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Temporal stability of sex ratio distorter prevalence in natural
populations of the isopod Armadillidium vulgare
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In the terrestrial isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios due to two
feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and a nuclear non-mendelian locus called the f element. To
investigate the potential impact of these SRD on the evolution of host sex determination, we analyzed their temporal distribution in
six A. vulgare populations sampled between 2003 and 2017, for a total of 29 time points. SRD distribution was heterogeneous
among populations despite their close geographic locations, so that when one SRD was frequent in a population, the other SRD
was rare. In contrast with spatial heterogeneity, our results overall did not reveal substantial temporal variability in SRD prevalence
within populations, suggesting equilibria in SRD evolutionary dynamics may have been reached or nearly so. Temporal stability was
also generally reflected in mitochondrial and nuclear variation. Nevertheless, in a population, a Wolbachia strain replacement
coincided with changes in mitochondrial composition but no change in nuclear composition, thus constituting a typical example of
mitochondrial sweep caused by endosymbiont rise in frequency. Rare incongruence between Wolbachia strains and mitochondrial
haplotypes suggested the occurrence of intraspecific horizontal transmission, making it a biologically relevant parameter for
Wolbachia evolutionary dynamics in A. vulgare. Overall, our results provide an empirical basis for future studies on SRD evolutionary
dynamics in the context of multiple sex determination factors co-existing within a single species, to ultimately evaluate the impact
of SRD on the evolution of host sex determination mechanisms and sex chromosomes.
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INTRODUCTION
Sex ratio distorters (SRD) are selfish genetic elements located on
sex chromosomes or transmitted by a single sex, which skew the
proportion of males and females in progenies towards the sex that
enhances their own vertical transmission (Beukeboom and Perrin
2014). They are found in a wide range of animal and plant species,
of which they tremendously impact the ecology and evolution
(Burt and Trivers 2006; Werren 2011). SRD are sources of genetic
conflicts because they increase their own transmission at the
expense of other genetic elements of the genome (Burt and
Trivers 2006; Werren 2011; Beukeboom and Perrin 2014). Genetic
variants are therefore selected if they mitigate the fitness costs
inflicted by SRD. Hence, female-biased sex ratios impose strong
selective pressure, known as sex ratio selection, favouring
genotypes producing more individuals of the under-represented
sex (i.e., males) and ultimately restoring Fisherian (i.e., balanced)
sex ratios. Thus, SRD may promote the evolution of host sex
determination mechanisms (Burt and Trivers 2006; Werren 2011;
Cordaux et al. 2011; Beukeboom and Perrin 2014).
SRD are particularly well documented in arthropods, among

which is the emblematic bacterial endosymbiont Wolbachia
(Werren et al. 2008; Kaur et al. 2021). Wolbachia is a cytoplasmic,
maternally inherited alpha-proteobacterium that often acts as a

reproductive parasite by manipulating host reproduction in favor
of infected females, thereby conferring itself a transmission
advantage. In particular, Wolbachia has evolved the ability to
induce female-biased sex ratios in host progenies through male
killing, thelytokous (i.e., all female-producing) parthenogenesis
and feminization (Werren et al. 2008; Cordaux et al. 2011; Hurst
and Frost 2015; Kaur et al. 2021).
Feminization, causing infected (and non-transmitting) genetic

