes)
exhibit remarkable interlineage variability, both in terms of
sequence and architecture evolution. Multiple factors have been
associated with mitogenomic evolutionary rates, including body
size, longevity, the effective population size (Ne), parasitism,
metabolic rate, etc. (Martin and Palumbi 1993; Nabholz et al. 2016;
Jakovlić et al. 2023). However, results are often inconsistent across
different lineages, so there is growing consensus that drivers of
mitogenomic evolution in animals are multifactorial, lineage-
specific, and in general difficult to predict (Bazin et al. 2006;
Thomas et al. 2006; Lanfear et al. 2007; Nabholz et al. 2008a;
Nabholz et al. 2008b; Galtier et al. 2009; Allio et al. 2017; Saclier
et al. 2018; Jakovlić et al. 2021). Mitochondrial genomes of
Platyhelminthes (flatworms) exhibit the highest average amino
acid substitution rate among the bilaterian phyla (Bernt et al. 2013;
Jakovlić et al. 2023), but the factors underlying this phenomenon
remain unknown. They also exhibit a number of other character-
istics that make them uniquely suitable to test impacts of various
variables putatively associated with mitogenomic evolution, so

herein we used this phylum as a model to test six hypotheses
related to mitogenomic evolution patterns in animals (Table 1).
Several studies found support for the hypothesis that thermic

habitat affects mitochondrial sequence evolution (Lajbner et al.
2018) and that evolutionary rates differ between endotherms and
ectotherms (Rand 1994). Two hypotheses have been put forward
to explain this association. The “functional constraints” hypothesis
proposes that variations in the thermic environment may restrict
physiologically acceptable amino acid substitutions, which implies
that thermally stable endotherms should have a higher rate of
sequence evolution than thermally variable ectotherms due to
relaxed purifying selection pressures (Rand 1994). The ”metabolic
rate” hypothesis postulates that endothermic animals have higher
metabolic rates than ectotherms due to higher energy expendi-
ture, which generates more reactive oxygen species, and results in
an increased DNA mutation rate in endotherms (Martin and
Palumbi 1993). Thermic habitat may also affect the mitogenomic
size: higher replication rates in endothermic animals may result in
smaller mitogenomes and reduced size variability via the
mechanism described as “race for replication”, wherein shorter
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mitogenomes will be replicated at higher rates due to mechanistic
constraints (Rand 1993). These hypotheses were previously
extended to parasites: a host’s thermic habitat might also affect
mitogenomic evolution in their parasites (Lagisz et al. 2013).
Flatworms are among the rare parasitic lineages that parasitize
both endothermic and ectothermic hosts, which makes them a
suitable model to further test these hypotheses. However, all
flatworms are ectothermic themselves, so they do not have to
spend energy to generate heat to maintain the body temperature
regardless of the thermic type of the host. Therefore, there should
be no direct relationship between their energy consumption and
host type with respect to endothermy/ectothermy. This implies
that under the functional constraints hypothesis, parasites of
endotherms should have faster-evolving mitogenomes than
parasites of ectotherms due to the stable thermic environment,
but there is no direct reason why their evolutionary rates should
be affected by the thermic environment of the host under the
metabolic rate hypothesis. There is also no direct reason why their
mitogenome sizes should be affected by the thermic environment
of the host, unless parasites of endotherms invest much more in
increased growth rates and/or fecundity, but the evidence for this
hypothesis is weak, inconsistent, and limited to a few helminth
lineages (Jackson and Tinsley 1998; Poulin and Latham 2003;
Bakke et al. 2007; Benesh et al. 2021). To test these hypotheses
(Hypothesis 1: Functional constraints and Hypothesis 2: Race for
replication; Table 1), we divided parasitic flatworms (Neodermata)
according to the thermic environment of their intermediate and
definitive hosts into ectotherms and endotherms.
Some types of architecture rearrangement events (e.g. tandem-

