Abstract
Structural variants, such as deletions, insertions, and inversions, have been increasingly recognized as important drivers of genome evolution, in the era of high-throughput sequencing. However, large-scale chromosomal rearrangements involving multiple chromosomes, including translocations, chromosomal fusions, and fissions, remain relatively understudied, especially outside of clinical and model systems, due to challenges in their detection and analysis. While the earlier understanding of translocations came from human cancer genomics, how such mutations have shaped genome evolution across animal lineages remains insufficiently understood. Recent advances in long-read sequencing, chromosome-level assemblies, and 3D genome conformation techniques are now revealing the prevalence and evolutionary significance of these large genomic structural rearrangements. Translocations can relocate genes into new regulatory environments, chromosome fusions can suppress recombination, and chromosome fissions can restructure chromosomal architecture, modifying the spatial and regulatory context of genes, thereby shaping evolutionary potential. Transposable elements further complicate this landscape by both promoting chromosomal instability and serving as substrates for rearrangement. Together, these changes can drive adaptive evolution, shape karyotype evolution, and contribute to sex chromosome turnover.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
This article does not contain any original data.
References
Akera T, Chmátal L, Trimm E et al. (2017) Spindle Asymmetry Drives Non-Mendelian Chromosome Segregation. Science 358(6363):668–672. https://doi.org/10.1126/science.aan0092
Al-Achkar W, Wafa A, Ikhtiar A, Liehr T (2013) Three-Way Philadelphia Translocation t(9;10;22)(Q34;P11.2;Q11.2) as a Secondary Abnormality in an Imatinib Mesylate-Resistant Chronic Myeloid Leukemia Patient. Oncol Lett 5(5):1656–1658. https://doi.org/10.3892/ol.2013.1228
Arora UP, Dumont BL (2022) Meiotic Drive in House Mice: Mechanisms, Consequences, and Insights for Human Biology. Chromosome Res 30(2–3):165–186. https://doi.org/10.1007/s10577-022-09697-2
Ashburner, M. Drosophila. Cold Spring Harbor Laboratory, 1989.
Asif M, Hussain A, Wali A et al. (2021) Molecular, Cytogenetic, and Hematological Analysis of Chronic Myeloid Leukemia Patients and Discovery of Two Novel Translocations Anal Cell Pathol 1–19. https://doi.org/10.1155/2021/4909012. August
Aten JA, Stap J, Krawczyk PM et al. (2004) Dynamics of DNA Double-Strand Breaks Revealed by Clustering of Damaged Chromosome Domains. Science 303(5654):92–95. https://doi.org/10.1126/science.1088845
Augustijnen H, Arias‐Sardá C, Farré M, Lucek K (2024) A Genomic Update on the Evolutionary Impact of Chromosomal Rearrangements. Mol Ecol 33(24):e17602. https://doi.org/10.1111/mec.17602
Augustijnen H, Bätscher L, Cesanek M et al. (2024) A Macroevolutionary Role for Chromosomal Fusion and Fission in Erebia Butterflies. Sci Adv 10(16):eadl0989. https://doi.org/10.1126/sciadv.adl0989
Aymard F, Aguirrebengoa M, Guillou E et al. (2017) Genome-Wide Mapping of Long-Range Contacts Unveils Clustering of DNA Double-Strand Breaks at Damaged Active Genes. Nat Struct Mol Biol 24(4):353–361. https://doi.org/10.1038/nsmb.3387
Baca SC, Prandi D, Lawrence MS et al. (2013) Punctuated Evolution of Prostate Cancer Genomes. Cell 153(3):666–677. https://doi.org/10.1016/j.cell.2013.03.021
Balachandran P, Walawalkar IA, Flores JI, Dayton JN, Audano PA, Beck CR (2022) Transposable Element-Mediated Rearrangements Are Prevalent in Human Genomes. Nat Commun 13(1):7115. https://doi.org/10.1038/s41467-022-34810-8
Bandyopadhyay R, McCaskill C, Knox‐Du Bois C et al. (2003) Mosaicism in a Patient with Down Syndrome Reveals Post‐fertilization Formation of a Robertsonian Translocation and Isochromosome. Am J Med Genet Part A 116A(2):159–163. https://doi.org/10.1002/ajmg.a.10113
Bickmore WA, Teague P (2002) Influences of Chromosome Size, Gene Density and Nuclear Position on the Frequency of Constitutional Translocations in the Human Population. Chromosome Res 10(8):707–715. https://doi.org/10.1023/A:1021589031769
Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G (2004) Inverted Meiosis and Meiotic Drive in Mealybugs. Chromosoma 112(7):331–341. https://doi.org/10.1007/s00412-004-0278-4
Bracewell RR, Bentz BJ, Sullivan BT, Good JM (2017) Rapid Neo-Sex Chromosome Evolution and Incipient Speciation in a Major Forest Pest. Nat Commun 8(1):1593. https://doi.org/10.1038/s41467-017-01761-4
Brusentsov II, Gordeev MI, Yurchenko AA et al. (2023) Patterns of Genetic Differentiation Imply Distinct Phylogeographic History of the Mosquito Species Anopheles Messeae and Anopheles Daciae in Eurasia. Mol Ecol 32(20):5609–5625. https://doi.org/10.1111/mec.17127
Burssed B, Zamariolli M, Bellucco FT, Melaragno MI (2022) Mechanisms of Structural Chromosomal Rearrangement Formation. Mol Cytogenetics 15(1):23. https://doi.org/10.1186/s13039-022-00600-6
Canoy RJ, Shmakova A, Karpukhina A, Shepelev M, Germini D, Vassetzky Y (2022) Factors That Affect the Formation of Chromosomal Translocations in Cells. Cancers 14(20):5110. https://doi.org/10.3390/cancers14205110
Castiglia R, Capanna E (2000) Contact Zone between Chromosomal Races of Mus Musculus Domesticus. 2. Fertility and Segregation in Laboratory-Reared and Wild Mice Heterozygous for Multiple Robertsonian Rearrangements. Heredity 85(2):147–156. https://doi.org/10.1046/j.1365-2540.2000.00743.x
Charlesworth D, Charlesworth B (1980) Sex Differences in Fitness and Selection for Centric Fusions between Sex-Chromosomes and Autosomes. Genetical Res 35(2):205–214. https://doi.org/10.1017/S0016672300014051
Charlesworth D, Charlesworth B, Marais G (2005) Steps in the Evolution of Heteromorphic Sex Chromosomes. Heredity 95(2):118–128. https://doi.org/10.1038/sj.hdy.6800697
Chmátal L, Gabriel SI, Mitsainas GP et al. (2014) Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice. Curr Biol 24(19):2295–2300. https://doi.org/10.1016/j.cub.2014.08.017
Clark FE, Akera T (2021) Unravelling the Mystery of Female Meiotic Drive: Where We Are. Open Biol 11(9):210074. https://doi.org/10.1098/rsob.210074
Conte MA, Clark FE, Roberts RB et al. (2021) Origin of a Giant Sex Chromosome. Mol Biol Evolution 38(4):1554–1569. https://doi.org/10.1093/molbev/msaa319
Cortés-Ciriano I, June-Koo Lee J, Xi R et al. (2020) Comprehensive Analysis of Chromothripsis in 2,658 Human Cancers Using Whole-Genome Sequencing. Nat Genet 52(3):331–341. https://doi.org/10.1038/s41588-019-0576-7
Cox RM, Calsbeek R (2009) Sexually Antagonistic Selection, Sexual Dimorphism, and the Resolution of Intralocus Sexual Conflict. Am Naturalist 173(2):176–187. https://doi.org/10.1086/595841
Cunha MS, Soares FAF, Clarindo WR, Campos LAO, Lopes DM (2021) Robertsonian Rearrangements in Neotropical Meliponini Karyotype Evolution (Hymenoptera: Apidae: Meliponini). Insect Mol Biol 30(4):379–389. https://doi.org/10.1111/imb.12702
Dagilis AJ, Sardell JM, Josephson MP, Su Y, Kirkpatrick M, Peichel CL (2022) Searching for Signatures of Sexually Antagonistic Selection on Stickleback Sex Chromosomes. Philos Trans R Soc B: Biol Sci 377(1856):20210205. https://doi.org/10.1098/rstb.2021.0205
Danecek P, Auton A, Abecasis G et al. (2011) The Variant Call Format and VCFtools. Bioinformatics 27(15):2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Danecek P, Bonfield JK, Liddle J et al. (2021) Twelve Years of SAMtools and BCFtools. GigaScience 10(2):giab008. https://doi.org/10.1093/gigascience/giab008
Dardas Z, Marafi D, Duan R et al. (2025) Genomic Balancing Act: Deciphering DNA Rearrangements in the Complex Chromosomal Aberration Involving 5p15.2, 2q31.1, and 18q21.32. Eur J Hum Genet 33(2):231–238. https://doi.org/10.1038/s41431-024-01680-1
De Villena F, P-M, Sapienza C (2001) Female Meiosis Drives Karyotypic Evolution in Mammals. Genetics 159(3):1179–1189. https://doi.org/10.1093/genetics/159.3.1179
de Vos JM, Augustijnen H, Bätscher L, Lucek K (2020) Speciation through Chromosomal Fusion and Fission in Lepidoptera. Philos Trans R Soc B: Biol Sci 375(1806):20190539. https://doi.org/10.1098/rstb.2019.0539
Diblasi, C, N Barson, and M Saitou. (2023) Resolving Large-Scale Genome Evolution in the High-Throughput Sequencing Era: Structural Variants, Genome Rearrangement, and Karyotype Dynamics in Animals. Preprint. https://doi.org/10.32942/X2J59Q.
