Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal stability of sex ratio distorter prevalence in natural populations of the isopod Armadillidium vulgare

Abstract

In the terrestrial isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios due to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and a nuclear non-mendelian locus called the f element. To investigate the potential impact of these SRD on the evolution of host sex determination, we analyzed their temporal distribution in six A. vulgare populations sampled between 2003 and 2017, for a total of 29 time points. SRD distribution was heterogeneous among populations despite their close geographic locations, so that when one SRD was frequent in a population, the other SRD was rare. In contrast with spatial heterogeneity, our results overall did not reveal substantial temporal variability in SRD prevalence within populations, suggesting equilibria in SRD evolutionary dynamics may have been reached or nearly so. Temporal stability was also generally reflected in mitochondrial and nuclear variation. Nevertheless, in a population, a Wolbachia strain replacement coincided with changes in mitochondrial composition but no change in nuclear composition, thus constituting a typical example of mitochondrial sweep caused by endosymbiont rise in frequency. Rare incongruence between Wolbachia strains and mitochondrial haplotypes suggested the occurrence of intraspecific horizontal transmission, making it a biologically relevant parameter for Wolbachia evolutionary dynamics in A. vulgare. Overall, our results provide an empirical basis for future studies on SRD evolutionary dynamics in the context of multiple sex determination factors co-existing within a single species, to ultimately evaluate the impact of SRD on the evolution of host sex determination mechanisms and sex chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic location of the six Armadillidium vulgare populations analyzed in this study.
Fig. 2: Prevalence of Wolbachia and the f element in six Armadillidium vulgare populations sampled at different time points.
Fig. 3: Mitochondrial haplotype network of six Armadillidium vulgare populations sampled at different time points.
Fig. 4: Mitochondrial haplotype counts across years for three Armadillidium vulgare populations.
Fig. 5: Structure analysis of six Armadillidiium vulgare populations sampled at different time points.
Fig. 6: Discriminant Analysis of Principal Components scatterplot.

Similar content being viewed by others

Data availability

Mitotypes are available in GenBank under accession numbers OR074129 to OR074131. All other data are provided in the supplementary information.

References

  • Badawi M, Giraud I, Vavre F, Grève P, Cordaux R (2014) Signs of neutralization in a redundant gene involved in homologous recombination in Wolbachia endosymbionts. Genome Biol Evol 6:2654–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becking T, Chebbi MA, Giraud I, Moumen B, Laverré T, Caubet Y et al. (2019) Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod. PLOS Biol 17:e3000438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becking T, Giraud I, Raimond M, Moumen B, Chandler C, Cordaux R et al. (2017) Diversity and evolution of sex determination systems in terrestrial isopods. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  • Beukeboom LW, Perrin N (2014) The evolution of sex determination. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bolker BM (2008) Ecological models and data in R. Princeton University Press: Princeton and Oxford.

  • Bouchon D, Rigaud T, Juchault P (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc Biol Sci 265:1081–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braig HR, Zhou WG, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2373–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burt A, Trivers R (2006) Genes in conflict. The Belknap Press of Harvard University Press: Cambridge, Massachusetts.

  • Carrington LB, Lipkowitz JR, Hoffmann AA, Turelli M (2011) A re-examination of Wolbachia-induced cytoplasmic incompatibility in California Drosophila simulans. PloS One 6:e22565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlat S, Hornett EA, Fullard JH, Davies N, Roderick GK, Wedell N et al. (2007) Extraordinary flux in sex ratio. Science 317:214

    Article  CAS  PubMed  Google Scholar 

  • Chebbi MA, Becking T, Moumen B, Giraud I, Gilbert C, Peccoud J et al. (2019) The genome of armadillidium vulgare (Crustacea, Isopoda) provides insights into sex chromosome evolution in the context of cytoplasmic sex determination. Mol Biol Evol 36:727–741

    Article  CAS  PubMed  Google Scholar 

  • Cordaux R, Bouchon D, Greve P (2011) The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends Genet 27:332–341

    Article  CAS  PubMed  Google Scholar 

  • Cordaux R, Chebbi MA, Giraud I, Pleydell DRJ, Peccoud J (2021) Characterization of a sex-determining region and its genomic context via statistical estimates of haplotype frequencies in daughters and sons sequenced in pools. Genome Biol Evol 13:evab121

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordaux R, Gilbert C (2017) Evolutionary significance of wolbachia-to-animal horizontal gene transfer: female sex determination and the f element in the isopod armadillidium vulgare. Genes 8:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordaux R, Michel Salzat A, Bouchon D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14:237–243

    Article  CAS  Google Scholar 

  • Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D (2004) Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity 93:78–84

    Article  CAS  PubMed  Google Scholar 

  • Cordaux R, Pichon S, Hatira HB, Doublet V, Greve P, Marcade I et al. (2012) Widespread Wolbachia infection in terrestrial isopods and other crustaceans. Zookeys 176:123–131

    Article  Google Scholar 

  • Crawley MJ (2012) The R book. John Wiley & Sons, Ltd: Chichester.