duplication-random-loss) cause sequence duplications and result
in an increased abundance and size of noncoding intergenic
regions in mitogenomes (Boore 2000). In addition, we hypothesise
that mitogenome replication and maintenance machinery errors
should result in both increased gene reshuffling and sequence
duplication errors. Accordingly, our working hypothesis is that
mitogenome size should be positively correlated with the gene
order rearrangement rate (GORR) (Hypothesis 3: Mitogenome size
and GORR; Table 1). Surprisingly, besides the positive correlation
between the mitogenome size and gene order rearrangement
rate established in nematodes (Lagisz et al. 2013), the correlation
between mitogenomic size and other relevant parameters does
not appear to have been tested statistically in other animal
studies. Flatworms exhibit highly variable mitogenome sizes (13 to
27 Kbp) and architecture rearrangement rates, with (mostly)
relatively slow-evolving Neodermata (Zhang et al. 2019) and fast-
evolving basal radiation of mostly non-parasitic flatworms
(“turbellaria”) (Solà et al. 2015; Rosa et al. 2017). This makes
flatworms a good model to test these hypotheses.
As gene order rearrangements and size expansions should be

selectively constrained (Lynch et al. 2006; Shtolz and Mishmar
2023), mitogenomic size and rearrangement rate should be
positively correlated with sequence evolution. Indeed, there is
evidence for this in a range of animal lineages (Shao et al. 2003;

Hassanin 2006; Xu et al. 2006; Bernt et al. 2013; Zou et al. 2022b;
Struck et al. 2023). However, the existence of several exceptions
indicates that the correlation might be lineage-specific (Chong
and Mueller 2013; Bernt et al. 2013; Tan et al. 2019), so the
hypothesis requires further testing (Hypothesis 4: Sequence
evolution and size/GORR; Table 1).
Longevity is another factor putatively associated with mitoge-

nomic evolution, according to the proposal that long-lived animals
may have adapted to an increased lifespan by evolving
macromolecular components more resistant to oxidative damage,
thus reducing their evolutionary rates (Nabholz et al. 2008a; Welch
et al. 2008; Galtier et al. 2009). In addition, longevity is positively
correlated to generation time in many animals (Jeschke and Kokko
2009), which is also a variable putatively negatively associated
with mitogenomic evolutionary rates (Li et al. 1987; Martin and
Palumbi 1993; Thomas et al. 2010). Previous studies also found
contradictory results with regard to the impact of these two
variables (longevity and generation time) on the mitogenomic
evolutionary rates (Nabholz et al. 2008a; Nabholz et al. 2008b; Min
and Hickey 2008; Nabholz et al. 2009; Thomas et al. 2010; Hua
et al. 2015; Allio et al. 2017; Saclier et al. 2018; Struck et al. 2023).
Flatworms exhibit a wide variation in longevity: whereas mono-
geneans on average have very short life spans of several weeks
(Bakke et al. 2007), trematodes have maximum lifespans of up to
25 years (Muller and Wakelin 2002), and some non-parasitic
planarians are practically somatically immortal (Valenzano et al.
2017). Furthermore, it has been proposed that parasite longevity
should be inversely correlated to the thermic environment of the
host: at higher temperatures, parasites invest in higher metabolic
and reproductive rates, but a shorter life span appears to be an
unavoidable trade-off (Bakke et al. 2007). We tested both
hypotheses in flatworms (Hypothesis 5: Longevity-dependent
selection; Table 1).
Parasitic bilaterian animal lineages exhibit highly elevated

mitogenomic evolutionary rates in comparison to non-parasitic
lineages, putatively due to the reduced locomotory capacity and
metabolic dependence on the host (Jakovlić et al. 2023). Along
with Nematoda, Platyhelminthes comprise the largest and
medically most important radiation of parasitic animals (Neoder-
mata). The phylum also comprises a substantial (paraphyletic)
radiation of predominantly non-parasitic lineages, which makes it
one of the few animal phyla that comprise both parasitic and
nonparasitic lineages. We tested the impact of parasitism on
branch length in flatworms (Hypothesis 6: Parasitism; Table 1).
In addition to the over 20 flatworm mitogenomes so far

sequenced by our research team (Supplementary file S1: Table
S1), we retrieved all other available flatworm mitogenomes from
public databases, adding up to over 200 flatworm species. We
divided them into multiple subdatasets according to the lifestyle
(parasitic and non-parasitic) and host’s thermic type (endother-
mic and ectothermic), and relied on multilevel regression
models and causal inference to test the six hypotheses outlined
above (Table 1).