males to develop into (transmitting) phenotypic females, is mostly
documented in terrestrial isopods (Martin et al. 1973). In the well-
studied Armadillidium vulgare, chromosomal sex determination
follows female heterogamety (ZZ males and ZW females) (Juchault
and Legrand 1972; Chebbi et al. 2019; Cordaux et al. 2021). In
some A. vulgare populations, sex ratio is biased by Wolbachia
bacteria or by a nuclear locus called the f element (Rigaud et al.
1997; Cordaux et al. 2011; Cordaux and Gilbert 2017). Three
Wolbachia strains are known to naturally occur in A. vulgare:
wVulC, wVulM and wVulP (Rigaud et al. 1991; Cordaux et al. 2004;
Verne et al. 2007). The f element results from the horizontal
transfer of a large portion of a feminizing Wolbachia genome in
the A. vulgare genome (Leclercq et al. 2016). The f element
induces female development, as a W chromosome does, and it
shows non-Mendelian inheritance, making it an SRD (Legrand and
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Juchault 1984; Leclercq et al. 2016). In this species, sex ratio
selection has resulted in the evolution of a masculinizing allele
restoring balanced sex ratios, hence conferring resistance to
feminization (Rigaud and Juchault 1993). This nuclear locus
represents a new male sex-determining locus, thereby effectively
establishing a new male heterogametic system XY/XX. Thus,
multiple sex determination factors co-exist in A. vulgare, ultimately
caused by feminizing SRD (Juchault and Mocquard 1993; Cordaux
and Gilbert 2017). Given the widespread distribution of Wolbachia
infection in terrestrial isopods (Bouchon et al. 1998; Cordaux et al.
2012), it has been suggested that SRD may have contributed to
the frequent turnovers of sex chromosomes recorded in this clade
(Juchault and Mocquard 1993; Juchault and Rigaud 1995; Becking
et al. 2017, 2019; Russell et al. 2021).
To elucidate the potential impact of SRD on the evolution of sex

determination in terrestrial isopods, it is essential to clarify the
intraspecific evolutionary dynamics of SRD such as Wolbachia and
the f element. Previous studies have shown that: (i) Wolbachia and
the f element are present at variable frequencies in A. vulgare
populations, (ii) the f element is overall more frequent than
Wolbachia, (iii) the two SRD usually do not co-occur at high
frequency in populations, and (iv) mitochondrial haplotypes
(mitotypes) are tightly linked to Wolbachia strains (suggesting
stable maternal transmission), but not to the f element (Juchault
et al. 1993; Durand et al. 2023). These results have provided
insights into the spatial distribution of Wolbachia and the f
element in A. vulgare; in the present study, we investigate their
temporal dynamics.
Prior studies on endosymbiont temporal dynamics have

shown that host population invasions can occur within just a
few years, e.g., Wolbachia in Drosophila simulans (Turelli and
Hoffmann 1991) and Eurema hecabe (Miyata et al. 2024), and
Rickettsia in Bemisia tabaci (Himler et al. 2011). Likewise, nuclear
suppressors of SRD can rise in frequency very quickly, e.g.,
Wolbachia suppressor in Hypolimna bolina (Charlat et al. 2007).
Similar patterns of rapid spread and evolution of resistance have
been reported for a nuclear SRD, Paris Sex Ratio, in D. simulans
(Helleu et al. 2019). Endosymbiont temporal dynamics has
seldom been studied on a longer time scale. Comparison of
historical (i.e., museum) and contemporary sympatric popula-
tions of H. bolina highlighted fluctuations of Wolbachia
frequency over periods of 73–123 years (Hornett et al. 2009).
However, at an intermediate time scale (10–20 years), Wolbachia
was found to decrease in frequency in Acraea encedon (Hassan

et al. 2013), while it was stably maintained in Eurema mandarina
(Kageyama et al. 2020) and D. simulans (Weeks et al. 2007;
Carrington et al. 2011). In the case of A. vulgare, SRD temporal
dynamics has previously been tackled by a single study (Juchault
et al. 1992), in which Wolbachia prevalence was found to
decrease concomitantly to an increase of f element prevalence
in an A. vulgare population from Niort (western France) sampled
at three time points over a period of 23 years (1963, 1973 and
1986). However, a single population was included in the study,
thus limiting the breadth of its conclusions. Here we report an
analysis of Wolbachia and f element distribution in six A. vulgare
populations sampled each up to six times over up to 12 years,
representing a total of 889 individuals from 29 time points. The
studied populations were sampled in a narrow geographic area
in western France, within 70 km of the Niort population
(Juchault et al. 1992), to control for spatial dynamics. In contrast
to most previous studies, here we analyzed SRD in the context of
both mitochondrial and nuclear variation. Our results highlight
an overall temporal stability of SRD distribution in A. vulgare,
with few exceptions.

