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triangle plots using SNP data from hybrid zones
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Hybridization provides a window into the speciation process and reshuffles parental alleles to produce novel recombinant
genotypes. Presence or absence of specific hybrid classes across a hybrid zone can provide support for various modes of
reproductive isolation. Early generation hybrid classes can be distinguished by their combination of hybrid index and interclass
heterozygosity, which can be estimated with molecular data. Hybrid index and interclass heterozygosity are routinely calculated for
studies of hybrid zones, but available resources for next-generation sequencing datasets are computationally demanding and tools
for visualizing triangle plots are lacking. Here, we provide a resource for identifying ancestry-informative markers (AIMs) from single
nucleotide polymorphism (SNP) datasets, calculating hybrid index and interclass heterozygosity, and visualizing the relationship as
a triangle plot. Our methods are implemented in the R package triangulaR. We validate our methods on an empirical dataset and
simulations of genetic data from a hybrid zone between two parental groups at low, medium, and high levels of divergence.
triangulaR provides accurate and precise estimates of hybrid index and interclass heterozygosity with sample sizes as low as five
individuals per parental group, and similar levels of error as another program for hybrid index and interclass heterozygosity
estimation, bgchm. We explore various allele frequency difference thresholds for AIM identification, and how this threshold
influences the accuracy and precision of hybrid index and interclass heterozygosity estimates. We contextualize interpretation of
triangle plots by describing theoretical expectations under Hardy-Weinberg Equilibrium and provide recommendations for best

practices for identifying AIMs and building triangle plots.
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INTRODUCTION
Research on hybridization provides insight into the evolution of
reproductive isolation, the genetic basis of phenotypic variation,
and novel modes of adaptation (Jones et al. 2018; Cronemberger
et al. 2020; Aguillon et al. 2021; Nikolakis et al. 2022). Evolutionary
outcomes of hybridization often have implications for conserva-
tion and management of genetic diversity in natural populations
(Chan et al. 2019). A common goal in studies of hybridization is to
classify individuals as hybrids or as members of the parental
groups (Gompert and Buerkle 2013). Six classes are typically used
to describe genetic variation in hybrid zones (Fitzpatrick 2012): the
first filial generation (F1), second filial generation (F2), backcrosses
in each direction (BC), and the parental groups (P1, P2). Such
classification serves as a starting point to describe hybrid zone
dynamics and form hypotheses about the genetic, ecological, and
environmental mechanisms that shape evolutionary outcomes of
hybridization (Simon et al. 2018; Thompson et al. 2023).
Molecular data contain the necessary information for assigning
hybrid classes (Lynch 1991), which can be done by pairing hybrid
index (i.e. ancestry proportions, or the proportion of alleles
inherited from each parental group) with interclass heterozygosity
(the proportion of loci with alleles from both parental groups).
Visualizations of interclass heterozygosity (y-axis) against hybrid
index (x-axis) are referred to as triangle plots, because the set of
possible coordinates forms the shape of a triangle (Fig. 1). Hybrid

index is measured in terms of proportion of ancestry from one
parental group, such that individuals belonging to that parental
group have a hybrid index of 1 and individuals of the other
parental group have a hybrid index of 0. If only fixed differences
between the parentals are used to calculate hybrid index, each
parental individual, by definition, will have an interclass hetero-
zygosity of 0. By the same logic, F1s will have an interclass
heterozygosity of 1 and hybrid index of 0.5, assuming no gene
conversion during recombination. If including sites that are not
fixed for alternate alleles in the parental groups, but which still
show high differentiation, those values may not be matched
exactly, but hybrid classes are still identifiable (Rosenberg et al.
2003; Fitzpatrick 2012).

An early method (introgress) took a maximum likelihood
approach to infer hybrid index and heterozygosity from codomi-
nant markers (e.g. amplified fragment length polymorphisms) or
biallelic molecular markers (Buerkle 2005; Gompert and Buerkle
2009). More recently, Bayesian methods (bgc, Gompert and
Buerkle 2012; ENTROPY, Shastry et al. 2021; bgchm, Gompert
et al. 2024) have been developed to infer interpopulation ancestry
and admixture proportions from single nucleotide polymorphism
(SNP) genotypes and genotype likelihoods. Notably, instead of
interclass heterozygosity, bgchm uses Bayesian statistics to
estimate interpopulation ancestry (Q10). While both statistics
describe the proportion of loci with mixed ancestry based on the
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Fig. 1 A triangle plot illustrating the theoretical expectations for
combinations of hybrid index and interclass heterozygosity under
Hardy-Weinberg Equilibrium (HWE). Large, colored points identify
parental taxa (P1, P2) and hybrid classes (F1 =first filial generation,
F2 =second filial generation, BC = backcross and the number of
generations backcrossed toward the nearest parental population).
Smaller black points show all possible combinations of hybrid index
and interclass heterozygosity after six generations of mixing
under HWE.

observed combination of alleles, Q10, as implemented in bgchm,
takes into account the observed parental allele frequencies to
estimate the proportion of loci with ancestry from both parental
groups, regardless of allelic state (Gompert et al. 2024). For more
on the distinction between interclass heterozygosity and Q10, see
Gompert and Buerkle (2013). While those methods provide
substantial insight into the evolutionary ecology of hybridization,
they can be computationally intensive for large datasets and do
not always provide intuitive visualizations of triangle plots. As
such, there is a need for computationally simple methods that
facilitate quick descriptions of admixture and identification of
hybrid classes when exploring SNP datasets.