Table 1. The tested hypotheses and their predictions. GORR is the gene order rearrangement rate.

No. Hypothesis name Prediction

1 Functional constraints sequence evolution is faster in parasites associated with the thermally stable environment of
endothermic hosts

2 Race for replication mitogenomes do not differ in size between parasites of endothermic and ectothermic hosts

3 Mitogenome size and GORR GORR and mitogenomic size are positively correlated

4 Sequence evolution and size/GORR sequence evolution is positively correlated with both mitogenome size and GORR

5 Longevity-dependent selection sequence evolution is slower in long-living than in short-living species and parasites of
endotherms live shorter

6 Parasitism sequence evolution is faster in parasitic than in non-parasitic lineages
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MATERIALS AND METHODS
Datasets
We retrieved all flatworm mitogenomes available in the NCBI’s GenBank
database (last accessed 25/2/2022), and used PhyloSuite v.1.2.3 (Zhang
et al. 2020; Xiang et al. 2023) to extract data from GenBank files.
Mitogenomes were available for 223 species, 30 of which belonged to non-
parasitic lineages (Supplementary file S2: Dataset S1), comprising the
paraphyletic basal flatworm radiation previously classified as “turbellaria”
(Rohde 1994). Analyses were conducted on three datasets: 1) full
(comprising all Platyhelminthes); 2) non-parasitic (“turbellaria”), and 3)
parasitic (Neodermata). We classified parasites according to the definitive
host’s thermic type into endotherms (124 species) and ectotherms
(55 species). We additionally tested the impact of the intermediate host
by further subdividing them according to definitive and intermediate host
types into ectotherm-ectotherm (ecto-ecto), endotherm-endotherm (endo-
endo), and ectotherm-endotherm (ecto-endo) groups respectively. As the
major parasitic radiation Neodermata is monophyletic, we tested hypoth-
esis 6 (Parasitism) with this limitation in mind. All other tested categories
comprised multiple lineages of paraphyletic origins. To minimise the
impact of sequencing artefacts on the analysis, for all analyses involving
the mitogenome size parameter, we removed putatively incomplete
mitogenomes (marked as “linear” in GenBank files; 182 species left in the
dataset; more details in Supplementary file S1: Text S1). Longevity data
were retrieved from a range of sources, listed in Supplementary file S2:
Dataset S1. Given the absence of precise longevity data for many flatworm
lineages, we first categorised it into six categories, and then coded it as a
mean of a range in days: 15 (0–30 days), 105 (30–180 days), 270 (6 months
- 1 year), 547 (1–2 years), 1278 (2–5 years), and 2500 (>5 years).

Phylogenetic analyses
PhyloSuite was used to conduct phylogenetic analyses with the help of
its plug-in programs using the methodology described before (Jakovlić
et al. 2021). We used datasets comprising concatenated amino acid (AAs)
sequences of all 12 (atp8 is missing from Neodermata) mitochondrial
PCGs. Sequences were aligned using the normal mode of MAFFT (Katoh
and Standley 2013) available in PhyloSuite. The amino acid alignments of
PCGs were trimmed using trimAI (Capella-Gutiérrez et al. 2009), optimal
evolutionary model and mixture models (CAT model, c10…c60) inferred
using ModelFinder (Kalyaanamoorthy et al. 2017), and phylogeny
inferred using the mtInv+C50+ F+ R10 model (C50 can account for
compositional heterogeneity) in IQ-TREE, with 50,000 Ultrafast boot-
straps (Minh et al. 2020). The most likely sister group to Platyhelminthes,
Gastrotricha (Giribet et al. 2000; Struck et al. 2014; Laumer et al. 2019),
was used as the outgroup (Nemertea was also tested). We tested and
confirmed that branch lengths are highly correlated regardless of the
dataset, algorithm, or outgroup used (more details in Supplementary file
S1: Text S2). The sequence evolution rate was defined as the root-to-tip
sum of branch lengths (Lanfear et al. 2007; Allio et al. 2017), which were
extracted using the TreeSuite function of PhyloSuite. The phylogeny was
visualised using iTOL (Letunic and Bork 2024) and files generated by
PhyloSuite.