Dimitrova N, Chen Y-CM, Spector DL, De Lange T (2008) 53BP1 Promotes Non-Homologous End Joining of Telomeres by Increasing Chromatin Mobility. Nature 456(7221):524–528. https://doi.org/10.1038/nature07433
Dinkel BJ, O’Laughlin-Phillips EA, Fechheimer NS, Jaap RG (1979) Gametic Products Transmitted by Chickens Heterozygous for Chromosomal Rearrangements. Cytogenetic Genome Res 23(1–2):124–136. https://doi.org/10.1159/000131313
Dobzhansky T (1933) On the Sterility of the Interracial Hybrids in Drosophila Pseudoobscura. Proc Natl Acad Sci 19(4):397–403. https://doi.org/10.1073/pnas.19.4.397
Duan D-M, Cheng C, Huang Y-S et al. (2025) Comparisons of Performances of Structural Variants Detection Algorithms in Solitary or Combination Strategy. PLOS ONE 20(2):e0314982. https://doi.org/10.1371/journal.pone.0314982
Dumas D, Britton-Davidian J (2002) Chromosomal Rearrangements and Evolution of Recombination: Comparison of Chiasma Distribution Patterns in Standard and Robertsonian Populations of the House Mouse. Genetics 162(3):1355–1366. https://doi.org/10.1093/genetics/162.3.1355
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X (2024) Chromothripsis: An Emerging Crossroad from Aberrant Mitosis to Therapeutic Opportunities. J Mol Cell Biol 16(4):mjae016. https://doi.org/10.1093/jmcb/mjae016
Escudeiro A, Adega F, Robinson TJ, Heslop-Harrison JS, Chaves R (2021) Analysis of the Robertsonian (1;29) Fusion in Bovinae Reveals a Common Mechanism: Insights into Its Clinical Occurrence and Chromosomal Evolution. Chromosome Res 29(3–4):301–312. https://doi.org/10.1007/s10577-021-09667-0
Fang B, Edwards SV (2024) Fitness Consequences of Structural Variation Inferred from a House Finch Pangenome. Proc Natl Acad Sci 121(47):e2409943121. https://doi.org/10.1073/pnas.2409943121
Faria R, Johannesson K, Butlin RK, Westram AM (2019) Evolving Inversions. Trends Ecol Evolution 34(3):239–248. https://doi.org/10.1016/j.tree.2018.12.005
Faria R, Navarro A (2010) Chromosomal Speciation Revisited: Rearranging Theory with Pieces of Evidence. Trends Ecol Evolution 25(11):660–669. https://doi.org/10.1016/j.tree.2010.07.008
Featherstone C, Jackson SP (1999) DNA Double-Strand Break Repair. Curr Biol 9(20):R759–R761. https://doi.org/10.1016/S0960-9822(00)80005-6
Finnegan DJ (1989) Eukaryotic Transposable Elements and Genome Evolution. Trends Genet 5:103–107. https://doi.org/10.1016/0168-9525(89)90039-5
Forejt J (1996) Hybrid Sterility in the Mouse. Trends Genet 12(10):412–417. https://doi.org/10.1016/0168-9525(96)10040-8
García Fernández F, Fabre E (2022) The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks. Genes 13(2):215. https://doi.org/10.3390/genes13020215
García-Angulo A, Merlo MA, Portela-Bens S et al. (2018) Evidence for a Robertsonian Fusion in Solea Senegalensis (Kaup, 1858) Revealed by Zoo-FISH and Comparative Genome Analysis. BMC Genomics 19(1):818. https://doi.org/10.1186/s12864-018-5216-6
Gerton JL (2024) A Working Model for the Formation of Robertsonian Chromosomes. J Cell Sci 137(7):jcs261912. https://doi.org/10.1242/jcs.261912
Ghezraoui H, Piganeau M, Renouf B et al. (2014) Chromosomal Translocations in Human Cells Are Generated by Canonical Nonhomologous End-Joining. Mol Cell 55(6):829–842. https://doi.org/10.1016/j.molcel.2014.08.002
Giménez MD, White TA, Hauffe HC, Panithanarak T, Searle JB (2013). Understanding the basis of diminished gene flowbetween hybridizing chromosome races of the house mouse: diminished gene flow between hybridizing races. Evolution 67(5):1446–1462. https://doi.org/10.1111/evo.12054
Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA Damage Signaling in Response to Double-Strand Breaks during Mitosis. J Cell Biol 190(2):197–207. https://doi.org/10.1083/jcb.200911156
Gomes De Lima L, Guarracino A, Koren S et al. (2024) The Formation and Propagation of Human Robertsonian Chromosomes. Preprint. https://doi.org/10.1101/2024.09.24.614821.
Gothe, H J, V Minneker, and V Roukos. “Dynamics of Double-Strand Breaks: Implications for the Formation of Chromosome Translocations.” In Chromosome Translocation, edited by Yu Zhang, vol. 1044. Advances in Experimental Medicine and Biology. Springer Singapore, 2018. https://doi.org/10.1007/978-981-13-0593-1_3.
Guerrero RF, Kirkpatrick M (2014) LOCAL ADAPTATION AND THE EVOLUTION OF CHROMOSOME FUSIONS: CHROMOSOME FUSIONS AND LOCAL ADAPTATION. Evolution 68(10):2747–2756. https://doi.org/10.1111/evo.12481
Han W, Liu L, Wang J et al. (2022) Ancient Homomorphy of Molluscan Sex Chromosomes Sustained by Reversible Sex-Biased Genes and Sex Determiner Translocation. Nat Ecol Evolution 6(12):1891–1906. https://doi.org/10.1038/s41559-022-01898-6
Harewood L, Kishore K, Eldridge MD et al. (2017) Hi-C as a Tool for Precise Detection and Characterisation of Chromosomal Rearrangements and Copy Number Variation in Human Tumours. Genome Biol 18(1):125. https://doi.org/10.1186/s13059-017-1253-8
Hartley GA, Okhovat M, Hoyt SJ et al. (2025) Centromeric Transposable Elements and Epigenetic Status Drive Karyotypic Variation in the Eastern Hoolock Gibbon. Cell Genomics 5(4):100808. https://doi.org/10.1016/j.xgen.2025.100808
Hedges DJ, Deininger PL (2007) Inviting Instability: Transposable Elements, Double-Strand Breaks, and the Maintenance of Genome Integrity. Mutat Res/Fundamental Mol Mechanisms Mutagenesis 616(1–2):46–59. https://doi.org/10.1016/j.mrfmmm.2006.11.021
Hickman AB, Voth AR, Ewis H, Li X, Craig NL, Dyda F (2018) Structural Insights into the Mechanism of Double Strand Break Formation by Hermes, a hAT Family Eukaryotic DNA Transposase. Nucleic Acids Res 46(19):10286–10301. https://doi.org/10.1093/nar/gky838.
Hoff SNK, Maurstad M, Tørresen OK, et al. “Chromosomal Fusions and Large-Scale Inversions Are Key Features for Adaptation in Arctic Codfish Species.” Preprint, June 28, 2024. https://doi.org/10.1101/2024.06.28.599280.