When the genotypes for many (e.g. thousands) biallelic sites are
known with high confidence, a simple analytical approach to
ancestry estimation can be taken. With parental individuals
included in the sample, ancestry-informative markers (AIMs) can
be identified and used to calculate hybrid index and interclass
heterozygosity. Whole genomes and reduced-representation
sequencing methods (e.g. RADseq, target capture) can provide
thousands of SNPs from which AlMs can be identified, but
practices for sampling parental populations and identifying AlMs
vary widely (e.g. Del-Rio et al. 2022; Ocampo et al. 2023; Preckler-
Quisquater et al. 2023). The sample size needed for each parental
group is an important consideration because any method for
identifying AIMs depends on identifying genomic sites that
reliably show differentiation between the parental groups
(Rosenberg et al. 2003). Short of sampling all individuals in a
population, it is impossible to know the true allele frequencies.
Therefore, sample sizes must be large enough to provide
reasonable estimates of allele frequencies in each parental
population, while balancing the expense of sampling and
sequencing many individuals.

Another important consideration is the method used to identify
AlMs. Intuitively, SNPs with fixed differences are most informative
for estimating ancestry proportions, but for some genomic datasets
restricting AIMs to such sites is not feasible (DeRaad et al. 2023).
When there are not enough fixed differences between two parental
groups, a lower threshold of differentiation must be used to identify
AIMs. Therefore, it is worthwhile to explore the consequences of
lower allele frequency difference thresholds for identifying AlMs,
building triangle plots, and distinguishing among hybrid classes.

Here, we introduce the R package triangulaR (https://
github.com/omys-omics/triangulaR), which provides simple and
quick calculations of hybrid index and interclass heterozygosity
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from SNP datasets to build triangle plots and classify hybrids. To
validate these methods, we simulated genetic data for hybrid
zones with parental groups at various levels of divergence. We
also tested triangulaR on an empirical RADseq dataset from a
hybrid zone between two closely related species of Passerella
sparrows in south-central Alaska. Based on our simulations, we
find that sample sizes as low as five individuals per parental group
provide reliable estimates of hybrid index and interclass hetero-
zygosity, even when the parental groups are minimally divergent.
We also show that when divergence is minimal, there is a practical
tradeoff between restricting AlMs to few, highly informative sites
versus relaxing the allele frequency difference threshold to include
more, but less informative sites. We outline best practices for
sampling parental populations, identifying AlMs, and building
triangle plots to identify hybrids and hybrid classes from
molecular datasets.

METHODS
Package description
When parental populations are included in a sample from a hybrid
zone and SNP genotypes are known with high confidence, hybrid
index and interclass heterozygosity can be calculated analytically.
Specifically, those metrics can be calculated by identifying AlMs,
defined as sites with an allele frequency difference (§) between
the parental groups that is above a chosen threshold, and then
polarizing alleles at those sites to determine in which parental
group each allele has a higher frequency (Rosenberg et al. 2003).
This approach is implemented in the R package triangulaR. The
main functions of this package are outlined in Supplementary
Table S1, and package documentation and a detailed tutorial are
available at https://github.com/omys-omics/triangulaR. Briefly,
triangulaR accepts as input genotype data for biallelic SNPs and
leverages the functionality of the R package vcfR to read in VCF
files and store vcfR objects (Knaus and Griinwald 2017). The only
other required input is an R dataframe with individual identifiers in
the first column and population assignments in the second
column. Hybrid index and interclass heterozygosity are calculated
in two steps. First, SNPs with an allele frequency difference
between the parental groups above a user-defined threshold are
identified as AIMs, and a vcfR object containing individual
genotypes at only these SNPs is returned. An allele frequency
difference of 1 indicates a fixed difference between the two
parental populations. In the second step, that vcfR object is used
for calculating hybrid indices, which is done by summing the
number of alleles in each individual that match one parental
group and dividing by the total number of nonmissing sites
present for that individual. Average interclass heterozygosity is
also calculated during that step by counting the number of
observed heterozygous sites and dividing by the total number of
nonmissing sites. Hybrid index and interclass heterozygosity
estimates are returned along with user-defined population
assignment and percent missing data for each individual,
formatted in an R dataframe. Results can be visualized with a
wrapper function (triangle.plot) that uses the R package ggplot2
(Wickham 2011) to plot the observed hybrid index and interclass
heterozygosity values for each individual and draw the outline of
the possible space on a triangle plot under Hardy-Weinberg
Equilibrium (HWE). Results can be colored by pre-defined
populations or percent missing data to aid interpretation.

Possible space on triangle plots under HWE

Triangle plots are used for identifying hybrid classes (e.g. F1s,
backcrosses, etc.) and inferring the presence and strength of
barriers to reproduction (Christe et al. 2016; Fitzpatrick 2012;
Lindtke et al. 2012; Pulido-Santacruz et al. 2018). It is therefore
useful to consider the possible space on a triangle plot under
HWE. By this, we mean the possible combinations of hybrid index
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and interclass heterozygosity in the generations following
interbreeding between two distinct parental groups, assuming
random mating and the absence of selection, drift, or new
mutations. Describing this space provides neutral expectations for
the possible combinations of hybrid index and interclass
heterozygosity, against which observed combinations can be
meaningfully compared.

When considering sites with fixed differences between parental
groups, it follows that the hybrid index and interclass hetero-
zygosity of an individual equate to the genome-wide frequency of
the p, allele and p;, genotype, respectively. Under HWE, genotype
frequencies are given by allele frequencies, such that the
frequency of the p;, genotype across an individual genome is
calculated as 2(p;)(1 - p;), where p; is the frequency of the p,
allele. Assuming HWE, if a cross occurs between two individuals
with the same p, allele frequency across the genome, the allele
frequency will not change in the offspring and the genotype
frequency of p;; is given by 2(p;)(1 - py). Thus, on a triangle plot,
the offspring will occur along the curve: p;,=2(p;)(1 - p1).
Alternatively, if a cross occurs between two individuals with
different p, allele frequencies, the expected genotype frequencies
must be calculated by accounting for the variance in allele
frequency between the two parents. This issue is essentially the
inverse of the Wahlund effect, which describes the deficiency of

heterozygotes in a structured population (Wahlund 1928).
Variance is calculated as:
o> =) (py —P7)*)/N (1)

where py; is the frequency of the p; allele in the i parent, p, is the
average frequency of the p; allele in the parents, and N is the
number of parents (which is always two). The frequency of each
offspring genotype is then:

Elp] = (p7)* — 0?
Elpi2] = 2(py) (1 = py) + 207 )
E[py,] = (1 *171)2 -’

(Equation (5.1) in Hahn 2018)

We note that in our Eq. (2), the signs for the variance are flipped
because we are calculating the expected frequency of each
genotype accounting for different allele frequencies, while those
in Eq. (5.1) by Hahn (2018) calculate the deviation of expected
genotype frequencies from HWE. If both parents have the same p;
allele frequency, then the variance is 0 and the calculation of
offspring genotype frequencies reduces to the standard formula
under HWE. If the parents have different p, allele frequencies, the
hybrid index of the offspring will be the same as for a cross of two
parents of the average p, allele frequency, because the p;; and p,,
genotypes will decrease by the same increment and changes in the
frequency of the p;, genotype do not change the hybrid index. For
offspring of parents with different p, allele frequencies, the
frequency of the p;, genotype will always be higher than for a
cross of two parents of the average p, allele frequency, because the
variance is always positive. Therefore, under HWE, it is impossible
for any cross to result in offspring below the curve defined by
pP12=2(p1)(1 - p4), because if the parents have the same allele
frequencies their offspring will occur on that curve and if the
parents have different allele frequencies their offspring will occur
above it. To illustrate this point, we used Eq. (2) to calculate and plot
all possible combinations of hybrid index and interclass hetero-
zygosity through six generations, starting with only the genotype
frequencies of two parental individuals (Supplementary Fig. S1).

Simulations

Simulation design. To validate our methods for building triangle
plots, we simulated genetic data for hybridization between two
parental groups at three levels of divergence: low, medium, and
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high, measured by the number of fixed differences between
parental populations. We used SLiM 3 to perform forward-time
genetic simulations under a non-Wright-Fisher model (Haller and
Messer 2019). Simulations were performed similarly to those in
Wiens and Colella (2024), and are briefly summarized here, with
details in Supplementary File 1. Each simulation consisted of three
phases, with Phase | modeling a common ancestral population
prior to divergence. At the start of Phase I, the ancestral
population was split into two allopatric populations, which
diverged for different numbers of generations (low: 750, medium:
1000, high: 2000 generations). In Phase lll, the parental popula-
tions (p0, p20) expanded across a gradient of 21 stepping-stone
populations to model a contact zone where admixture began in a
central region (p10) and introgression occurred into parental
populations over time. Once contact was initiated in Phase lll, we
identified fixed differences between all individuals of the parental
populations as a way of tracking true introgression over time.
Subsequently, random samples of twenty individuals from each
population were taken every 200 generations for 6000 total
generations.

To generate known hybrids and parentals, variant sites across all
parental genomes were output in VCF format at the end of Phase
Il. Using the parental genomes, four hybrid classes (F1s, F2s,
backcrosses in each direction) were simulated using custom R
scripts.  Specifically, twenty individuals from each parental
population were randomly selected and paired with an individual
from the other parental population, and twenty F1s were created
by randomly choosing one allele from each parent at each
genotype. Twenty F2s were created in the same way, but by
pairing each F1 with another F1. Twenty backcrosses in each
direction were created by pairing each F1 with a randomly chosen
parental individual. Hereafter, we refer to this dataset as “known
hybrids and parentals”.

Number of individuals sampled from parental populations. The
accuracy of observed allele frequencies in each parental popula-
tion depends on the number of individuals sampled. When an
allele occurs at low frequency in a population, the probability of
detection increases as the sample size increases. We tested how
sample sizes influence the number of AlMs that appear as fixed
differences. Using the simulated dataset of known hybrids and
parentals, we calculated the difference in allele frequency
between parental populations at every variable site. Because all
parental individuals were sampled for this dataset, these are the
true allele frequency differences between the parental popula-
tions. We then randomly downsampled 20, 10, 5, and 2 individuals
from each parental population, and used only those samples of
individuals to calculate allele frequency differences. We repeated
this procedure 200 times for each sample size. We report the
distribution of true allele frequency differences at sites that appear
to have fixed differences based on each replicated sample size. We
then randomly chose one replicate of each sample size with which
to calculate hybrid index and interclass heterozygosity of the
hybrids and sampled parentals, based on sites with apparent fixed
differences (5 =1).

Allele frequency difference thresholds. For the dataset of known
hybrids and parentals, we identified AlMs and built triangle plots.
We tested three allele frequency difference thresholds for
identifying AIMs: 6 =1, 6 =0.75, and 6 =0.5. First, we identified
AIMs using all parental individuals in the simulation such that
observed allele frequencies in each parental population were the
true allele frequencies. Since sampling every parental individual is
not feasible for empirical datasets, we also tested & thresholds
using samples of five parental individuals. Using AlMs that passed
each allele frequency difference threshold, we calculated hybrid
index and interclass heterozygosity for every hybrid and parental
individual and built triangle plots.

SPRINGER NATURE

253



B.J. Wiens et al.

254

Quantifying error in hybrid index and interclass heterozygosity
estimates. We compared triangulaR and bgchm by calculating
mean absolute error (MAE) in hybrid class and interclass
heterozygosity estimates for the simulated data containing known
hybrid classes. For both methods, we used sets of five parentals
and twenty parentals to identify AIMs (6 = 1). We estimated hybrid
index and interclass heterozygosity in triangulaR for F1s, F2s,
backcrosses, and parental individuals. Using the same sets of AlMs,
we estimated hybrid index and Q10 in bgchm with the default
settings of four HMC chains, 2000 steps with no thinning, and
1000 warm-up iterations. We calculated MAE as the difference in
observed estimates from the expected values of hybrid index and
interclass heterozygosity, based on known hybrid class. MAE in
hybrid index and interclass heterozygosity estimates for parental
groups were estimated by including twenty individuals of each
parental group without assigning them as the parental population
used for calling AlMs.