Statistical, gene order rearrangement rate, selection pressure,
and multivariate regression analyses
To infer the gene order rearrangement rate, we first inferred the putative
ancestral gene order for Platyhelminthes using the SPP algorithm of MLGO
(Hu et al. 2014) and phylogeny with Gastrotricha as the outgroup, and then
used it to calculate distances from it for all species in the dataset using the
breakpoint distance score in CREx (Bernt et al. 2007). To test the reliability
of this inference, we also used Nemertea as the outgroup. As the ancestral
gene orders differed, we confirmed that both ancestral gene orders, as well
as the ancestral gene arrangement of Lophotrochozoa (Podsiadlowski et al.
2009), all produce the same conclusions (Supplementary file S1: Text S3).
We used the AnalyzeCodonData.bf function in HyPhy (Kosakovsky Pond
et al. 2020) to infer branch-specific ω values (dN/dS; details in
Supplementary file S1: Text S3) on a dataset comprising concatenated
12 PCGs of all mitogenomes, with the best-fit GY codon model selected by
ModelFinder (Kalyaanamoorthy et al. 2017). Selective pressures in target
lineages were further tested using the RELAX function in HyPhy, where
K > 1 values indicate intensification and K < 1 relaxation of selection
(Wertheim et al. 2015). GC skews were proposed as a proxy for estimating
the strength of purifying selection pressure in mitogenomes (Jakovlić et al.
2021), so we calculated them using PhyloSuite and the formula (G-C)/
(G+ C) (Perna and Kocher 1995).

Standard statistical analyses were conducted in R. After conducting
standard ANOVA to compare means among groups, for comparisons
between specific pairs of groups we used a version of the t-test that
controls for multiple comparisons - Tukey’s HSD. As our data violated the
assumption of independence of observations, we also applied the ANOVA
phylogenetic generalised least squares (PGLS) in the nlme package
(Pinheiro and Bates 2006; Pinheiro et al. 2024) to conduct pairwise and
multigroup comparisons. For correlation analyses, we used Pearson’s (in
cases when we compared two measurement variables), Spearman’s
(ranked + measurement), and Polyserial (category + measurement).
Multilevel regression analyses were conducted using two different models
that can remove the effect of the evolutionary relationships of species
when fitting a regression between variables: brms (Bürkner 2018) and
lmekin (Therneau 2018). For these, we used a matrix of phylogenetic
distances extracted from the phylogram using TreeSuite. To conduct the
causal inference analyses, we used dagitty (Textor et al. 2016), and then
calculated causal effects using brms and lmekin following the methodol-
ogy outlined in (Arif et al. 2022) (details in Supplementary file S1: Text S3).

RESULTS
Topologies, mitogenomic architecture and studied variables can
be viewed in Fig. 1 and, with details of all studied parameters
(exact p-values, etc.), alignments, trees, gene order distance
matrices, and alternative topologies provided in Supplementary
files S2 – S5. We relied on branch lengths (brl) as indicators of
overall evolutionary rates, so we confirmed that they were highly
correlated between phylograms regardless of the dataset,
methodology, or the outgroup used (all >0.97) (Supplementary
file S1: Text S3 and Figure S1; Supplementary file S6). The two
multilevel regression algorithms, brms and lmekin, also produced
highly correlated results (correlation = 0.981).
Hypothesis 1: Functional constraints (thermic habitat and

sequence evolution)
Branch lengths were nonsignificantly (p-value= 0.892) higher in

parasites of ectotherms compared to parasites of endotherms
(Fig. 2A; details of statistical analyses in Supplementary file S2:
Dataset S2). When the dataset was divided according to the
intermediate host, parasites with both (intermediate and defini-
tive) endothermic hosts exhibited significantly (p= 0) longer
branches (Supplementary file S1: Fig. S4). The ω values were
nonsignificantly higher (p= 0.057; Fig. 2B) and purifying selection
pressure significantly relaxed in endotherms compared to
ectotherms (p < 0.0001, K= 0.8). However, multivariate regression
analyses indicated that thermic host type was not a significant
predictor of the branch length variability (R2 ≤ 1%; Table 2; details
of multivariate analyses in Supplementary file S2: Dataset S3).
Hypothesis 2: Race for replication (thermic habitat and

