Abstract
Tropical dry forests (TDF) are among the ecosystems with the highest deforestation and transformation rates. Because of habitat loss and fragmentation, modified landscapes can impose resistance to the movement of individuals, with important genetic consequences. One of the most affected taxa due to habitat alteration are amphibians, which currently face extreme population declines globally. Here, we used single nucleotide polymorphisms (SNPs) to evaluate genetic diversity, genetic structure, and the effect of landscape elements on genetic connectivity of the Mexican tree frog (Agalychnis dacnicolor) in a TDF biodiversity hotspot in Mexico. We collected samples of 96 individuals from 16 sites located within fragmented areas of TDF and within continuous forest in the Chamela-Cuixmala region. Sampling sites from the fragmented forest showed slightly lower genetic diversity and effective population size compared to those in the continuous forest. We detected three admixed genetic groups, in which most of the sites within the fragmented forest were differentiated from the sites within continuous forest. Although these analyses suggest historical gene flow, we did not detect significant recent migration among the three genetic groups. While original vegetation (TDF + tropical evergreen forest), and in some areas, agriculture facilitated genetic connectivity, open-areas (grasslands + human settlements + exposed soil), and agriculture in other areas limited genetic connectivity in A. dacnicolor. This study helps to understand the factors shaping contemporary population divergence in highly modified complex landscapes, and highlights the importance to maintain connectivity in a rapidly changing ecosystem.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
Raw sequence reads and metadata are deposited to Sequence Read Archive (SRA) in NCBI, under BioProject PRJNA1233838 (accession nos. SAMN47280615 – SAMN47280700). SNPs dataset from the de novo alignment is accessible at OSF open platform (https://osf.io/ph623).
References
Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664
Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinforma 12:1–6
Andrews S (2010) FastQC: a Quality Control Tool for High Throughput Sequence Data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Antunes B, Figueiredo-Vázquez C, Dudek K, Liana M, Pabijan M, Zieliński P et al. (2023) Landscape genetics reveals contrasting patterns of connectivity in two newt species (Lissotriton montandoni and L. vulgaris). Mol Ecol 32:4515–4530
Arroyo-Lambaer A, Chapman H, Hale M, Blackbum D (2018) Conservation genetics of two threatened frogs from the Mambilla highlands, Nigeria. PLoS One 13:e0202010
Babik W, Marszałek M, Dudek K, Antunes B, Palomar G, Zając B et al. (2024) Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural–urban gradients. Evol Appl 17:e13700
Bayona-Vásquez NJ, Glenn TC, Kieran TJ, Pierson TW, Hoffberg SL, Scott PA et al. (2019) Adapterama III: Quadruple-indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD). PeerJ 7:e7724
Beebe TJC, Griffiths RA (2005) The amphibian decline crisis: A watershed for conservation biology?. Biol Conserv 125:271–285
Bland AW, McLaren E, Trimmings A (2021) Husbandry and captive reproduction of the giant Mexican leaf frog Agalychnis dacnicolor. Herpetol Bull 158:6–10
Bolker BM (2008) Ecological models and data in R. Princeton, University Press, Princeton
Castillo A, Pujadas A, Schroeder N (2007) La reserva de la biosfera Chamela-Cuixmala, México: perspectivas de los pobladores rurales sobre el bosque tropical seco y la conservación de ecosistemas. In: Halffter G, Guevara S, Melic A (eds) Hacia una cultura de conservación de la diversidad biológica, m3m: Monografías Tercer Milenio. España, pp 245–254
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140
Ceballos G, García A (1995) Conserving neotropical biodiversity: the role of dry forests in western Mexico. Conserv Biol 9:1349–1353