Parental population sample size, §, and sequencing depth are
all expected to contribute to error in hybrid index and interclass
heterozygosity estimates. We quantified the effects of each of
these variables on error of triangulaR estimates by calculating
accuracy and precision separately for four hybrid classes (F1, F2,
and both backcrosses). We simulated the effect of depth by
randomly drawing n alleles from the known genotypes of each
simulated individual, where n is the simulated depth. Sites were
recoded as heterozygous if at least one of each allele was present
in the sample and homozygous if only one allele was present.
Accuracy is defined as the difference between the expected value
and the average observed value, divided by the expected value.
We subtract this value from 1 to report percent accuracy.

Accuracy = 1 — (|average observed — expected|)/expected  (3)

Precision is defined as the average absolute Euclidean distance
of each individual estimate from the average estimate.

Precision = Z |observed — average|/N (4)

Precision is not subtracted from 1 or divided by the expected
value, therefore the units reflect the Euclidean distance on the
triangle plot, with smaller values indicating higher precision.

Introgression and misspecification of parental groups. Identifying
AlIMs relies on the presence of diagnostic sites across the genomes
of the parental groups. To investigate how introgression between
parental groups influences AIM identification and calculations of
hybrid index, we analyzed generations 0 through 6000 of the
simulated data. To track introgression over time, we identified
sites with fixed differences in the parental populations (p0 and
p20) at generation 0. We refer to these sites as “true” AlMs
because they represent real differences prior to gene flow. We
then created two additional sets of AlMs for each sampled
generation by identifying sites with fixed differences (6 =1) and
sites with allele frequency differences above 0.75 between the
samples of the parental populations. In this way, we tested the
accuracy of inferred hybrid indices in the face of introgression into
the parental populations over time. For each set of AlMs, we
calculated the average hybrid index of each population for
generations 0 through 6000 from Phase IIl.

Another assumption of AIM identification is that individuals
assigned to the parental groups are sampled from the true
parental populations. When sampling natural populations, it is not
always known where on the landscape admixture ends and
parental populations begin, nor are parentals and hybrids always
phenotypically distinguishable. We investigated how misassign-
ment of individuals to parental groups influenced estimates of
hybrid index and interclass heterozygosity using generation 1000
of the high divergence simulation as an example where admixture
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had reached all populations except the parentals. We identified
AlMs using five individuals from the parental populations (p0 and
p20) and five individuals from partially admixed populations (p5
and p15). Using both sets of AIMs, we then calculated hybrid index
and interclass heterozygosity for individuals from every popula-
tion. We quantified the effect of misassignment of individuals to
parental groups compared to using individuals from the correct
parental populations by calculating the log-fold change in hybrid
index and interclass heterozygosity estimates. To appropriately
account for the fact that hybrid index has limits [0,1] and that the
parental groups are positioned arbitrarily at either end of this
continuum, we subtracted hybrid index estimates greater than 0.5
from 1. This procedure allows log-fold change to represent the
nature of the hybrid index interval, in that there are inclusive limits
at 0 and 1. Negative values therefore represent shifts towards the
nearest parental population when parental populations are
misassigned, and positive values represent shifts away from the
nearest parental population.

Empirical example

We tested our method for building triangle plots on a RADseq
dataset from a contact zone between two closely related species
of songbirds, the sooty and red fox sparrows (Passerella iliaca and
P. unalaschcensis; taxonomy following Gill et al. 2024). These two
species come into breeding contact in a narrow region of south-
central Alaska (DeCicco 2021). We sequenced 37 specimen-
vouchered tissues from a contact zone where parental and
intermediate phenotypes occurred together (Table S4, DeCicco
2021). Individuals from allopatric populations of both species (P.
iliaca N=18, P. unalaschcensis N=15) were also sampled and
assigned as the parental populations for AIM identification. We
identified SNPs following standard bioinformatic and quality
filtering workflows documented in DeRaad (2022) and DeRaad
et al. (2022, 2023). Plumage patterns were scored following
descriptions in DeCicco (2021) to assess correlation between
phenotypic and genotypic estimates of hybrid index.

We filtered for 90% and 100% completeness across SNPs. Unless
otherwise stated, the 100% complete SNP dataset was used for
analysis. To assess influence of uneven sampling of parental
populations, we identified AlMs in two ways: (1) using all allopatric
P. iliaca (N=18) and P. unalaschcensis (N=5) as parental
populations, or (2) using even parental sampling by downsampling
the P. iliaca parental population to five individuals. The remaining
thirteen P. iliaca individuals were retained in the dataset, but not
assigned to their parental group. For both sets of parental sampling
we identified AlMs (6 = 1) with triangulaR and compared estimates
of hybrid index and interclass heterozygosity from triangulaR to
those from bgchm. We ran bgchm using the default HMC conditions
to estimate hybrid index and Q10. Using even parental sampling, we
also identified AlMs and built triangle plots with triangulaR under
three allele frequency difference thresholds (6=1, §=0.75, and
6 =0.5) for the 90% complete and 100% complete SNP datasets.

RESULTS

Summary statistics

The parental populations of the simulated data were sampled at
the end of Phase Il (allopatric divergence) to create the dataset of
known hybrids and parentals. Summary statistics are shown in
Table 1. We calculated dyy and m in pixy, using variant sites only, to
facilitate comparison between the simulated and empirical
datasets (Korunes and Samuk 2021). The empirical example of
Passerella sparrows exhibited similar levels of differentiation and
nucleotide diversity as our simulated data (Supplementary Fig. S4,
Table 1). When contact began during Phase lll of the simulations,
there were 28 (low), 59 (medium), and 345 (high) fixed differences
between the parental populations. Those fixed differences were
used to track introgression into the parental populations during
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Table 1. Summary statistics for simulated and empirical data.
Variable sites Fixed differences Average & dyy n
Simulated
Low 6,251 15 0.10 0.09 p0 =0.056
p20 = 0.058
Medium 6,511 36 0.1 0.10 p0 =0.056
p20 = 0.055
High 6,894 297 0.16 0.15 p0 = 0.055
p20 = 0.057
Empirical
Passerella sparrows (100%)? 13,188 23 0.09 0.11 ili=0.102
una = 0.062

All statistics for the simulated data were calculated using all parental individuals (p0 and p20) at the end of Phase Il (allopatric divergence).
3Statistics calculated using the dataset with 100% completeness across SNPs and all allopatric P. iliaca (ili; N = 18) and P. unalaschcensis (una; N = 5) samples.