mitogenome size)
Mitogenomes were nonsignificantly smaller in parasites of

endotherms than in ectotherms (by ≈300 bp; p= 0.62), and the
largest in non-parasitic species (Fig. 2C). The intermediate host
type did not affect the size (<50 bp difference, p= 0.82;
Supplementary file S1: Figs. S4). The ectotherm size range was
marginally narrower than the endotherm range (13.4–17.5 Kbp vs.
13.4–17.7 Kbp respectively), with non-parasitic lineages exhibiting
by far the widest range: 14.2–27.1 Kbp (outliers were included for
all range analyses). The host’s thermic environment explained
≈7% of the mitogenome size variability (a significant predictor;
Table 2). When covariates were accounted for in the causal
analysis, the causal effect was −0.04 (Fig. 3).
Hypothesis 3: Mitogenome size and gene order rearrange-

ment rate
Mitogenomes were significantly larger and more rearranged in

turbellaria than in Neodermata (both p= 0; Fig. 2C, D). We also
confirmed that alternative ancestral gene order patterns produce
congruent results (Supplementary file S1: Figure S4). As a result,
across the Platyhelminthes, the mitogenome size was significantly
positively correlated with the gene order rearrangement rate (0.58),
and mitogenome size explained ≈22–24% of the variability in the
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gene order rearrangement rate, and vice versa (Fig. 4, Table 2).
When covariates were accounted for, the causal effect of GORR on
mitogenome size was 0.26 (Fig. 3). A similar correlation (0.46) and
predictive power (R2) of 20–25% was observed in Neodermata, but
the two variables were not correlated in Turbellaria (0.08 and <5%
respectively) (Supplementary file S1: Figures S5 and S6).
Hypothesis 4: Sequence evolution and mitogenome size/

gene order rearrangement rate
Branch lengths were negatively correlated with gene order

rearrangement rate and mitogenome size in Platyhelminthes
(−0.74 and −0.29; Fig. 4), but positively in Neodermata (0.50 and
0.27) and turbellaria (0.36 and 0.24) subdatasets, respectively
(Supplementary file S1: Figures S5 and S6). This discrepancy was
caused by higher gene order rearrangement rates and much
shorter branches (both p= 0) in non-parasitic lineages than in

parasitic lineages (Fig. 2A, D). Despite this discrepancy, gene order
rearrangement rate was a significant predictor of branch length in
all three datasets: 57–62% in Platyhelminthes, 30–32% in
Neodermata, and ≈14% in turbellaria datasets (Table 2). In all
three datasets, mitogenome size explained a smaller but similar
proportion (≈7–11%) of branch length variability, with incon-
sistent significance (Table 2; Supplementary file S2: Dataset S3).
Hypothesis 5: Longevity-dependent selection
Longevity was the lowest in Monopisthocotylea, higher in

endotherms than in ectotherms, and had a very wide range in
turbellaria (Fig. 2E, F). By far the shortest average branch lengths
were exhibited by the relatively short-living category 2, which also
comprised most of the turbellaria, whereas all other categories
had similar values (Fig. 2G). As a result, longevity was not
correlated with branch length in Platyhelminthes and Neodermata
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Fig. 1 An overview of the dataset and tested variables. Centre-to-edge, the image shows IQ-TREE_NUC phylogram where stars at branches
indicate 100% IQ-TREE ultrafast bootstrap support, and with the two basal stems that were removed for some analyses highlighted; species
names with GenBank accession numbers and taxonomic identity as coloured ranges; the division of lineages into non-parasitic and parasitic,
with the latter further subdivided into endotherms and ectotherms according to the thermic type of definitive (the inner circle) and
intermediate (the outer circle) hosts (Life history); longevity; branch length; gene order rearrangement rate (GORR); and the mitogenome size,
where 0 was set at 12,000 bp (base pairs). The tree was rooted with one Gastrotricha species.
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(both R2 < 1%), but the two variables were weakly positively
correlated in turbellaria (0.16, R2= 11–12%; Fig. 4, Table 2,
Supplementary file S1: Figures S5 and S6, Supplementary file S2:
Dataset S3). When covariates were accounted for in the causal
analysis, the causal effect was 0.04 (Fig. 3).