MATERIALS AND METHODS
A total of 889 A. vulgare individuals were analyzed, from six natural
populations sampled in western France between 2003 and 2017 (Fig. 1).
DNA samples from Beauvoir-2017, Chizé-2017, Coulombiers-2017, Gript-
2017, La Crèche-2017 and Poitiers-2015 were available from Durand et al.
(2023). All other individuals were collected by hand. Sex ratios in sampled
individuals should not be considered as reflecting those of populations,
due to possible selection biases by samplers. Individuals were sexed and
stored in alcohol or at −20 °C prior to DNA extraction. Total genomic DNA
of samples collected between 2003 and 2013 was extracted from gonads
using phenol and chloroform (Kocher et al. 1989) and DNA of samples
collected between 2014 and 2016 was extracted from the head and legs,
as described previously (Leclercq et al. 2016).
Four molecular markers were used to assess the presence of Wolbachia

and the f element in DNA extracts: Jtel (Leclercq et al. 2016), wsp (Braig
et al. 1998), recR (Badawi et al. 2014) and ftsZ (Werren et al. 1995) (Table
S1). While Jtel is specific to the f element, wsp and recR are specific to
Wolbachia, and ftsZ is present in both the f element and Wolbachia
(Leclercq et al. 2016). The presence or absence of these markers was
assessed by PCR assays, as described previously (Leclercq et al. 2016).
Different amplification patterns were expected for individuals with
Wolbachia only (Jtel-, wsp+ , recR+ , ftsZ+ ), the f element only (Jtel+ ,
wsp-, recR-, ftsZ+ ), both Wolbachia and the f element present (Jtel+ ,
wsp+ , recR+ , ftsZ+ ) or both Wolbachia and the f element lacking (Jtel-,

Fig. 1 Geographic location of the six Armadillidium vulgare populations analyzed in this study.Map of France (left) showing the location of
the six populations analyzed in this study and zoom on the relevant geographic area (right), indicating the relative positions and distances in
kilometers (km) between populations.
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wsp-, recR-, ftsZ-). The few individuals exhibiting other amplification
patterns were classified as “undetermined status”.
To characterize Wolbachia strain diversity, wsp PCR products were

purified and Sanger sequenced using both forward and reverse primers by
GenoScreen (Lille, France). Sequences from forward and reverse reads were
assembled using Geneious v.7.1.9 to obtain one consensus sequence per
individual.
To evaluate mitochondrial diversity, a ~ 700 bp-long portion of the

Cytochrome Oxidase I (COI) gene was amplified by PCR in all individuals
(Folmer et al. 1994) (Table S1). PCR products were purified and Sanger
sequenced as described above. Mitotype networks were built using the
pegas package for R (Paradis 2010).
To evaluate nuclear diversity, all individuals were genotyped at 22

microsatellite markers (Verne et al. 2006; Giraud et al. 2013) distributed in
five multiplexes (Multiplex 1: Av1, Av2, Av4, Av5, Av9; Multiplex 2: Av6, Av3,
Av8; Multiplex 3: AV0023, AV0056, AV0085, AV0086, AV0096; Multiplex 4:
AV0002, AV0016, AV0018, AV0032, AV0099; Multiplex 5: AV0061, AV0063,
AV0089, AV0128) (Table S2). PCR was performed using fluorescence-
marked forward primers, as described previously (Durand et al. 2017). PCR
fragments were separated by electrophoresis on an ABI 3730XL automated
sequencer by Genoscreen (Lille, France). Alleles were scored using the
software GeneMapper 3.7 (Applied Biosystems), each genotype being
independently read by two people.
Of the 22 amplified microsatellite markers, Av4 and Av5 could not be

scored because of multiple peaks, AV0096 and AV0128 did not amplify
consistently, and AV0023 and AV0061 were monomorphic across the
dataset. The Genepop package for R (Rousset 2008) detected no linkage
disequilibrium between the 16 remaining loci. The presence of null alleles
was tested by using a combination of software, as recommended
previously (Dąbrowski et al. 2014): Micro-Checker (Van Oosterhout et al.
2004), Cervus (Kalinowski et al. 2007) and ML-NullFreq (Kalinowski and
Taper 2006). As a result, AV0099 was discarded because it consistently
presented hints of null alleles in many populations and sampling years.
Individuals whose genotypes were available for fewer than 13 out of the 15
remaining markers were removed from the following analyses.
Hardy–Weinberg equilibrium was tested for each locus, locality and