Phase lIl. The reason for more fixed differences than at the end of
Phase Il is because it took time for individuals to expand across the
gradient and meet in p10, which allowed more fixed differences to
accumulate through mutation and drift. Specifically, 241 (low), 269
(medium), and 260 (high) generations elapsed between the end of
Phase Il and the beginning of contact in Phase Ill. Although dxy
and average & between parental populations were not substan-
tially different between the low, medium, and high divergence
simulations, these levels of divergence provided very few to many
fixed differences, which was our main consideration for evaluating
the effects of sample size and allele frequency difference
threshold on AIM identification.

Quantifying error in hybrid index and interclass
heterozygosity estimates

The accuracy of estimated allele frequency differences increased as
the sample size of the parental populations increased (Supplemen-
tary Table S2). With a sample of twenty individuals per parental
population the average accuracy of estimated allele frequency
differences was >99% for all levels of divergence. A sample size of
five per parental population also yielded high accuracy, at 93%, 95%,
and 98% for low, medium, and high levels of divergence,
respectively. The distribution of true allele frequency differences at
sites with fixed differences in the sample are consistently left-
skewed, with a peak at one (Fig. 2). With a sample size of five per
parental population, 95% of sites with & = 1 in the sample had a true
allele frequency difference of at least 0.72 for all levels of divergence.

We compared MAE for triangulaR and bgchm for parental
sample sizes of five and twenty, finding little difference in MAE
between the programs (Fig. 3). For both programs, MAE was
generally highest when using five samples from each parental
population, and decreased with an increased sample size of
twenty. Independent of parental population sample size, MAE
decreased for all hybrid classes as divergence between the
parental populations increased.

Estimated values of hybrid index and interclass heterozygosity
for hybrids were generally most accurate when 6 =1, except for
F2 estimates, which were more accurate when &=0.75
(Figs. 4 and 5). For all values of §, estimates were generally very
precise (<0.07 average deviation), with the exception of interclass
heterozygosity estimates for F2s and backcrosses when using
6 =1. For all hybrid classes except F1s, estimates became more
precise as & decreased. Estimated values of hybrid index and
interclass heterozygosity for each hybrid class remained highly
accurate (>90%) down to a sample size of five individuals from
each parental population (Supplementary Fig. S6). Estimated
values of hybrid index and interclass heterozygosity were also
highly precise (<0.1 average deviation) for all sample sizes and
levels of divergence. With a sample size of five from each parental
population, hybrids appear as expected on triangle plots
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regardless of the level of divergence between parental popula-
tions (Supplementary Fig. S5). Hybrid index estimates were
unaffected by depth, remaining highly accurate (97.9% accuracy
on average) for simulated depths as low as 2X, assuming no
sequencing error (Supplementary Fig. S7). In contrast, interclass
heterozygosity estimates were dependent on depth, and only
attained high accuracy (>95%) with 6X depth or higher.

Empirical example

The 90% and 100% completeness filters for the empirical example
(Passerella spp.) retained 24,592 and 13,188 SNPs, respectively.
Using AIMs identified with & =1, hybrid index estimates aligned
with expectations based on plumage scores (Fig. 6A, B). There
were some minor differences in hybrid index and interclass
heterozygosity estimates when all available allopatric P. iliaca
(N=18) were assigned as the parental group compared to the
downsampled dataset in which five allopatric P. iliaca were
assigned as the parental group (Fig. 6C, D). Most notably, the
thirteen allopatric P. iliaca that were not assigned as the parental
group had increased hybrid index and interclass heterozygosity
estimates in relation to when they were assigned as the parental
group, overlapping with some individuals from the contact zone.
That pattern suggests the presence of parental P. iliaca individuals
in the contact zone. All estimates made using triangulaR were
highly comparable to those of bgchm (Fig. 6E, F).

Introgression and misspecification of parental populations

In each simulation, some alleles at sites that had fixed differences at
the beginning of contact had introgressed into both parental
populations (p0 and p20) by generation 2000 (Supplementary Fig.
S8). By generation 6000, each parental population contained at least
25% ancestry from the other parental population at sites that had
started as fixed differences. Yet, the estimated ancestry of each
parental population using AlMs (§=1) identified with twenty
sampled parentals remained at 0 and 1 for p0 and p20, respectively,
across all generations. Lowering 6 to 0.75 resulted in the recognition
of some admixture in the parental populations, but did not recover
true levels of introgression into the parental populations.

When individuals that have experienced some admixture were
misassigned to the parental groups, the largest fold-change in
hybrid index and interclass heterozygosity estimates occurred in
individuals with small proportions of admixture (Supplementary
Fig. S9). In our simulation, hybrid index and interclass hetero-
zygosity estimates for individuals from the same population (p5
and p15) as the individuals misassigned as parentals became more
similar to their nearest true parental population (p0 or p20),
indicated by negative log-fold changes. Individuals from the true
parental populations experienced large shifts away from their true
hybrid index and interclass heterozygosity values, in some cases
with estimates quadrupling the true value. Individuals with
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Fig. 2 True allele frequency differences of sites with fixed differences in the parental samples. Distributions, based on simulated data, of
the true allele frequency differences of sites that appear to have fixed differences with smaller parental sample sizes: 20 (A-C), 10 (D-F), 5 (G-1),
and 2 (J-L). The observed distributions were created with 200 random sampling replicates of 20, 10, 5, or 2 individuals (N) from each parental
population. The left column shows the simulation with low differentiation, center shows the simulation with medium differentiation, and the
right column shows the simulation with high differentiation. On each plot, 95% of observed values fall above the black dotted line, 90% of the
values fall above the blue solid line, and 75% fall above the red solid line.

intermediate admixture proportions experienced less dramatic
shifts in hybrid index and interclass heterozygosity estimates.
Average log-fold changes in hybrid index and interclass hetero-
zygosity for individuals with true hybrid index values between 0.3
and 0.7 were —0.07 and —0.02, respectively.