Holland AJ, Cleveland DW (2012) Chromoanagenesis and Cancer: Mechanisms and Consequences of Localized, Complex Chromosomal Rearrangements. Nat Med 18(11):1630–1638. https://doi.org/10.1038/nm.2988
Houben, A, J Fuchs, A M Banaei-Moghaddam, J Chen, G Kim, and T Liu. Does Chromoanagenesis Play a Role in the Origin of B Chromosomes? Heredity, ahead of print, April 19, 2025. https://doi.org/10.1038/s41437-025-00758-w.
Huang Z, De O, Furo O, Liu J et al. (2022) Recurrent Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in Parrots. Nat Commun 13(1):944. https://doi.org/10.1038/s41467-022-28585-1
Jackson CE, Xu S, Ye Z et al. Chromosomal Rearrangements Preserve Adaptive Divergence in Ecological Speciation. Preprint, August 21, 2021. https://doi.org/10.1101/2021.08.20.457158.
Jamal A, Mousavi S, Alavi A (2012) Coincidence of Trisomy 18 and Robertsonian (13; 14). Iran J Public Health 41(7):91–93
Jourdain J, Barasc H, Faraut T et al. (2023) Large-Scale Detection and Characterization of Interchromosomal Rearrangements in Normozoospermic Bulls Using Massive Genotype and Phenotype Data Sets. Genome Res 33(6):957–971. https://doi.org/10.1101/gr.277787.123
Kandul NP, Lukhtanov VA, Pierce NE (2007) Karyotypic diversity and speciation agrodiaetus butterflies Evolution 61(3):546–559. https://doi.org/10.1111/j.1558-5646.2007.00046.x
Kang Z-J, Liu Y-F, Xu L-Z et al. (2016) The Philadelphia Chromosome in Leukemogenesis. Chin J Cancer 35(1):48. https://doi.org/10.1186/s40880-016-0108-0
Kawahara K, Inada T, Tanaka R et al. (2023) Differentially Expressed Genes Associated with Body Size Changes and Transposable Element Insertions between Caenorhabditis Elegans and Its Sister Species, Caenorhabditis Inopinata. Genome Biol Evolution 15(4):evad063. https://doi.org/10.1093/gbe/evad063
King M (1993) Species Evolution: The Role of Chromosome Change. Cambridge university press
Kitano J, Ross JA, Mori S et al. (2009) A Role for a Neo-Sex Chromosome in Stickleback Speciation. Nature 461(7267):1079–1083. https://doi.org/10.1038/nature08441
Klein SJ, O’Neill RJ (2018) Transposable Elements: Genome Innovation, Chromosome Diversity, and Centromere Conflict. Chromosome Res 26(1–2):5–23. https://doi.org/10.1007/s10577-017-9569-5
Kleinjan DA, Lettice LA (2008) Chapter 13 Long‐Range Gene Control and Genetic Disease. In Advances in Genetics, vol. 61. Elsevier. https://doi.org/10.1016/S0065-2660(07)00013-2.
Klinner U, Böttcher F (1985) Chromosomal Rearrangements after Protoplast Fusion in the Yeast Candida Maltosa. Curr Genet 9(7):619–621. https://doi.org/10.1007/BF00381176
Kolgeci S, Azemi M, Ahmeti H, Dervishi Z, Sopjani M, Kolgeci J (2012) Recurrent Abortions and Down Syndrome Resulting from Robertsonian Translocation 21q; 21q. Med Arch 66(5):350. https://doi.org/10.5455/medarh.2012.66.350-352
Kosuthova K, Solc R (2023) Inversions on Human Chromosomes. Am J Med Genet Part A 191(3):672–683. https://doi.org/10.1002/ajmg.a.63063
Krawczyk PM, Borovski T, Stap J et al. Chromatin Mobility Is Increased at Sites of DNA Double-Strand Breaks. J Cell Sci 125(9):2127–2133. https://doi.org/10.1242/jcs.089847.
Kuhl H, Guiguen Y, Höhne C et al. (2021) A 180 Myr-Old Female-Specific Genome Region in Sturgeon Reveals the Oldest Known Vertebrate Sex Determining System with Undifferentiated Sex Chromosomes. Philos Trans R Soc B: Biol Sci 376(1832):20200089. https://doi.org/10.1098/rstb.2020.0089
Li B-P, Kang N, Xu Z-X et al. (2025) Transposable Elements Shape the Landscape of Heterozygous Structural Variation in a Bird Genome. Zool Res 46(1):75–86. https://doi.org/10.24272/j.issn.2095-8137.2024.237
Li W, He X (2020) Inverted Meiosis: An Alternative Way of Chromosome Segregation for Reproduction. Acta Biochimica et Biophysica Sin 52(7):702–707. https://doi.org/10.1093/abbs/gmaa054
Li Y, Roberts ND, Wala JA et al. (2020) Patterns of Somatic Structural Variation in Human Cancer Genomes. Nature 578(7793):112–121. https://doi.org/10.1038/s41586-019-1913-9
Li Y-D, Bai X, Liu X et al. (2022) Integration of Genome-Wide Association Study and Selection Signatures Reveals Genetic Determinants for Skeletal Muscle Production Traits in an F2 Chicken Population. J Integr Agriculture 21(7):2065–2075. https://doi.org/10.1016/S2095-3119(21)63805-4
Liao X, Zhu W, Zhou J et al. (2023) Repetitive DNA Sequence Detection and Its Role in the Human Genome. Commun Biol 6(1):954. https://doi.org/10.1038/s42003-023-05322-y
Lieber MichaelR, Kefei Yu, Roles SCRaghavan (2006) of Nonhomologous DNA End Joining, V(D)J Recombination, and Class Switch Recombination in Chromosomal Translocations. DNA Repair 5(9–10):1234–1245. https://doi.org/10.1016/j.dnarep.2006.05.013
Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of Multiple DNA Double-Strand Breaks at a Single Rad52 Repair Centre. Nat Cell Biol 5(6):572–577. https://doi.org/10.1038/ncb997
Liu J, Wang Z, Li J et al. (2021) A New Emu Genome Illuminates the Evolution of Genome Configuration and Nuclear Architecture of Avian Chromosomes. Genome Res 31(3):497–511. https://doi.org/10.1101/gr.271569.120
Liu Z, Roesti M, Marques D, Hiltbrunner M, Saladin V, Peichel CL (2022) Chromosomal Fusions Facilitate Adaptation to Divergent Environments in Threespine Stickleback. Mol Biol Evolution 39(2):msab358. https://doi.org/10.1093/molbev/msab358
Löbrich M, Cooper PK, Rydberg B, Lobrich M, Rydberg B (1998) Joining of Correct and Incorrect DNA Ends at Double-Strand Breaks Produced by High-Linear Energy Transfer Radiation in Human Fibroblasts. Radiat Res 150(6):619. https://doi.org/10.2307/3579884
Longhese MP, Bonetti D, Guerini I, Manfrini N, Clerici M (2009) DNA Double-Strand Breaks in Meiosis: Checking Their Formation, Processing and Repair. DNA Repair 8(9):1127–1138. https://doi.org/10.1016/j.dnarep.2009.04.005
Lucek K, Augustijnen H, Escudero M (2022) A Holocentric Twist to Chromosomal Speciation? Trends Ecol Evolution 37(8):655–662. https://doi.org/10.1016/j.tree.2022.04.002
Lucek K, Giménez MD, Joron M et al. (2023) The Impact of Chromosomal Rearrangements in Speciation: From Micro- to Macroevolution. Cold Spring Harb Perspect Biol 15(11):a041447. https://doi.org/10.1101/cshperspect.a041447
Lukas J, Lukas C, Bartek J (2011) More than Just a Focus: The Chromatin Response to DNA Damage and Its Role in Genome Integrity Maintenance. Nat Cell Biol 13(10):1161–1169. https://doi.org/10.1038/ncb2344
Lukhtanov VA, Dinca V, Friberg M et al. Versatility of Multivalent Orientation, Inverted Meiosis, and Rescued Fitness in Holocentric Chromosomal Hybrids. Proc Natl Acad Sci 115(41):E9610–E9619. https://doi.org/10.1073/pnas.1802610115.
Luo J, Sun X, Cormack BP, Boeke JD (2018) Karyotype Engineering by Chromosome Fusion Leads to Reproductive Isolation in Yeast. Nature 560(7718):392–396. https://doi.org/10.1038/s41586-018-0374-x
Ly P, Cleveland DW (2017) Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol 27(12):917–930. https://doi.org/10.1016/j.tcb.2017.08.005
Mackintosh A, Vila R, Laetsch DR, Hayward A, Martin SH, Lohse K (2023) Chromosome Fissions and Fusions Act as Barriers to Gene Flow between Brenthis Fritillary Butterflies. Mol Biol Evolution 40(3):msad043. https://doi.org/10.1093/molbev/msad043
Mackintosh C, Scott MF, Reuter M, Pomiankowski A (2024) Locally Adaptive Inversions in Structured Populations. GENETICS 227(3):iyae073. https://doi.org/10.1093/genetics/iyae073
Madan K (2012) Balanced Complex Chromosome Rearrangements: Reproductive Aspects. A Review. Am J Med Genet Part A 158A(4):947–963. https://doi.org/10.1002/ajmg.a.35220
Mahmoud M, Huang Y, Garimella K et al. (2024) Utility of Long-Read Sequencing for All of Us. Nat Commun 15(1):837. https://doi.org/10.1038/s41467-024-44804-3
Matsumoto T, Kitano J (2016) The Intricate Relationship between Sexually Antagonistic Selection and the Evolution of Sex Chromosome Fusions. J Theor Biol 404:97–108. https://doi.org/10.1016/j.jtbi.2016.05.036
Mayrose I, Lysak MA (2021) The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches. Genome Biol Evolution 13(2):evaa220. https://doi.org/10.1093/gbe/evaa220
Mc Cartney AM, Formenti G, Mouton A et al. (2024) The European Reference Genome Atlas: Piloting a Decentralised Approach to Equitable Biodiversity Genomics. Npj Biodivers 3(1):28. https://doi.org/10.1038/s44185-024-00054-6
Melo US, Schöpflin R, Acuna-Hidalgo R et al. (2020) Hi-C Identifies Complex Genomic Rearrangements and TAD-Shuffling in Developmental Diseases. Am J Hum Genet 106(6):872–884. https://doi.org/10.1016/j.ajhg.2020.04.016
Melters DP, Paliulis LV, Korf IF, Chan SWL (2012) Holocentric Chromosomes: Convergent Evolution, Meiotic Adaptations, and Genomic Analysis. Chromosome Res 20(5):579–593. https://doi.org/10.1007/s10577-012-9292-1
Miné-Hattab J, Rothstein R (2012) Increased Chromosome Mobility Facilitates Homology Search during Recombination. Nat Cell Biol 14(5):510–517. https://doi.org/10.1038/ncb2472
Mirus T, Lohmayer R, Döhring C, Halldórsson BV, Kehr B (2024) GGTyper: Genotyping Complex Structural Variants Using Short-Read Sequencing Data. Bioinformatics 40(Supplement_2):ii11–ii19. https://doi.org/10.1093/bioinformatics/btae391
Mongue AJ, Nguyen P, Voleníková A, Walters JR (2017) Neo-Sex Chromosomes in the Monarch Butterfly, Danaus Plexippus. G3 Genes|Genomes|Genet 7(10):3281–3294. https://doi.org/10.1534/g3.117.300187