sampling year with an exact test using Markov chain with the Genepop
package for R. The Fstat software v. 2.9.3.2 (Goudet 2001) was used to
calculate allelic richness and heterozygosity (based on a minimum of 3
individuals). Genetic differentiation was estimated by computing Fst values
for all pairs of populations (Weir and Cockerham 1984) with Fstat.
Significance was calculated using global tests implemented in Fstat with a
level of significance adjusted for multiple tests using the standard
Bonferroni correction. The longitudes and latitudes of the populations
were used to calculate Euclidean distances between populations and to
test for isolation by distance by correlating these geographical distances
with the genetic distances. Significance of the correlation was tested at
individual scale by using a Mantel test (with 9999 permutations)
implemented in GENALEX v 6.2 (Peakall and Smouse 2006). Genetic
clusters were also delineated without a priori with a Bayesian, individual-
based approach implemented in the software Structure (Pritchard et al.
2000). The admixture model was selected, as well as the option of
correlated allele frequencies. The number of clusters (K) varied from 2 to 9.
For each value of K, 20 independent runs were carried out, as
recommended in Evanno et al. (2005), with a total number of 100,000
iterations and a burn-in of 10,000. To determine the most likely value of K,
the method described in Evanno et al. (2005) was applied as implemented
in Structure Harvester version 0.6.9 (Earl and vonHoldt 2012). In addition, a
Discriminant Analysis of Principal Components (DAPC) (Jombart et al. 2010)
was performed on populations according to their sampling locality and
year with the adegenet package (Jombart 2008), to search for potential
discrepancies across time points within populations.
Statistical analyses were carried out using the R software (v.4.2.1). The

influence of sex, and population if appropriate, on SRD prevalence was
analyzed using general linear models with a binomial error distribution.
Maximal models, including all higher order interactions, were simplified by
sequentially eliminating non-significant terms and interactions to establish
a minimal model (Crawley 2012). The significance of the explanatory
variables was established using a likelihood ratio test, which is
approximately distributed as a Chi-square distribution (Bolker 2008). The
significant Chi-squared values given in the text are for the minimal model,
whereas non-significant values correspond to those obtained before the
deletion of the variable from the model. Chi-square tests were used to
compare the frequency of individuals infected by Wolbachia and the
frequency of individuals carrying the f-element in the different

populations. Figures were realized with ggplot2 (Wickham et al. 2020).
Results from Structure were processed with the program Distruct
(Rosenberg 2003) for graphical representation.

RESULTS
We tested the presence of Wolbachia and the f element in 889
individuals (627 females and 262 males) from six populations
sampled at various time points between 2003 and 2017,
representing a total of 29 sampling points (Tables 1 and S3).
Among the 889 analyzed individuals, we failed to determine the
status of 29 individuals. Of the remaining 860 individuals, 29.9%
carried only the f element, 15.2% carried only Wolbachia, 0.6%
carried both SRD and 54.3% carried none. Although sometimes
present in males, both SRD were significantly more frequent in
females than in males (Wolbachia: χ²= 73.59, p < 0.0001; f
element: χ²= 41.03, p < 0.0001, Tables 1 and S3). Wolbachia-
infected individuals carried one of the three previously known
Wolbachia strains of A. vulgare: wVulC (n= 22), wVulM (n= 25) or
wVulP (n= 83).
Overall, both SRD were found at least at one time point in all six

populations (Fig. 2). However, the populations displayed sub-
stantial variation in the distribution of the two SRD. In Beauvoir,
Chizé, Coulombiers and La Crèche populations, the f element was
significantly more predominant (29–86% frequency) than Wolba-
chia (2–10%) (χ² > 36.91 and p < 10−9 in all four populations).
Conversely, Wolbachia was significantly more frequent (63%) than
the f element (2%) in Poitiers (χ² > 135.32, p < 10−16). Finally, both
SRD were very rare in Gript (2–3%) and did not differ in
frequencies (χ²= 0.10, p= 0.748). Remarkably, f element preva-
lence did not differ significantly across time points (spanning up
to 12 years) in all four populations in which it was predominant
(χ²= 0.002, p= 0.968), although f element prevalence was
significantly different among populations (χ²= 62.55, p < 0.0001).
In these populations, f element prevalence was significantly higher
in females than in males (χ²= 61.87, p < 0.0001) (Fig. 2). In Poitiers,
where Wolbachia remained globally frequent over time, females
were also significantly more infected than males (χ²= 106.06,
p < 0.0001). Interestingly, the frequency of the wVulC strain
significantly decreased over time (χ²= 12.18, p < 0.0001) while
the wVulP strain exhibited the opposite trend, and significantly so
(χ²= 6.03, p= 0.014).
Sequencing of the COI mitochondrial gene of 884 individuals