  • Dąbrowski MJ, Pilot M, Kruczyk M, Żmihorski M, Umer HM, Gliwicz J (2014) Reliability assessment of null allele detection: inconsistencies between and within different methods. Mol Ecol Resour 14:361–373

    Article  PubMed  Google Scholar 

  • Durand S, Cohas A, Braquart-Varnier C, Beltran-Bech S (2017) Paternity success depends on male genetic characteristics in the terrestrial isopod Armadillidium vulgare. Behav Ecol Sociobiol 71:90

    Article  Google Scholar 

  • Durand S, Grandjean F, Giraud I, Cordaux R, Beltran-Bech S, Bech N (2019) Fine-scale population structure analysis in Armadillidium vulgare (Isopoda: Oniscidea) reveals strong female philopatry. Acta Oecol 101

  • Durand S, Lheraud B, Giraud I, Bech N, Grandjean F, Rigaud T et al. (2023) Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare. Biol Lett 19:20220457

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    Article  CAS  PubMed  Google Scholar 

  • Giraud I, Valette V, Bech N, Grandjean F, Cordaux R (2013) Isolation and characterization of microsatellite loci for the isopod crustacean Armadillidium vulgare and transferability in terrestrial isopods. Plos One 8:e76639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudet (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hassan SSM, Idris E, Majerus MEN (2013) Male-killer dynamics in the tropical butterfly acraea encedon (Lepidoptera: Nymphalidae). Afr Entomol 21:209–214

    Article  Google Scholar 

  • Hatcher MJ (2000) Persistence of selfish genetic elements: population structure and conflict. Trends Ecol Evol 15:271–277

    Article  CAS  PubMed  Google Scholar 

  • Heath BD, Butcher RDJ, Whitfield WGF, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9:313–316

    Article  CAS  PubMed  Google Scholar 

  • Helleu Q, Courret C, Ogereau D, Burnham KL, Chaminade N, Chakir M et al. (2019) Sex-ratio meiotic drive shapes the evolution of the Y chromosome in drosophila simulans. Mol Biol Evol 36:2668–2681

    Article  CAS  PubMed  Google Scholar 

  • Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE et al. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    Article  CAS  PubMed  Google Scholar 

  • Hornett EA, Charlat S, Wedell N, Jiggins CD, Hurst GDD (2009) Rapidly shifting sex ratio across a species range. Curr Biol CB 19:1628–1631

    Article  CAS  PubMed  Google Scholar 

  • Hurst GDD, Frost CL (2015) Reproductive parasitism: maternally inherited symbionts in a biparental world. Cold Spring Harb Perspect Biol 7:a017699

    Article  PubMed  PubMed Central  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Juchault P, Legrand JJ (1972) Croisement de néo-mâles experimentaux chez Armadillidium vulgare Latr. (Crustace, Isopode, Oniscoide). Mise en evidence d’une hétérogamétie femelle. C R Acad Sci Paris 274:1387–1389

    Google Scholar 

  • Juchault P, Mocquard JP (1993) Transfer of a parasitic sex factor to the nuclear genome of the host: A hypothesis on the evolution of sex-determining mechanisms in the terrestrial isopod Armadillidium vulgare Latr. J Evol Biol 6:511–528

    Article  Google Scholar 

  • Juchault P, Rigaud T (1995) Evidence for female heterogamety in two terrestrial crustaceans and the problem of sex chromosome evolution in isopods. Heredity 75:466–471

    Article  Google Scholar 

  • Juchault P, Rigaud T, Mocquard J-P (1992) Evolution of sex-determining mechanisms in a wild population of Armadillidium vulgare Latr. (Crustacea, Isopod): competition between two feminizing parasitic sex factors. Heredity 69:382–390

    Article  Google Scholar 

  • Juchault P, Rigaud T, Mocquard J-P (1993) Evolution of sex determination and sex ratio variability in wild populations of Armadillidium vulgare (Latr.) (Crustacea, Isopoda): a case study in conflict resolution. Acta Oecologica 14:547–562

    Google Scholar 

  • Kageyama D, Narita S, Konagaya T, Miyata MN, Abe J, Mitsuhashi W, et al. (2020) Persistence of a Wolbachia-driven sex ratio bias in an island population of Eurema butterflies. 2020.03.24.005017

  • Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V et al. (2021) Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29:879–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX et al. (1989) Dynamics of mitochondrial-DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Clec’h W, Chevalier FD, Genty L, Bertaux J, Bouchon D, Sicard M (2013) Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PLoS One 8:e60232

    Article  PubMed  PubMed Central  Google Scholar 

  • Leclercq SB, Thézé J, Chebbi MA, Giraud I, Moumen B, Ernenwein L et al. (2016) Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome. Proc Natl Acad Sci USA 113:15036–15041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrand JJ, Juchault P (1984) Nouvelles données sur le déterminisme génétique et épigénétique de la monogénie chez le crustacés isopodes terrestres Armadillidium vulgare Latr. Génét Sél Evol 16:57–84