DISCUSSION

Here, we present triangulaR (https://github.com/omys-omics/
triangulaR), an R package for identifying AlMs, calculating hybrid
index and interclass heterozygosity, and visualizing triangle plots
from SNP data. To facilitate use of triangulaR and interpretation of
results, we simulated data to examine how two common criteria
for identifying AlMs, the sample size of parental groups and the
allele frequency difference threshold, influence estimation of
hybrid index and interclass heterozygosity. Further, we provide a
set of expectations for the covariance of hybrid index and
interclass heterozygosity under HWE, against which empirical data
can be compared. We anticipate triangulaR and the theoretical
framework developed here will be useful for identifying hybrids,
assigning individuals to hybrid classes, designing sampling
schemes for natural populations, analyzing next-generation
sequencing data, and interpreting triangle plots.

Recommendations for study design and interpretation of
triangle plots

How to choose an allele frequency difference threshold for AIM
identification. There is a tradeoff between setting a high allele
frequency difference threshold, which will recover fewer, more
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informative sites, versus selecting a lower threshold that will
recover more, potentially less informative sites. The optimal
threshold will depend on the study system, but as a best practice
various thresholds should be explored during the analysis of
empirical data. Our simulations suggest that the most important
factor for accuracy and precision of hybrid index and interclass
heterozygosity estimates is the number of AIMs used for
calculations (Fig. 5 and Supplementary Fig. S6). This is especially
true when the level of divergence between parental groups is low.
For example, using only the 15 fixed differences present between
the parental populations in the low divergence simulation, we
obtained perfect estimates of hybrid index and interclass
heterozygosity for parentals and F1s, but imprecise estimates for
F2s and backcrosses. When & is relaxed to 0.75, almost six times as
many AlMs (N = 89) are recovered, and the precision and accuracy
of hybrid index and interclass heterozygosity estimates increased
for F2s and backcrosses, with minimal decrease in accuracy or
precision of the estimates for F1s. F2 and backcross estimates are
more sensitive to the number of AIMs used because there are
three (pq1, P12, P22) and two (p;1, P12) possible genotypes at each
AIM in these genomes, respectively, while there is only one
genotype (p;,) expected at each AIM in F1 genomes.

Additional patterns emerge when comparing triangle plots built
for the same individuals but with AlMs called at different &
thresholds (Fig. 4 and Supplementary Fig. S12). For F1s, the
accuracy and precision of interclass heterozygosity estimates
decrease as the & threshold decreases, accompanied by a
downward shift in the estimated values themselves, while the
accuracy and precision of hybrid index estimates are largely
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unaffected. For backcrosses, interclass heterozygosity estimates
remain accurate and become more precise as the & threshold
decreases, but estimated values of hybrid index shift towards the
center of the plot (0.5). Taken together, a trend emerges wherein
all hybrid classes gravitate towards the center of the triangle plot
at lower & thresholds. This pattern becomes less pronounced
when divergence between parental groups is higher, but should
be taken into consideration when qualitatively inferring hybrid
classes based on a triangle plot.

When analyzing empirical data, it is best practice to try multiple
allele frequency difference thresholds and compare resulting
triangle plots. If many (>100) AIMs are recovered with § =1 and
the resulting triangle plots are mostly unchanged with lower
values of §, then choosing 6 =1 is likely appropriate. Even as few
as 30 fixed differences can produce reliable triangle plots, but
selecting a lower threshold (e.g. 6=0.75) may produce more
precise estimates without sacrificing accuracy. When there are very
few (<15) to no fixed differences between the parental popula-
tions, lower & thresholds that provide more AlMs will be necessary
to distinguish hybrid classes. We emphasize, however, that the
reason lower & thresholds can provide better estimates is because
they increase the total number of AIMs. If few (<50) AlMs are
identified even with a low threshold (e.g. 6 =0.5), accurate and
precise hybrid index and interclass heterozygosity estimates will be
difficult or impossible to obtain (Supplementary Figs. S10 and S11).

What sample size of parental groups is needed?. To identify AIMs
with which to calculate hybrid index and interclass heterozygosity,
samples from both parental groups are required. The goal is to
sample individuals that have not experienced admixture, such that
they accurately reflect allele frequencies in the respective parental
populations. Thus, an important practical consideration in experi-
mental design is the number of parental individuals needed to
provide reasonably accurate estimation of allele frequency
differences between populations.

Heredity (2025) 134:251-262

We describe the distribution of true population-wide allele
frequency differences of AlMs that falsely appear as fixed
differences in the parental group samples. When divergence
between the parental groups is low, it is difficult to minimize the
proportion of false positive fixed differences. In our simulation
with the least divergence between parental populations (true
fixed differences at only 0.2% of variable sites), a sample size of
twenty individuals per parental population and 6 = 1 resulted in a
29% false positive rate. That means that of the sites that appeared
to be fixed for different alleles in the sample, 29% were not
actually fixed in the population. Yet, it is important to consider the
distribution of true allele frequencies of those perceived fixed
differences. Sites with a high allele frequency difference between
the parentals still provide valuable information, even if they are
not fixed. With a sample size of twenty individuals from each
parental population, >95% of identified AlMs (6§ =1) had a true
allele frequency difference >0.95 for all simulated levels of
divergence (Fig. 2, Supplementary Table S2). Across all sample
sizes, the distribution of true allele frequency differences at sites
that appear to be fixed differences based on the sample is always
left-skewed, meaning that the noise caused by the inclusion of
some sites with low & is minimal.