Ceballos G, Valenzuela D (2010) Diversidad, ecología y conservación de los vertebrados de Latinoamérica. In: Ceballos G, Martínez L, García A, Espinoza E, Bezaury J, Dirzo R (eds). Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México. FCE, Conabio, Conanp, Telmex, Ecociencia WWF/Telcel, México, D.F., México, pp 93–118
Ceballos G, Szekely A, García A, Rodríguez P, Noguera F (1999) Programa de manejo de la Reserva de la Biosfera Chamela-Cuixmala. Instituto Nacional de Ecología, Secretaría de Medio Ambiente y Recursos Naturales, México, D.F., México
Challenger A, Soberón J (2008) Los ecosistemas terrestres. In: Soberón J, Halffter G, Llorente-Bousquets J (eds) Capital natural de México, Volumen I: Conocimiento actual de la biodiversidad, Conabio, México, pp 87–108
Chan KO, Brown RM (2020) Elucidating the drivers of genetic differentiation in Malaysian torrent frogs (Anura: Ranidae: Amolops): a landscape genomics approach. Zool Linn Soc 190:65–78
Cheptou PO, Hargreaves AL, Bonte D, Jacquemyn H (2017) Adaptation to fragmentation: Evolutionary dynamics driven by human influences. Philos Trans R Soc B: Biol Sci 372:20160037
Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: Estimating gene flow with distance. JABES 7:361–372
Cohen J (1992) A power primer. Psychol Bull 112:112155–112159
Covarrubias S, González C, Gutiérrez-Rodríguez C (2021) Effects of natural and anthropogenic features on functional connectivity of anurans: a review of landscape genetics studies in temperate, subtropical, and tropical species. J Zool 313:159–171
Covarrubias S, Gutiérrez-Rodríguez C, Rojas-Soto O, Hernández-Guzmán R, González C (2022) Functional connectivity of an endemic tree frog in a highly threatened tropical dry forest in Mexico. Écoscience 29:69–85
[dataset]Covarrubias, S, Gutiérrez-Rodríguez, C, and González C; 2024; SNPs dataset from the de novo alignment; OSF open platform; Persistent identifier ((https://osf.io/ph623)
Crump M, Scott NJ Jr (1994) Visual encounter surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, pp 76–141
Cushman SA, McRae HB, McGarigal K (2016) Basics of landscape ecology: an introduction to landscapes and population processes for landscape geneticists. In: Balkenhol N, Cushman S, Storfer A, Waits L (eds) Landscape genetics: concepts, methods, applications. John Wiley and Sons, West Sussex, UK, pp 9–34
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, 1000 Genomes Project Analysis Group et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158
Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569
Do C, Waples RS, Peel D, Macbeth GM, Tillett BF, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214
Dodd CK (2009). Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, USA
Doherty TS, Driscoll DA (2018) Coupling movement and landscape ecology for animal conservation in production landscapes. Proc Biol Sci 285:20172272
Duellman WE (1970) The hylid frogs of Middle America. University of Kansas Press, Lawrence
Dupoué A, Trochet A, Richard M, Sorlin M, Guillon M, Teulieres-Quillet J et al. (2021) Genetic and demographic trends from rear to leading edge are explained by climate and forest cover in a cold-adapted ectotherm. Divers Distrib 27:267–281
ESRI Environmental Systems Research Institute., 2015. Arc GIS Desktop: Release 10.3.1. ESRI, Redlands
Eterovick PC, Sloss BL, Scalzo JAM, Alford RA (2016) Isolated frogs in a crowded world: Effects of human caused habitat loss on frog heterozygosity and fluctuating asymmetry. Biol Conserv 195:52–59
Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567
Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ et al. (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112
Frankham R, Briscoe DA, Ballou JD (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK
Fusco NA, Pehek E, Munshi-South J (2021) Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area. Evol Appl 14:99–116.