    Article  CAS  Google Scholar 

  • Martin G, Juchault P, Legrand JJ (1973) Mise en évidence d’un micro-organisme intracytoplasmique symbiote de l’Oniscoide Armadillidium vulgare L. dont la présence accompagne l’intersexualité ou la féminisation totale des mâles génétiques de la lignée thélygène. Comptes Rendus Académie Sci Paris 276:2313–2316

    Google Scholar 

  • Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846

    Article  PubMed  Google Scholar 

  • Miyata M, Nomura M, Kageyama D (2024) Rapid spread of a vertically transmitted symbiont induces drastic shifts in butterfly sex ratio. Curr Biol 34:R490–R492

    Article  CAS  PubMed  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) genalex 6: genetic analysis in Excel. Popul Genet Softw Teach Res Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945

    Article  CAS  PubMed  Google Scholar 

  • Rigaud T (1997) Inherited microorganisms and sex determination of arthropod hosts. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction, Oxford Univ. Press: Oxford, pp 81–101

  • Rigaud T, Juchault P (1993) Conflict between feminizing sex ratio distorters and an autosomal masculinizing gene in the terrestrial isopod Armadillidium vulgare Latr. Genetics 133:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigaud T, Juchault P (1995) Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. J Evol Biol 8:249–255

    Article  Google Scholar 

  • Rigaud T, Juchault P, Mocquard JP (1997) The evolution of sex determination in isopods crustaceans. Bioessays 19:409–416

    Article  Google Scholar 

  • Rigaud T, Moreau M (2004) A cost of Wolbachia-induced sex reversal and female-biased sex ratios: decrease in female fertility after sperm depletion in a terrestrial isopod. Proc R Soc B-Biol Sci 271:1941–1946

    Article  Google Scholar 

  • Rigaud T, Souty Grosset C, Raimond R, Mocquard JP, Juchault P (1991) Feminizing endocytobiosis in the terrestrial crustacean Armadillidium vulgare Latr. (Isopoda): recent acquisitions. Endocytobiosis Cell Res 7:259–273

    Google Scholar 

  • Rosenberg NA (2003) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Russell A, Borrelli S, Fontana R, Laricchiuta J, Pascar J, Becking T et al. (2021) Evolutionary transition to XY sex chromosomes associated with Y-linked duplication of a male hormone gene in a terrestrial isopod. Heredity 127:266–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DR (1990) Evolutionary consequences of cytoplasmic sex ratio distorters. Evol Ecol 4:235–248

    Article  Google Scholar 

  • Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Verne S, Johnson M, Bouchon D, Grandjean F (2007) Evidence for recombination between feminizing Wolbachia in the isopod genus Armadillidium. Gene 397:58–66

    Article  CAS  PubMed  Google Scholar 

  • Verne S, Johnson M, Bouchon D, Grandjean F (2012) Effects of parasitic sex-ratio distorters on host genetic structure in the Armadillidium vulgare-Wolbachia association. J Evol Biol 25:264–276

    Article  CAS  PubMed  Google Scholar 

  • Verne S, Puillandre N, Brunet G, Gouin N, Samollow PB, Anderson JD et al. (2006) Characterization of polymorphic microsatellite loci in the terrestrial isopod Armadillidium vulgare. Mol Ecol Notes 6:328–330

    Article  CAS  Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:e114

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci USA 108(2):10863–10870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci 261:55–63

    Article  CAS  PubMed  Google Scholar 

  • Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. (2020) ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://ggplot2.tidyverse.org/index.html

Download references

Acknowledgements

We thank Sébastien Verne and Victorien Valette for assistance with sample collection. This work was funded by Agence Nationale de la Recherche Grants ANR-15-CE32-0006 (CytoSexDet) to RC and TR, and ANR-20-CE02-0004 (SymChroSex) to JP, and intramural funds from the CNRS and the University of Poitiers.

Author information

Authors and Affiliations

Authors

Contributions

RC, JP and TR designed the experiments. FG, NB and JP sampled populations. SD, IG and AL performed laboratory work. SD, RP and NB performed data analyses. RC and SD wrote the first draft of the manuscript. TR, JP, NB, RP and FG amended the manuscript.

Corresponding author

Correspondence to Richard Cordaux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

No specific permission was required for sampling the populations from Beauvoir, Chizé, Gript and La Crèche because they were located in public areas. Populations from Coulombiers and Poitiers were sampled on private lands after the land owners gave permission to conduct sampling on the sites.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Louise Johnson

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand, S., Pigeault, R., Giraud, I. et al. Temporal stability of sex ratio distorter prevalence in natural populations of the isopod Armadillidium vulgare. Heredity 133, 287–297 (2024). https://doi.org/10.1038/s41437-024-00713-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41437-024-00713-1

Search

Quick links