Murnane JP (2012) Telomere Dysfunction and Chromosome Instability. Mutat Res/Fundamental Mol Mechanisms Mutagenesis 730(1–2):28–36. https://doi.org/10.1016/j.mrfmmm.2011.04.008
Nachman MW, Searle JB (1995) Why Is the House Mouse Karyotype so Variable? Trends Ecol Evolution 10(10):397–402. https://doi.org/10.1016/S0169-5347(00)89155-7
Näsvall K, Boman J, Höök L, Vila R, Wiklund C, Backström N (2023) Nascent Evolution of Recombination Rate Differences as a Consequence of Chromosomal Rearrangements. PLOS Genet 19(8):e1010717. https://doi.org/10.1371/journal.pgen.1010717
Navarro A, Barton NH (2003) ACCUMULATING POSTZYGOTIC ISOLATION GENES IN PARAPATRY: A NEW TWIST ON CHROMOSOMAL SPECIATION. Evolution 57(3):447–459. https://doi.org/10.1111/j.0014-3820.2003.tb01537.x
Noguerales V, Ortego J (2022) Genomic Evidence of Speciation by Fusion in a Recent Radiation of Grasshoppers. Evolution 76(11):2618–2633. https://doi.org/10.1111/evo.14508
Nurk S, Walenz BP, Rhie A et al. (2020) HiCanu: Accurate Assembly of Segmental Duplications, Satellites, and Allelic Variants from High-Fidelity Long Reads. Genome Res 30(9):1291–1305. https://doi.org/10.1101/gr.263566.120
Ohno Y, Ogiyama Y, Kubota Y, Kubo T, Ishii K (2016) Acentric Chromosome Ends Are Prone to Fusion with Functional Chromosome Ends through a Homology-Directed Rearrangement. Nucleic Acids Res 44(1):232–244. https://doi.org/10.1093/nar/gkv997
Olive PL (1998) The Role of DNA Single- and Double-Strand Breaks in Cell Killing by Ionizing Radiation. Radiat Res 150(5):S42. https://doi.org/10.2307/3579807
Oliveira Da Silva W, Malcher SM, Ferguson-Smith MA et al. (2024) Chromosomal Rearrangements Played an Important Role in the Speciation of Rice Rats of Genus Cerradomys (Rodentia, Sigmodontinae, Oryzomyini). Sci Rep. 14(1):545. https://doi.org/10.1038/s41598-023-50861-3
Panten J, Del Prete S, Cleland JP et al. (2024) Four Core Genotypes Mice Harbour a 3.2MB X-Y Translocation That Perturbs Tlr7 Dosage. Nat Commun 15(1):8814. https://doi.org/10.1038/s41467-024-52640-8
Pascarella G, Hon CC, Hashimoto K et al. (2022) Recombination of Repeat Elements Generates Somatic Complexity in Human Genomes. Cell 185(16):3025–3040.e6. https://doi.org/10.1016/j.cell.2022.06.032
Pavlova SV, Searle JB (2018) 2. Chromosomes and Speciation in Mammals. In Mammalian Evolution, Diversity and Systematics, edited by Frank Zachos and Robert Asher. De Gruyte. https://doi.org/10.1515/9783110341553-002.
Payen C, Koszul R, Dujon B, Fischer G (2008) Segmental Duplications Arise from Pol32-Dependent Repair of Broken Forks through Two Alternative Replication-Based Mechanisms. PLoS Genet 4(9):e1000175. https://doi.org/10.1371/journal.pgen.1000175
Pellestor F, Anahory T, Lefort G et al. (2011) Complex Chromosomal Rearrangements: Origin and Meiotic Behavior. Hum Reprod Update 17(4):476–494. https://doi.org/10.1093/humupd/dmr010
Pellestor F, Gatinois V (2020) Chromoanagenesis: A Piece of the Macroevolution Scenario. Mol Cytogenetics 13(1):3. https://doi.org/10.1186/s13039-020-0470-0
Pennell MW, Kirkpatrick M, Otto SP et al. (2015) Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles. PLOS Genet 11(5):e1005237. https://doi.org/10.1371/journal.pgen.1005237
Perrin A, Morel F, Douet-Guilbert N et al. (2010) A Study of Meiotic Segregation of Chromosomes in Spermatozoa of Translocation Carriers Using Fluorescent in Situ Hybridisation. Andrologia 42(1):27–34. https://doi.org/10.1111/j.1439-0272.2009.00951.x
Perry J, Slater HR, Choo KHA (2004) Centric Fission – Simple and Complex Mechanisms. Chromosome Res 12(6):627–640. https://doi.org/10.1023/B:CHRO.0000036594.38997.59
Ponnikas S, Sigeman H, Abbott JK, Hansson B (2018) Why Do Sex Chromosomes Stop Recombining? Trends Genet 34(7):492–503. https://doi.org/10.1016/j.tig.2018.04.001
Porubsky D, Sanders AD, Höps W et al. (2020) Recurrent Inversion Toggling and Great Ape Genome Evolution. Nat Genet 52(8):849–858. https://doi.org/10.1038/s41588-020-0646-x
Purcell S, Neale B, Todd-Brown K et al. (2007) PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet 81(3):559–575. https://doi.org/10.1086/519795
Ramsden DA, Nussenzweig A (2021) Mechanisms Driving Chromosomal Translocations: Lost in Time and Space. Oncogene 40(25):4263–4270. https://doi.org/10.1038/s41388-021-01856-9
Rautiainen M, Nurk S, Walenz BP et al. (2023) Telomere-to-Telomere Assembly of Diploid Chromosomes with Verkko. Nat Biotechnol 41(10):1474–1482. https://doi.org/10.1038/s41587-023-01662-6
Rawal L, Prabhash S, Kumar R et al. (2024) 46,XX Males with SRY Gene Translocation: Cytogenetics and Molecular Characterization. J Rare Dis 3(1):1. https://doi.org/10.1007/s44162-023-00025-8