Hypothesis 6: Parasitism
Neodermata had more than twice as long (p < 0.001) branches as

turbellaria (Fig. 2H). As a result, “parasitism” explained ≈ 90–96% of
the branch length variability (Table 2), with a correspondingly large
causal effect (0.95; Fig. 3). However, the phylogram indicated that
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Fig. 2 Statistical comparisons of flatworm mitogenomes. Neodermata (parasites) were grouped in two ways: by taxonomic lineages and
by the thermic type of definitive host (Life history); the corresponding labels are shown beneath the panels, and the parameter
compared is shown on the y-axis. In the ‘longevity’ dataset, all flatworms were grouped into six categories according to their maximum
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Statistically significant (p < 0.05) differences in Tukey HSD comparisons between pairs of groups are indicated by different letters above
the box plots.
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Neodermata had a disproportionately long basal stem, comprising
63.6% of the total average branch length. When we removed it
along with the basal stem of the main clade of turbellaria (as the
latter clade is paraphyletic, the stem branch was not removed for
Catenulida; Fig. 1), turbellaria still had significantly shorter branches,
but the difference was much smaller (2.15 vs. 2.27, p= 0.026). The
difference was largely driven by the long branch of Polyopisthoco-
tylea (p= 0), as other lineages of Neodermata did not have
significantly longer branches than turbellaria (Fig. 2I). We further
attempted to look at a number of different parameters that might
help us distinguish different selection pressures (purifying vs.
directional) from mutation pressure. GC skews were the lowest in
turbellaria, and they exhibited a significant correlation with the
branch length (0.46). Their explanatory power on branch length was
significant but varied strongly across the three datasets: 22–25% in
Platyhelminthes, ≈5% in Neodermata; and 36–41% in turbellaria (Fig.
2J; Fig. 4; Table 2; Supplementary file S1: Figs. S4–S6; Supplementary
file S6; Supplementary file S2: Dataset S3). The purifying selection
was significantly intensified in turbellaria, and relaxed in Neoder-
mata (both p < 0.0001; Kparasitic= 0.90, Knon-parasitic= 1.06). However,
ω values did not vary significantly between the two (Fig. 2B), and
they were a nonsignificant predictor of branch length in

Platyhelminthes and Neodermata (≤4%), but significant in turbellaria
(45–50%). dN exhibited a marginally lower predictive power than dS
on branch length in Platyhelminthes (≈6% vs. ≈8% respectively), but
much higher in Neodermata (≈6% vs. ≈1%) and turbellaria
(≈31–35% vs. <4%) (Table 2; Supplementary file S2: Dataset S3).

DISCUSSION
The impact of the host’s thermic environment on sequence
evolution and mitogenome size of parasites is small and
inconsistent
Similar to the previous observation in nematodes (Lagisz et al.
2013), we found some indications in support of the first working
hypothesis (“functional constraints”), such as higher GC skews and
relaxed purifying selection pressure in parasites of endothermic
hosts, but the effects on branch lengths were minimal and statistical
significance of differences between parameters inconsistent.
Notably, the effect was stronger in parasites with endothermic
intermediate and definitive hosts. As most parasites of endothermic
hosts have life history stages during which they are not confined to
the thermally stable environment of the host, this may limit the
scope of the relaxation of purifying selection pressures.
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In agreement with our predictions, indications in support of the
“race for replication” hypothesis were weak and statistically largely
nonsignificant, and the size range contradicted the predictions of
this hypothesis. In addition, mitogenomes were the largest and size
most variable in non-parasitic species, which we would expect to
have higher metabolic demands compared to parasites due to their
higher locomotory capacity and metabolic requirements (Jakovlić
et al. 2023). Notably, large mitogenomic noncoding regions often
possess repetitive sequences interfering with sequencing and
amplification, so this analysis was highly susceptible to sequencing
artifacts. Finally, parasites of endotherm hosts had a longer average
life span than parasites of ectotherm hosts, which contradicts the
hypothesis of a reduced life span at higher temperatures (Bakke
et al. 2007). These findings contradict the results of (Lagisz et al.
2013), and indicate that putative differences in metabolic rates
between flatworm parasites of endothermic and ectothermic hosts
are either non-existent or insufficiently pronounced to have a
significant impact on branch length and mitogenome size.
Additional discussion in Supplementary file S1: Text S4.