García A, Ceballos G (1994) Guía de campo de los reptiles y anfibios de la costa de Jalisco, México. Fundación Ecológica de Cuixmala, A.C. Instituto de Biología, UNAM, México
García A, Solano-Rodríguez H, Flores-Villela O (2007) Patterns of alpha, beta and gamma diversity for the herpetofauna of pacific lowlands and adjacent interior valleys of Mexico. Anim Biodiv Conserv 30:169–177
Glenn TC, Nilsen RA, Kieran TJ, Sanders JG, Bayona-Vásquez NJ, Finger JW et al. (2019) Adapterama I: Universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ 7:e7755
Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186
Guarnizo CE, Cannatella DC (2014) Geographic determinants of gene flow in two sister species of tropical Andean frogs. J Hered 105:216–225
Gutierrez-Rodriguez J, Gonçalves J, Civantos E, Maia-Carvalho B, Caballero-Diaz C, Gonçalves H et al. (2023) The role of habitat features in patterns of population connectivity of two Mediterranean amphibians in arid landscapes of central Iberia. Landsc Ecol 38:99–116
Hardy BM, Pope KL, Latch EK (2021) Genomic signatures of demographic declines in an imperiled amphibian inform conservation action. Anim Conserv 24:946–958
Hernández-Guzmán R, Ruiz-Luna A, González C (2019) Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico. RSASE 13:318–327
Hether TD, Hoffman EA (2012) Machine learning identifies specific habitats associated with genetic connectivity in Hyla squirella. J Evol Biol 25:1039–1052
Hitchings SP, Beebe TJC (1997) Genetic substructuring as a result of barrier to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity 79:117–127
Homan RN, Windmiller BS, Reed JM (2004) Critical thresholds associated with habitat loss for two vernal pool-breeding amphibians. Ecol Appl 14:1547–1553
Honorato R, Crouzeilles R, Ferreira MS, Grelle CEV (2015) The effects of habitat availability and quality on small mammals abundance in the Brazilian Atlantic Forest. Nat Conserv 13:133–138
Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science 358:eaam8327
Jombart T (2008) adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405
Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet 11:1–15
Keely CC, Hale JM, Heard GW, Parris KM, Sumner J, Hamer AJ et al. (2015) Genetic structure and diversity of the endangered growling grass frog in a rapidly urbanizing. R Soc Open Sci 2:140255
Kopatz AH, Eiken G, Schregel J, Aspi J, Kojola I, Hagen SB (2017) Genetic substructure and admixture as important factors in linkage disequilibrium-based estimation of effective number of breeders in recovering wildlife populations. Ecol Evol 7:10721–10732
Koscinski D, Yates AG, Handford P, Lougheed SC (2009) Effects of landscape and history on diversification of a montane, stream-breeding amphibian. J Biogeogr 36:255–265
Lampert KP, Rand AS, Mueller UG, Ryan MJ (2003) Fine-scale genetic pattern and evidence for sex-biased dispersal in the túngara frog Physalaemus pustulosus. Mol Ecol 12:3325–3334
Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191
Lott EJ, Bullock SH, Solís-Magallanes JA (1987) Floristic diversity structure of upland and arroyo forest of coastal Jalisco. Biotropica 19:228–235
Lott EJ, Atkinson TH (2002) Biodiversidad y fitogeografía de Chamela-Cuixmala, Jalisco. In: Noguera FA, Vega J, Quesada M (eds) Historia natural de Chamela.Universidad Nacional Autónoma de México, México, D.F., México, pp 83–97
Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A et al. (2023) Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622:308–314.
Luikart G et al. (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373.
Maass JM, Balvanera P, Castillo A, Daily GC, Mooney HA, Ehrlich P et al. (2005) Ecosystem services of tropical dry forests: insights from long-term ecological and social research on the Pacific Coast of Mexico. Ecol Soc 10:17
Malpica A, González C (2023) Landscape anthropization explains the genetic structure of an endemic Mexican bird (Thryophilus sinaloa: Troglodytidae) across the tropical dry forest biodiversity hotspot. Landsc Ecol 38:3249–3268
Manel S, Holderegger R (2013) Ten years of landscape genetics. Tr Ecol Evol 28:614–621
Manichaikul A, Mychalecky JC, Rich SS, Daly K, Sale M, Chen WM (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26:2867–2873
Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49
McRae BH, Dickson BG, Keith TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution and conservation. Ecology 89:2712–2724
Medina I, Cooke GM, Ord TJ (2018) Walk, swim or fly? Locomotor mode predicts genetic differentiation in vertebrates. Ecol Lett 21:638–645
Miller JM, Cullingham CI, Peer RM (2020) The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity 125:269–280
Mims MC, Hauser L, Goldberg CS, Olden JD (2016) Genetic differentiation, isolation-by-distance, and metapopulation dynamics of the Arizona treefrog (Hyla wrightorum) in an isolated portion of its range. PLoS One 11:e0160655
Moore I, Gessler P, Nielsen G, Petersen G (1993) Terrain attributes and estimation methods and scale effects. In: Jakeman A, Beck M, McAleer M (eds) Modeling Change in Environmental Systems. Wiley, London, pp 189–214
Moore CE, Mims MC (2024) Sampling through space and time: multi-year analysis reveals dynamic population genetic patterns for an amphibian metapopulation. Conserv Genet 25:771–788
Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3664–3649
Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: Contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10:1808–1813
Neel MC, McKelvey K, Ryman N, Lloyd MW, Short Bull R, Allendorf FW et al. (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111:189–199
Newbold T, Oppenheimer P, Etard A, Williams JJ (2020) Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat Ecol Evol 4:1630–1638
Nowakowski AJ, Veiman-Echeverria M, Kurz DJ, Donnelly MA (2015) Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces. Ecol Appl 25:928–942
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W (2020) Evolutionary principles guiding amphibian conservation. Evol Appl 13:857–878
Palacio-Prieto JL, Bocco G, Velázquez A, Mas JF, Takaki-Takaki F, Victoria A et al. (2000) Current situation of forest resources in Mexico: results of the 2000 National Forest Inventory 2000. Invest Geog 43:183–203
Paris JR, Stevens JR, Catchen JM (2017) Lost in parameter space: a road map for stacks. Methods Ecol Evol 8:1360–1373
Parsley MB, Torres ML, Banerjee SM, Tobias ZJC, Goldberg CS, Murphy MA et al. (2020) Multiple lines of genetic inquiry reveal effects of local and landscape factors on an amphibian metapopulation. Landsc Ecol 35:319–335
Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF et al. (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501
Pereira-Monteiro W, Costa-Veiga J, Reis-Silva A, da Silva- Carvalho C, Malta-Lanes EC, Rico Y et al. (2019) Everything you always wanted to know about gene flow in tropical landscapes (but were afraid to ask). PeerJ 13:e6446
Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413
Peterman WE (2018) ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647
Quesada M, Álvarez-Añorve M, Ávila-Cabadilla L, Castillo A, Lopezaraiza-Mikel M, Martén-Rodríguez S, et al. (2014) Tropical dry forest ecological succession in Mexico: synthesis of a long-term study. In: Sánchez-Azofeifa A, Powers J, Fernandes G, Quesada M, eds, Tropical Dry Forest in the Americas, CRC Press, pp 17–53
R Core Team (2021) R: A language and environment for statis- tical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 2021
Rais M, Ahmed W (2021) Amphibian Dispersal Among Terrestrial Habitats and Wetlands in a Landscape. In: Leal Filho W, Azul AM, Brandli L, Lange Salvia A, Wall T (eds) Life on Land. Encyclopedia of the UN Sustainable Development Goals. (Springer, Cham, Switzerland) pp 1–12
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904
Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237
Reigada C, Schreiber SJ, Altermatt F, Holyoak M (2015) Metapopulation dynamics on ephemeral patches. Am Nat 185:183–195
Rémy A, Le Galliard J, Gundersen G, Steen H, Andreassen HP (2011) Effects of individual condition and habitat quality on natal dispersal behaviour in a small rodent. J Anim Ecol 80:929–937
Reyne M, Dicks K, McFarlane C, Aubry A, Emmerson M, Marnell F et al. (2022) Population genetic structure of the Natterjack toad (Epidalea calamita) in Ireland: implications for conservation management. Conserv Genet 23:325–339
Richards-Zawacki CL (2009) Effects of slope and riparian habitat connectivity on gene flow in an endangered Panamanian frog, Atelopus varius. Divers Distrib 15:796–806
Rochette NC, Catchen JM (2017) Deriving genotypes from RADseq short-read data using Stacks. Nat Protoc 12:2640–2659
Rudnick D, Beier P, Cushman S, Dieffenbach F, Epps CW, Gerber L et al. (2012) The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol 16:1–20
Sánchez-Azofeifa GA, Quesada M, Cuevas-Reyes P, Castillo A, Sánchez-Montoya G (2009) Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico. Forest Ecol Manag 258:907–912
Sandoval-Legazpi JDJ, Castañeda-Palomera A (2014) Social environmental analysis of companies: mining consortium Benito Juárez “Peña colorada” and ingenio “Melchor Ocampo”, two organizations of Jalisco south coast. CIBA 3:1–22
Scrucca L (2013) GA: A package for genetic algorithms in R. J Stat Softw 53:1–37
Semlitsch RD (2008) Differentiating migration and dispersal processes for pond breeding amphibians. J Wildl Manag 72:260–267
Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462
Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?. Ecography 28:110–128
Soto-Sandoval Y, Suazo-Ortuño I, Urbina- Cardona N, Marroquín-Páramo J, Alvarado-Díaz J (2017) Efecto de los estadios sucesionales del bosque tropical seco sobre el microhábitat usado por Agalychnis dacnicolor (Anura:Phyllomedusidae) y Smilisca fodiens (Anura: Hylidae). Rev Biol Trop 65:777–798
Spear SF, Storfer A (2008) Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests. Mol Ecol 17:4642–4656
Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: Where are we now?. Mol Ecol 19:3496–3514
Strahler AN (1957) Quantitative analysis of watershed geomorphology. EOS Trans AGU 38:913–920
Tan WC, Herrel A, Rödder D (2023) A global analysis of habitat fragmentation research in reptiles and amphibians: what have we done so far?. Biodivers Conserv 32:439–468
Thomas NE, Chadwick EA, Bruford MW, Hailer F (2025) Spatio-temporal changes in effective population size in an expanding metapopulation of eurasian otters. Evol Appl 18:e70067.