Rech GE, Radío S, Guirao-Rico S et al. (2022) Population-Scale Long-Read Sequencing Uncovers Transposable Elements Associated with Gene Expression Variation and Adaptive Signatures in Drosophila. Nat Commun 13(1):1948. https://doi.org/10.1038/s41467-022-29518-8
Redelings BD, Holmes I, Lunter G, Pupko T, Anisimova M (2024) Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications. Mol Biol Evolution 41(9):msae177. https://doi.org/10.1093/molbev/msae177
Rhie A, McCarthy SA, Fedrigo O et al. (2021) Towards Complete and Error-Free Genome Assemblies of All Vertebrate Species. Nature 592(7856):737–746. https://doi.org/10.1038/s41586-021-03451-0
Richardson Ce,andMJasin (2000) Frequent Chromosomal Translocations Induced by DNA Double-Strand Breaks. Nature 405(6787):697–700. https://doi.org/10.1038/35015097
Rieseberg LH (2001) Chromosomal Rearrangements and Speciation. Trends Ecol Evolution 16(7):351–358. https://doi.org/10.1016/S0169-5347(01)02187-5
Robberecht C, Voet T, Esteki MZ, Nowakowska BA, Vermeesch JR (2013) Nonallelic Homologous Recombination between Retrotransposable Elements Is a Driver of de Novo Unbalanced Translocations. Genome Res 23(3):411–418. https://doi.org/10.1101/gr.145631.112
Robertson WMRB (1916) Chromosome Studies. I. Taxonomic Relationships Shown in the Chromosomes of Tettigidae and Acrididae: V-Shaped Chromosomes and Their Significance in Acrididae, Locustidae, and Gryllidae: Chromosomes and Variation. J Morphol 27(2):179–331. https://doi.org/10.1002/jmor.1050270202
Roesti M, Gilbert KJ, Samuk K (2022) Chromosomal Inversions Can Limit Adaptation to New Environments. Mol Ecol 31(17):4435–4439. https://doi.org/10.1111/mec.16609
Roth DB (2014) V(D)J Recombination: Mechanism, Errors, and Fidelity. Microbiol Spectr 2(6):2.6.18. https://doi.org/10.1128/microbiolspec.MDNA3-0041-2014
Roukos V, Misteli T (2014) The Biogenesis of Chromosome Translocations. Nat Cell Biol 16(4):293–300. https://doi.org/10.1038/ncb2941
Sánchez‐Guillén RA, Capilla L, Reig‐Viader R et al. (2015) On the Origin of Robertsonian Fusions in Nature: Evidence of Telomere Shortening in Wild House Mice. J Evolut Biol 28(1):241–249. https://doi.org/10.1111/jeb.12568
Satomura K, Osada N, Endo T (2019) Achiasmy and Sex Chromosome. Evolution Ecol Genet Genomics 13:100046. https://doi.org/10.1016/j.egg.2019.100046. December
Saunders PA, Muyle A (2024) Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evolution 41(11):msae218. https://doi.org/10.1093/molbev/msae218
Schubert I, Schriever-Schwemmer G, Werner T, Adler I-D (1992) Telomeric Signals in Robertsonian Fusion and Fission Chromosomes: Implications for the Origin of Pseudoaneuploidy. Cytogenetic Genome Res 59(1):6–9. https://doi.org/10.1159/000133186
Schubert I, Lysak MA (2011) Interpretation of Karyotype Evolution Should Consider Chromosome Structural Constraints. Trends Genet 27(6):207–216. https://doi.org/10.1016/j.tig.2011.03.004
Scully R, Panday A, Elango R, Willis NA (2019) DNA Double-Strand Break Repair-Pathway Choice in Somatic Mammalian Cells. Nat Rev Mol Cell Biol 20(11):698–714. https://doi.org/10.1038/s41580-019-0152-0
Searle JB, Pardo-Manuel de Villena F (2022) The Evolutionary Significance of Meiotic Drive. Heredity 129(1):44–47. https://doi.org/10.1038/s41437-022-00534-0
Sites JW, Moritz C (1987) Chromosomal Evolution and Speciation Revisited. Syst Zool 36(2):153. https://doi.org/10.2307/2413266
Slijepcevic P (1998) Telomeres and Mechanisms of Robertsonian Fusion. Chromosoma 107(2):136–140. https://doi.org/10.1007/s004120050289
Smart DJ, Halicka HD, Schmuck G, Traganos F, Darzynkiewicz Z, Williams GM (2008) Assessment of DNA double-strand breaks and γH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat Res Mol Mech Mutagen 641(1–2):43–47. https://doi.org/10.1016/j.mrfmmm.2008.03.005
Solé E, BalanyáG J, Sperlich D, Serra L (2002) Long‐term changes in the chromosomal inversion polymorphism of Drosophila subobscura. I. Mediterranean populations from southwestern Europe. Evolution 56(4):830–835. https://doi.org/10.1111/j.0014-3820.2002.tb01393.x
Stephens PJ, Greenman CD, Fu B et al. (2011) Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. Cell 144(1):27–40. https://doi.org/10.1016/j.cell.2010.11.055
Stewart NB, Rogers RL (2019) Chromosomal Rearrangements as a Source of New Gene Formation in Drosophila Yakuba. PLOS Genet 15(9):e1008314. https://doi.org/10.1371/journal.pgen.1008314
Tai J-H, Wang T-Y, Ma G-C et al. (2025) Massive Chromosome Fission and Speciation in Asian River Chub: Integrating Kinetochore Reproduction Theory with Transposable Element Dynamics. Preprint. https://doi.org/10.1101/2025.02.13.638213.