Counterintuitively, our simulations suggest that a sample size
of five from each parental population can provide more precise
estimates of hybrid index and interclass heterozygosity than
larger sample sizes, without sacrificing accuracy (Supplementary
Fig. S6). That is because more sites pass the 6 =1 threshold
when the parental sample size is smaller, resulting in a larger set
of AIMs. While some of those sites are false positives in the sense
that they are not truly fixed differences, they still exhibit large
allele frequency differences between the parental populations
(Fig. 2). As such, precision is increased not because of the lower
sample size per se, but through the inclusion of additional
informative sites obtained with the lower allele frequency
difference threshold.
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Fig. 4 Triangle plots built with AIMs under different allele frequency difference thresholds. Triangle plots for known hybrids and parentals
based on AlMs identified with true allele frequency difference thresholds (8) of 1 (A-C), 0.75 (D-F), and 0.5 (G-I). The left column shows the
simulation with low differentiation, the center column shows the simulation with medium differentiation, and the right column shows the
simulation with high differentiation. Solid black lines indicate the possible space on a triangle plot, and the dotted black curve indicates the
boundary below which individuals cannot occur, assuming Hardy-Weinberg Equilibrium.

In empirical systems, the optimal number of parental
individuals to sample will depend on the question, level of
divergence, and sequencing effort, among other variables. For
deeply diverged species, hybrid index and interclass hetero-
zygosity can be accurately estimated with as few as two or three
samples from each parental species, whereas more shallowly
diverged groups may require a parental sample size of twenty or
more. But as a general rule of thumb, a sample of five individuals
from each parental population will usually be sufficient to
address questions related to hybridization, provided there is
enough sequencing effort to obtain thousands of SNPs. We also
note that in our simulations, decreasing the parental sample size
from twenty to five only marginally affected the accuracy of
hybrid index and interclass heterozygosity estimates, and
precision actually increased for F2s and backcrosses. Hybrid
classes also appeared as expected on triangle plots with parental
sample sizes as few as five individuals (Supplementary Fig. S5),
an important consideration, as hybrid classes are often inferred
qualitatively based on the combination of hybrid index and
interclass heterozygosity (Fitzpatrick 2012).

Interpreting triangle plots. Triangle plots are not only useful for
identifying hybrids and assigning hybrid classes, but have also
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been used as support for the presence/absence of barriers to
reproduction (Fitzpatrick 2012; Lindtke et al. 2012; Christe et al.
2016; Pulido-Santacruz et al. 2018). To help guide such inferences,
we outline a theoretical framework for triangle plot interpretation
based on the expectations of the covariance of hybrid index and
interclass heterozygosity under HWE. We demonstrate mathema-
tically that under HWE, the possible space on a triangle plot is
defined by the lines y=2x and y=—-2x+2, and the curve
y =2x(1 —x) (Fig. 1). Deviation from those expectations - most
notably, individuals falling below the curve - is consistent with
violation of HWE and can therefore provide support for the
presence of barriers to reproduction, nonrandom mating, natural
selection, and/or genetic drift (Pulido-Santacruz et al. 2018). For
example, drift in an admixed population could cause individuals to
occur below the curve defined by HWE through the random
fixation of alleles over time. If alleles from either parental group
have an equal chance of reaching fixation in the hybrid
population, then interclass heterozygosity would decrease, but
hybrid index would remain unchanged. Importantly, the absence
of individuals below the curve defined by HWE is not evidence for
barriers to reproduction or natural selection for or against hybrids;
on the contrary, such an absence is expected when there is
random mating and no selection.

Heredity (2025) 134:251-262
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class, such that smaller values indicate higher precision.

The presence/absence of certain hybrid classes can shed light
on hybrid zone dynamics. For example, support for post-zygotic
isolation due to Dobzhansky-Muller incompatibilities (DMIs) may
be gained due to the absence of F2s (or any individuals with
hybrid index and interclass heterozygosity of 0.5), because DMIs
are expected to manifest in the F2 generation, when there is no
longer at least one copy of each parental allele at every locus
(Maheshwari and Barbash 2011; Thompson et al. 2023). This
pattern would be reflected on triangle plots by the absence of F2s
and the presence of hybrid classes along the outer edges of the
triangle. Our empirical example is suggestive of DMIs, because
only F1s, backcrosses, and parentals are observed (Fig. 6),
although more work and a larger sample is needed to fully
support the presence of DMIs in this system.

Consideration of the expectations for triangle plots under HWE
also informs inference of hybrid classes. F1s and first generation
backcrosses are easily distinguished because their combination
of hybrid index and interclass heterozygosity is unique. F2s,
however, are indistinguishable from F3s and further crosses,
because under HWE all are expected to have a hybrid index and
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interclass heterozygosity of 0.5. We also show that after only four
generations of unidirectional backcrosses to one parental group,
hybrid index (0.03125) and interclass heterozygosity (0.06250)
will be only marginally different from members of the back-
crossing parental group, making distinctions based on these
metrics difficult. Further, we show through simulations and an
empirical example that it is difficult to minimize error for
estimates of hybrid index and interclass heterozygosity for
known parentals when they are not assigned as the parental
group used for calling AIMs. As a result, the estimates for
unassigned parentals can easily be in the range of those for late
generation backcrosses (Supplementary Fig. S9). For example, in
our fox sparrow dataset, the thirteen allopatric P. iliaca that are
not assigned as the parental group have estimated interclass
heterozygosity values on par with those of individuals from the
contact zone (Fig. 6). It is therefore difficult to confidently assign
those contact zone individuals as highly backcrossed or as
parentals. We expect, however, that at least some of the sampled
individuals from the contact zone are parentals, because we
observe an F1 and first generation backcrosses in the contact
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zone, which must be the offspring of at least one parental
individual.