identified 12 mitotypes, nine of which have previously been
detected in A. vulgare populations (named I to VIII, and XII)
(Durand et al. 2023) and three are newly described mitotypes
(XXIV to XXVI; GenBank accession numbers OR074129 to
OR074131, respectively) (Fig. 3 and Table S3). There was an
excellent congruence between Wolbachia strains and mitotypes,
as previously reported (Verne et al. 2012; Durand et al. 2023).
Indeed, individuals carrying wVulC were associated with either
mitotype V or its close relatives (XII and XXVI), those carrying
wVulP were associated with mitotype VII and those carrying
wVulM were associated with mitotype II. Exceptions included two
individuals infected by wVulM, which were associated with the
distantly related mitotypes I and III. By contrast, the f element was
found in eight different mitochondrial backgrounds (I to VI, VIII
and XXV) distributed across the mitochondrial network.
All time points considered, there were between three (in Chizé)

and six (in Poitiers) mitotypes per population (Figs. 3 and S1).
Mitotype frequencies were globally stable across time points
within populations (e.g., Coulombiers, Fig. 4A), with the notable
exceptions of La Crèche and Poitiers populations. In La Crèche, a
shift in major mitotypes occurred between 2005 and 2012, with
the increasing rarity of mitotype III and V being concomitant with
the rise in frequency of mitotypes I and VIII, followed by stability
since 2012 (Fig. 4B). In Poitiers, the rise in frequency of mitotype
VII (associated with Wolbachia strain wVulP) coincided with a
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relative decrease of wVulC-associated mitotypes V, XII and XXVI
(Fig. 4C).
To test if the patterns of SRD and mitochondrial variation were

also reflected in the nuclear genome, we examined variation in
667 individuals with genotype information available for at least 13
out of the 15 retained microsatellite markers (see Materials and
Methods), representing a total of 28 sampling points (Poitiers-
2015 was discarded due to low genotyping success) (Table S3).
None of the loci significantly departed from Hardy–Weinberg
equilibrium for all sampling points. Allelic richness ranged from 1
to 4.78 and heterozygosity ranged from 0 to 0.91 (Table S4).
Pairwise Fst values ranged from 0 to 0.091 (mean Fst= 0.035)
(Table S5). The majority of Fst values between populations (200/
321) were significant, suggesting the occurrence of genetic
differentiation among populations. Consistently, a Mantel test
evaluating the correlation between genetic and geographic
distances revealed a significant isolation by distance (r2= 0.034,
p < 0.001). Such a signal of genetic structure was confirmed by
Bayesian clustering analyses. Indeed, a delta-K analysis (Evanno
et al. 2005) inferred that the best fit to the data was obtained for

K= 2 genetic clusters (Fig. S2). A first genetic cluster mainly
comprised individuals sampled in Poitiers and Coulombiers, and a
second genetic cluster comprised those from Beauvoir, Chizé, La
Crèche and Gript (Fig. 5). In agreement with isolation by distance,
this clustering pattern reflected the geographic distribution of
populations, as the former cluster encompassed eastern-most
populations and the latter cluster encompassed western-most
populations (Fig. 1). It is noteworthy that the low delta-K values
obtained suggested poor convergence between the 20 indepen-
dent runs, which may be the result of a previously highlighted
effect of isolation by distance (Meirmans 2012). By contrast, the
clustering analysis did not highlight any obvious change in
genetic structure between time points within populations. The
DAPC also suggested a major population structuration (Fig. 6), as
the first component separated Poitiers and Coulombiers (locating
towards the right side of the axis) from the other populations
(locating towards the left side of the axis). It also supported overall
homogeneity of populations across time points, apart from La
Crèche-2005, which was separated from the other La Crèche time
points in the second component of the DAPC. The exception of La
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Crèche-2005 was also reflected in the significant pairwise Fst
values between time points within population, which were
generally non-significant for the other populations (Table S5).