Mitogenomic architecture rearrangements are positively
correlated with mitogenomic size in flatworms
We found relatively consistent support for this hypothesis in
Platyhelminthes and Neodermata, but not in turbellaria. Notably,
the latter analysis was weakened by a comparatively small number
of samples. In Nematoda, exceptionally large mitogenomes are
commonly associated with a hypervariable structure (Hyman et al.
2011; Zou et al. 2022b), and a study found that compact
mitogenomes were more structurally stable in nematodes (Lagisz
et al. 2013). However, this is not a rule, as a recent study found
that a lineage of enoplean nematodes, Longidoridae, exhibits
exceptionally small mitogenomes with rapidly evolving gene
order rearrangements (Zou et al. 2022a). A potential explanation
for this inconsistency is that some mitogenomic rearrangement
mechanisms may not produce sequence duplications (Lunt and
Hyman 1997), and that ancient rearrangements may have a
negligible impact on the mitogenome size: if mitogenomes are
evolving under pressure for a smaller size, purifying selection may
eventually remove all non-functional remnants of ancient
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duplications. This would imply the existence of a correlation at
small evolutionary scales and the absence at large scales across
bilaterian animals, but patterns discussed above contradict this,
with correlation apparently breaking down in isolated lineages at
smaller phylogenetic scales. This hypothesis requires further
testing.

The long stem branch of Neodermata affects the relationships
between sequence evolution, GORR, and longevity
We found strong support for the hypothesis that parasitic lineages
evolve faster in flatworms. The difference was striking, as
Neodermata exhibited more than twice longer branches than
“turbellaria”, which was reflected in a huge predictive power of the
categorisation into parasitic and non-parasitic lineages. However,
this difference was mostly caused by the exceptionally long stem
branch of Neodermata, which prevents us from excluding factors
other than nominal parasitism as the major drivers of elevated
evolutionary rates of Neodermata. As parasitic flatworm lineages
included in our study were monophyletic, we removed the basal
stem, re-conducted the analyses, and found that Polyopisthoco-
tylea was the only neodermatan lineage exhibiting significantly
longer branches than turbellaria. Notably, this lineage also exhibits
a disproportionately elongated stem branch in mitogenomic
phylogenies (Zhang et al. 2024). Under the hypothesis that the
common ancestor of Neodermata appeared ≈513 million years
ago (Perkins 2010), this would imply that the ancestral lineage of
contemporary Neodermata underwent a period of highly elevated
evolutionary rates in the period following the “Cambrian
explosion”. Phylogenies inferred using nuclear genomic data also
produced a relatively long stem branch (albeit not as extreme),
especially when the CAT-GTR model was applied (Brabec et al.
2023). This discrepancy in the ratio of stem branch to the total
branch length between mtDNA and nDNA data could be an
artefact caused by the absence of Bothrioplanidae, the most likely
sister group to Neodermata (Laumer and Giribet 2014; Brabec
et al. 2023), from our dataset. This was likely to result in the
overestimation of the stem branch length inferred using
mitogenomic data, so an improved turbellarian sampling might
produce more congruent results between the two genomic
compartments. Despite the discrepancy, both genomic compart-
ments indicate that the transition to obligatory parasitism in the
ancestral Neodermata lineage was putatively marked by a long
period of high extinction rates, selective sweeps, and population
bottlenecks, but this hypothesis needs to be further confirmed
using nuclear genomic data.
This scenario might also explain the apparent negative correlation

between sequence evolution and gene order rearrangements across
the Platyhelminthes. The absence of similarity between the ancestral
gene order for Neodermata (Zhang et al. 2019) and gene
arrangements of both turbellaria (Solà et al. 2015) and the ancestral
gene order of Lophotrochozoa (Podsiadlowski et al. 2009) indicates
that the ancestral neodermatans simultaneously underwent a period
of elevated architecture and sequence evolution rates. Following this
birthing period marked by high evolutionary rates, Neodermata
subsequently underwent a remarkably successful radiation into a
huge lineage of obligate parasites of practically all vertebrates and
many invertebrates (Poulin and Morand 2000; Hahn et al. 2014). If
this was reflected in strongly increasing population sizes, it might
explain the reestablishment of stringent purifying selection pressures,
thus slowing down the sequence evolution and largely restabilising
the mitogenomic architecture. This is in agreement with the
observation in spirurine nematodes, where sequence and architec-
ture evolution also exhibit episodic but synchronised evolutionary
patterns (Zou et al. 2022b). This episodic evolution generated a
pattern wherein Neodermata exhibit the fastest sequence evolution
rates among all bilaterian lineages (Jakovlić et al. 2023), while their
mitogenomic architecture remained largely unchanged over hun-
dreds of millions of years (Zhang et al. 2019). As the lineages of free-