Some common pitfalls and ways to avoid them

Our method performs well even when there is low divergence
between parental groups, provided that there is enough sequen-
cing effort across the genome to identify >30 SNPs with high allele
frequency differences. We expect that in most cases, modern
sequencing methods (e.g. RADseq, target capture) will provide
large enough SNP datasets for this endeavor. However, if
divergence between parental groups is extremely low, such that
there are no fixed differences and <50 SNPs pass an allele
frequency different threshold of 0.5, calculating hybrid index and
interclass heterozygosity becomes inaccurate and imprecise. To
overcome such limitations, a larger proportion of the genome will
need to be sequenced. Sequencing more parental individuals and/
or sequencing the same loci at higher coverage will filter out less-
informative AlMs, but will not increase the number of AIMs
identified, which is the primary driver of accuracy and precision of
hybrid index and interclass heterozygosity estimates.

In some cases, Bayesian inference of hybrid index and
interpopulation ancestry (Q10) could overcome the limitations
imposed by datasets with few diagnostic AIMs (Gompert et al.
2024). Implemented in bgchm, this approach makes use of
sampled parental allele frequencies to estimate the likelihood
of hybrid index and Q10 across AlMs, regardless of allelic state.
In other words, this approach takes into account the possibility
that individuals with a homozygous genotype inherited each
allele from a different population. While more computationally
intensive than triangulaR (Supplementary Table S3), this
method has been shown to give accurate estimates for AlMs
with & as low as 0.5 and with parental sample sizes of 50
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(Gompert et al. 2024). Whether this method is robust to smaller
parental sample sizes and lower divergence between parental
groups is not yet clear.

When interpreting triangle plots, it is important to consider the
assumptions made when choosing a 6 threshold and assigning
individuals to parental groups. When using only fixed differences
(6=1) as AlMs, all individuals assigned as parentals will, by
definition, have an interclass heterozygosity of 0 and hybrid index
of either 0 or 1. An individual misassigned to either parental group
will, therefore, be impossible to diagnose in this context. Thus, even
if there are enough fixed differences to justify a threshold of § =1, it
is still worthwhile to explore lower thresholds, with which it may be
possible to distinguish misassigned parentals from true parentals.
This approach is most likely to work if divergence between the
parental groups is high and there are large sample sizes from each,
such that estimates for true parental individuals remain unchanged
but those for misassigned individuals do change.

If the parental populations are misspecified entirely, for
example by choosing populations that have experienced small
degrees of admixture, it can be difficult to detect based on a
triangle plot alone. Our simulations show that when partially
admixed individuals are assigned as the parental populations,
estimates of hybrid index and interclass heterozygosity for nearby
individuals are skewed towards those of the true parental
populations. For example, when five individuals from our
simulated p5 and p15 populations were misassigned as parentals,
the estimates for the majority of the remaining 15 individuals from
those populations were skewed towards parental values (Supple-
mentary Fig. S9). Even if true parentals are included, the
misspecification may not be apparent, because their interclass
heterozygosity estimates based on AlIMs from a misspecified
parental population could be more than double their true value
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(Supplementary Fig. S9). If true parentals are included, then
misspecified parental individuals could be detected using
unsupervised clustering approaches such as STRUCTURE (Pritchard
et al. 2000) or ADMIXTURE (Alexander et al. 2009), although care
should be taken to avoid common misinterpretations of results
from those approaches (Bradburd et al. 2018; Lawson et al. 2018;
Wiens and Colella 2024).

More problematic is if there are no true parentals in the
sample. In the absence of diagnostic morphological features, it
may not be possible to detect introgression into parental
populations. In our simulations, introgression occurs into the
parental populations by generation 2,000, but it is impossible to
detect using allele frequency data from that generation on,
because sites that began as fixed differences between the two
parental groups now occur in both groups. As such, sites that
were once informative of ancestry become indistinguishable
from shared ancestral variation (Fig. S8). The true history of
introgression is therefore obscured by the unknowability of
ancestral allele frequencies. Admixture proportions inferred by
unsupervised clustering algorithms also face this problem,
because the models cannot distinguish admixture in every
individual from shared ancestral variation, and subsequently
interpret the least-admixed individual(s) to belong entirely to
one genetic cluster (Lawson et al. 2018).

Future directions

Error is introduced into estimates of hybrid index and interclass
heterozygosity when the observed allele frequency differences of
AlMs between sampled populations differ from the true allele
frequency differences. Quantifying this error is exceptionally
difficult, because there is no closed-form analytical method for
deriving the probability distribution of population allele frequen-
cies based on sampled allele frequencies (Tataru et al. 2017).
Bootstrapping across parental samples and/or allele frequencies is
ineffective for quantifying error because these methods incor-
rectly assume the sampled allele frequency is the population allele
frequency and because analytical estimates of hybrid index and
interclass heterozygosity do not distinguish between identity-by-
state and identity-by-descent. Methods for estimating the
probability distribution of true allele frequencies include Markov
chains and diffusion approximation (Tataru et al. 2017), both of
which are computationally intensive, but which could be
incorporated into future versions of triangulaR to provide error
estimates and to identify the most likely hybrid class of each
sample.

Other challenges include cases where parental groups are
minimally divergent or have experienced introgression. In the
case of introgression into parental populations, analyzing the
distribution of coalescent heights across the genome may
prove effective for distinguishing introgressed loci from shared
ancestral variation (Hibbins and Hahn 2022). Additional work is
also needed to develop the theoretical expectations for
observed combinations of hybrid index and interclass hetero-
zygosity in the presence of pre- and/or post-zygotic reproduc-
tive isolation. We expect that triangulaR will be a useful
community resource for identifying and describing hybridiza-
tion using genomic data, and that with continued theoretical
development, triangle plots will serve as an effective tool for
understanding the evolutionary processes governing hybrid
zone dynamics.

DATA AVAILABILITY

The R package triangulaR is available from http://github.com/omys-omics/triangulaR.
SLiM, Bash, Python, and R scripts used to simulate genetic data and perform analyses
are available on GitHub at http://github.com/omys-omics/triangle_plot_sims. Raw
VCF output from SLiM simulations are available at the same link. Raw reads for the
empirical example are deposited in the NCBI SRA (BioProject PRINA1243450).
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