DISCUSSION
In this study, we analyzed the temporal dynamics of two SRD
segregating in natural populations of the terrestrial isopod A.
vulgare, to shed light on the potential impact of SRD on the
evolution of host sex determination mechanisms at a within-
species scale. Wolbachia and f element distributions were highly
heterogeneous among populations in our study area, despite their
modest geographic distance of at most 80 km. The emerging
trend is that when one SRD is frequent in a population, the other
SRD is rare, as noted previously (Durand et al. 2023). As it causes a
stronger bias toward females, Wolbachia is expected to prevail
over the f element in A. vulgare populations (Rigaud 1997; Cordaux
and Gilbert 2017). Yet, the f element was the dominant SRD in four
out of six populations we studied and was rising in frequency in
Niort (Juchault et al. 1992). Overall, the f element is more
widespread than Wolbachia in A. vulgare populations (Juchault
et al. 1993; Durand et al. 2023). Previously proposed explanations
include a higher fitness cost entailed by Wolbachia relative to the f
element and occasional paternal transmission of the f element
(which some males carry, Fig. 2) enabled by masculinizing
epistatic alleles (Juchault et al. 1992; Rigaud and Juchault 1993;
Rigaud 1997; Rigaud and Moreau 2004; Cordaux and Gilbert 2017).
In contrast with spatial heterogeneity, our sampling scheme

with up to six sampling time points spanning 12 years per
population highlights a global temporal stability in SRD

prevalence within populations. At first glance, this qualitative
pattern differs from that previously reported for the Niort
population, in which Wolbachia prevalence was found to decrease
concomitantly to an increase of f element prevalence over a
period of 23 years (Juchault et al. 1992). Given A. vulgare’s
generation time of one year, our study might have spanned too
few generations (12) to capture variation in SRD prevalence, which
the Niort study spanning 23 generations did. Nevertheless, the
time scale of our study enabled us to detect variation inWolbachia
strain prevalence, as well as mitochondrial and nuclear variation
within and between populations, suggesting that lack of
resolution is not an issue. Alternatively, most of the populations
we studied may reflect some relatively stable equilibrium with
respect to SRD evolutionary dynamics, an equilibrium that the
Niort population might not have reached. Indeed, theoretical
models have indicated that when feminizing factors are in
competition, the one that induces the strongest bias toward
females is expected to spread in the population (Taylor 1990).
Thus, a single SRD should remain in the population at equilibrium.
Consistently, in most of the populations we analyzed, a single SRD
occurs at high frequency, suggesting that these populations may
be at or near equilibrium for an SRD. This signal of temporal
stability is reminiscent of that recorded in the butterfly E.
mandarina, in which the feminizing wFem Wolbachia strain has
been stably maintained at high frequency for 12 years in a
Japanese population (Kageyama et al. 2020). Similarly, the
cytoplasmic incompatibility-inducing wRi Wolbachia strain has
apparently reached an equilibrium frequency at ~93% in D.
simulans populations from California (Weeks et al. 2007; Carring-
ton et al. 2011). It has been suggested that an apparent stability
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could be due to hidden processes such as population structure
(including extinction-recolonization processes), intragenomic con-
flicts and coevolutionary processes (Hatcher 2000).
The temporal stability of SRD in most of A. vulgare populations

is also reflected in host mitochondrial and nuclear variation, with

two notable exceptions. The first one is La Crèche population in
2005, which differs from the other time points (2012 to 2017) on
both mitochondrial and nuclear grounds. Interestingly, the
sampling spot in La Crèche has been altered by land remodeling
between 2005 and 2012. This anthropogenic activity may have
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caused the reduction or collapse of the historic A. vulgare
population and the introduction of new individuals as part of
the addition of materials during the remodeling (e.g., soil from
another location). Such an extinction-recolonization scenario may
explain the loss of Wolbachia (present at low frequency in 2005)
and the increase in f element frequency in 2012. It is noteworthy
that from 2012 on, SRD, mitochondrial and nuclear variation have
been stable, suggesting that stabilization of the population
dynamics may be reached in a few years.
The second case of instability is the Poitiers population, which is