living turbellaria continued undergoing occasional architectural
rearrangements (Solà et al. 2015; Rosa et al. 2017), this resulted in
comparatively highly rearranged and large mitogenomes. Due to
their short branches, this caused an inversed relationship between
gene order rearrangement rates and branch length across the
Platyhelminthes. Indeed, a positive correlation between these two
parameters emerged within Neodermata and turbellaria when we
analysed them separately, indicating that purifying selection
pressures probably do play a major role in the evolutionary dynamics
of these two variables, but stochastic and episodic nature of
rearrangement events can disrupt their correlation in some cases.
Similarly, the long stem branch may also explain the absence of

the explanatory power of longevity at the Platyhelminthes level. As
most mutations in the dataset map to the ancestral neodermatans
of unknown longevity, this may have strongly reduced the
predictive power of this variable. In addition, generation time might
be decoupled from longevity in flatworms, thus further confounding
the correlation between longevity and sequence evolution (see
Supplementary file S1: Text S5 for additional discussion).
In addition, if the ancestral Neodermata lineage underwent a

long evolutionary period of extreme bottlenecks and/or selective
sweeps during the transition from nonparasitic to parasitic life
history strategies, followed by a strong subsequent increase in the
effective population size (Ne) this may have decoupled this
variable from the overall branch length. This indicates that our
analyses may have overestimated the impact of parasitism, and
underestimated the impact of Ne (or some other variable not
tested herein) on mitogenomic sequence evolution. We
attempted to test the impact of Ne, but due to several sources
of noise, the results were deemed insufficiently reliable to be
included in the main study (see Supplementary file S1: Text S6).

CONCLUSIONS
There are multiple limitations of our study, including the limited
scope of a single phylum, relatively poor coverage of turbellarian
lineages, difficulties in the inference of ancestral mitogenomic
architecture for Platyhelminthes, and the absence of several
variables previously associated with mitogenomic evolution, such
as Ne, locomotory capacity, generation time, the number of germ-
line divisions per generation, etc. (Thomas et al. 2006; Saclier et al.
2018; Jakovlić et al. 2023). With these limitations in mind, our
results offer a promising explanation for the reasons underlying
the recognized difficulties in the prediction of patterns of
mitogenomic evolution (Bazin et al. 2006; Thomas et al. 2006;
Nabholz et al. 2008b; Allio et al. 2017; Jakovlić et al. 2021). The fact
that a large proportion of substitutions in the mitogenomes of
Neodermata was accumulated early in the evolutionary history of
Neodermata strongly confounded our attempts to parse the
impacts of different variables on mitogenomic evolution. In
addition, we show that the impacts of many variables often
strongly vary across different lineages, which may also help
explain inconsistent results across different studies. We outlined a
scenario that explains how episodic evolutionary patterns deep in
the evolutionary history of Neodermata may have produced
contradictory patterns across different flatworm lineages, as well
as reduced the predictive power of some variables and over-
estimated the impact of parasitism on the evolutionary rate. In
addition, the volatility of correlations and predictive powers of
variables across different datasets make us suspect that
pronounced differences in average branch lengths and other
parameters between lineages may have resulted in numerous
statistical flukes, comprising both type 1 and 2 errors. This stresses
the importance of thorough testing of the robustness of statistical
significance findings in such studies. Finally, the results also
highlight the importance of accounting for the episodic nature of
evolutionary patterns (Gillespie 1984) and relying on comprehen-
sive approaches in studies of mitogenomic evolution.
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Data archiving
All relevant data are included within the manuscript and its
supplementary files. GenBank Accession Numbers for all mito-
genomes used in the analyses are available in Supplementary file
S2: Dataset S1 (Column “ID”).
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