Trejo I (1999) El clima de la selva baja caducifolia en México. Investigaciones Geográficas 1:40–52
Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94:133–142
van Etten J (2017) R package gdistance, distances and routes on geographical grids. J Stat Softw 76:1–21
Villaseñor NR, Driscoll DA, Gibbons P, Calhoun AJK, Lindenmayer DB (2017) The relative importance of aquatic and terrestrial variables for frogs in and urbanizing landscape: key insight for sustainable urban development. Landscape Urban Plan 157:26–35
Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262
Waples RS (2025) The idiot’s guide to effective population size. Mol Ecol 0:e17670
Wei X, Huang M, Yue Q, Ma S, Li B, Mu Z et al. (2021) Long-term urbanization impacts the eastern golden frog (Pelophylax plancyi) in Shanghai City: Demographic history, genetic structure, and implications for amphibian conservation in intensively urbanizing environments. Evol Appl 14:117–135
Wiens JJ (2007) Global patterns of diversification and species richness in amphibians. Am Nat 170:S86–S106
Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191
Zabel F, Delzeit R, Schneider JM, Seppelt R, Mauser W, Václavík T (2019) Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat Comm 10:1–10
Zhan A, Li C, Fu J (2009) Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China. BMC Genet 10:1–10
Acknowledgements
We thank Pedro Castillo, Alberto Sánchez, Yessenia Fraga, Jorge Marroquin, and Ariana González for field assistance, as well as Katherine Renton and the staff of the Estación de Biología Chamela (UNAM) for their logistic support. We also thank N. Bayona from the BadDNA@UGA facility for library preparation and sequencing; Eva María Piedra and Violeta Patiño for advise in molecular work; Jessica Pérez, Victor Piñeros, Andreia Malpica and Christian Morán, María Camila Latorre, and Ingrid Lara for assistance with genomic analyses; Rafael Hernández-Guzmán and Xochiquetzal Cortés for their support in landscape analyses; Emmanuel Villafán for his help in using the computer cluster Huitzilin of the Instituto de Ecología, A. C.; Frank Hailer and three anonymous reviewers who provided useful comments on a previous version of the manuscript. This research was funded by the Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT) through a project grant (PDCPN 2015-1250) to Clementina González. This study constitutes partial fulfilment of Sara Covarrubias’ doctoral degree (Programa Institucional de Doctorado en Ciencias Biológicas at the Universidad Michoacana de San Nicolás de Hidalgo).
Author information
Authors and Affiliations
Contributions
CG conceived the study. SC, CG-R and CG developed the ideas and designed data collection and analyses. SC collected and analyzed the data with input of CG and CG-R. SC, CG-R and CG participated in manuscript conceptualization and writing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
All sampling procedures were conducted with the permissions of Mexico’s Secretaría de Medio Ambiente y Recursos Naturales, Subsecretaría de Gestión para la Protección Ambiental, Dirección General de Vida Silvestre (permit numbers: SGPA/DGVS/10390/17 and SGPA/DGVS/05374/19).
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Associate editor: Frank Hailer.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Covarrubias, S., Gutiérrez-Rodríguez, C. & González, C. Recent habitat modification of a tropical dry forest hotspot drives population genetic divergence in the Mexican leaf frog: a landscape genetics approach. Heredity 134, 306–320 (2025). https://doi.org/10.1038/s41437-025-00761-1
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41437-025-00761-1