stable with respect to nuclear variation but not to both
mitochondrial and SRD variation. Poitiers is the only population
in our dataset in whichWolbachia is the dominant SRD across time
points, thus highlighting a qualitative pattern of temporal stability.
However, our results indicate that the rise in frequency of the
wVulP strain correlates with a decrease of the wVulC strain,
suggesting a Wolbachia strain replacement in this population. The
wVulP strain is characterized by a recombination event involving
wVulC (Verne et al. 2007), indicating that wVulC is older than
wVulP, which is consistent with the situation recorded in Poitiers.
Assuming the driver of this replacement is Wolbachia and not
another cytoplasmic element (like the mitochondrion), replace-
ment of wVulC by wVulP could be due to the latter strain having a
transmission advantage over the former strain. Unfortunately, the
wVulP strain is not very well characterized, and while feminization
induction is likely (Verne et al. 2007), it has not been formally
demonstrated and compared to feminization induced by wVulC
(Rigaud et al. 1991; Cordaux et al. 2004). Neither has the respective
costs of these two Wolbachia strains been investigated. In any
event, because Wolbachia and mitochondria are co-inherited
cytoplasmic entities, changes in Wolbachia strains associated with

different mitotypes are expected to lead to concomitant changes
in mitochondrial variation, but no change in nuclear variation.
Therefore, our observations in Poitiers may constitute a typical
example of mitochondrial sweep caused by endosymbiont rise in
frequency (Galtier et al. 2009).
Wolbachia dynamics in Poitiers also illustrates that transovarial,

maternal transmission is the main transmission mode of
Wolbachia in A. vulgare. However, non-maternal transmission
may also occur, as suggested by two individuals with wVulM from
Beauvoir and La Crèche. These individuals carry mitotypes I and III,
respectively, unlike all other wVulM-infected individuals which
carry mitotype II. As mitotypes I, II and III are distantly related, a
plausible explanation is that the two unusual individuals have
acquired Wolbachia by horizontal transfer, although the hypoth-
esis of historical infections cannot be formally discarded.
Horizontal transfer of Wolbachia is largely documented in
arthropods (O’Neill et al. 1992; Werren et al. 1995; Heath et al.
1999; Vavre et al. 1999), including terrestrial isopods (Bouchon
et al. 1998; Cordaux et al. 2001, 2012). Potential mechanisms in
isopods include contact between wounded individuals (Rigaud
and Juchault 1995) and cannibalism/predation (Le Clec’h et al.
2013). In total, our results suggest that two out of 136 Wolbachia-
infected individuals could conceivably have acquired their
symbionts by horizontal transmission. This may be an under-
estimate, as horizontal transfers between individuals carrying the
same mitotype cannot be detected with our approach. If so,
horizontal transmission may occur at a measurable rate in A.
vulgare, suggesting that it is a parameter of importance in
Wolbachia evolutionary dynamics in this species.
To conclude, the evolutionary dynamics of SRD, mitochondrial

and nuclear variation from various populations over a period of up

PC1

PC2

Fig. 6 Discriminant Analysis of Principal Components scatterplot. The two axes represent the first two principal components (PC). Dots
represent individuals. Each of the 28 sampling points presents a 95% inertia ellipse and is labeled with two letters indicating the population
and the two last digits of the sampling year. The eigenvalues of the analysis (inset) show the relative amount of genetic structure captured by
the principal components (the first two components are highlighted in dark gray).
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to 12 years revealed that distributions of Wolbachia and the f
element were much more variable spatially than temporally. This
conclusion is well supported for the f element, with four
populations independently showing the same pattern. For
Wolbachia, it has remained at high frequency over time but strain
genotyping identified an apparently ongoing strain replacement.
It is however more difficult to draw strong conclusions for this SRD
as it occurred at high frequency in a single population. Such
geographic and temporal distribution suggests that migration
may not heavily influence SRD evolution in A. vulgare, a species
exhibiting strong female phylopatry (Durand et al. 2019). This is in
contrast with the highly dispersive H. bolina, in which Wolbachia
frequency has been shown to fluctuate over time (Hornett et al.
2009). Overall, our results provide an empirical basis for future
studies on SRD evolutionary dynamics in the context of multiple
sex determination factors co-existing within a single species, such
as modeling investigations. These efforts will ultimately contribute
to assess the impact of SRD on the evolution of host sex
determination mechanisms and sex chromosomes.

DATA AVAILABILITY
Mitotypes are available in GenBank under accession numbers OR074129 to
OR074131. All other data are provided in the supplementary information.
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