Toups MA, Rodrigues N, Perrin N, Kirkpatrick M (2019) A Reciprocal Translocation Radically Reshapes Sex‐linked Inheritance in the Common Frog. Mol Ecol 28(8):1877–1889. https://doi.org/10.1111/mec.14990
Trickett AJ, Butlin RK (1994) Recombination Suppressors and the Evolution of New Species. Heredity 73(4):339–345. https://doi.org/10.1038/hdy.1994.180
Van Doorn GS, Kirkpatrick M (2010) Transitions Between Male and Female Heterogamety Caused by Sex-Antagonistic Selection. Genetics 186(2):629–645. https://doi.org/10.1534/genetics.110.118596
Vara C, Paytuví-Gallart A, Cuartero Y et al. (2021) The Impact of Chromosomal Fusions on 3D Genome Folding and Recombination in the Germ Line. Nat Commun 12(1):2981. https://doi.org/10.1038/s41467-021-23270-1
Vilenchik MM, Knudson AG (2003) Endogenous DNA Double-Strand Breaks: Production, Fidelity of Repair, and Induction of Cancer. Proc Natl Acad Sci 100(22):12871–12876. https://doi.org/10.1073/pnas.2135498100
Wang S, Lee S, Chu C et al. (2020) HiNT: A Computational Method for Detecting Copy Number Variations and Translocations from Hi-C Data. Genome Biol 21(1):73. https://doi.org/10.1186/s13059-020-01986-5
Wang T, Gong G, Li Z et al. (2024) Genomic Anatomy of Homozygous XX Females and YY Males Reveals Early Evolutionary Trajectory of Sex-Determining Gene and Sex Chromosomes in Silurus Fishes. Mol Biol Evolution 41(8):msae169. https://doi.org/10.1093/molbev/msae169
Weckselblatt B, Hermetz KE, Rudd MK (2015) Unbalanced Translocations Arise from Diverse Mutational Mechanisms Including Chromothripsis. Genome Res 25(7):937–947. https://doi.org/10.1101/gr.191247.115
Wellband K, Mérot C, Linnansaari T, Elliott JAK, Curry RA, Bernatchez L (2019) Chromosomal Fusion and Life History-Associated Genomic Variation Contribute to within-River Local Adaptation of Atlantic Salmon. Mol Ecol 28(6):1439–1459. https://doi.org/10.1111/mec.14965
Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M (2024) Comparative Genomics Reveals the Dynamics of Chromosome Evolution in Lepidoptera. Nat Ecol Evolution 8(4):777–790. https://doi.org/10.1038/s41559-024-02329-4
Xu C, Zhang J, Wang Y-P, Deng H-W, Li J (2014) Characterization of Human Chromosomal Material Exchange with Regard to the Chromosome Translocations Using Next-Generation Sequencing Data. Genome Biol Evolution 6(11):3015–3024. https://doi.org/10.1093/gbe/evu234
Xu L, Ren Y, Wu J et al. (2024) Evolution and Expression Patterns of the Neo-Sex Chromosomes of the Crested Ibis. Nat Commun 15(1):1670. https://doi.org/10.1038/s41467-024-46052-x
Yamaguchi K, Kadota M, Nishimura O, Ohishi Y, Naito Y, Kuraku S (2021) Technical Considerations in Hi-C Scaffolding and Evaluation of Chromosome-Scale Genome Assemblies. Mol Ecol 30(23):5923–5934. https://doi.org/10.1111/mec.16146
Yang J, Wang D-F, Huang J-H et al. (2024) Structural Variant Landscapes Reveal Convergent Signatures of Evolution in Sheep and Goats. Genome Biol 25(1):148. https://doi.org/10.1186/s13059-024-03288-6
Yin Y, Fan H, Zhou B et al. (2021) Molecular Mechanisms and Topological Consequences of Drastic Chromosomal Rearrangements of Muntjac Deer. Nat Commun 12(1):6858. https://doi.org/10.1038/s41467-021-27091-0
Yoshida K, Kitano J (2012) THE CONTRIBUTION OF FEMALE MEIOTIC DRIVE TO THE EVOLUTION OF NEO‐SEX CHROMOSOMES. Evolution 66(10):3198–3208. https://doi.org/10.1111/j.1558-5646.2012.01681.x
Yoshida K, Rödelsperger C, Röseler W et al. (2023) Chromosome Fusions Repatterned Recombination Rate and Facilitated Reproductive Isolation during Pristionchus Nematode Speciation. Nat Ecol Evol 7:424–439. https://doi.org/10.1038/s41559-022-01980-z.
Zagelbaum J, Schooley A, Zhao J et al. (2023) Multiscale Reorganization of the Genome Following DNA Damage Facilitates Chromosome Translocations via Nuclear Actin Polymerization. Nat Struct Mol Biol 30(1):99–106. https://doi.org/10.1038/s41594-022-00893-6
Zhang C-Z, Pellman D (2022) Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. Annu Rev Cancer Biol 6(1):245–268. https://doi.org/10.1146/annurev-cancerbio-070620-094029
Zhang J, Yu C, Krishnaswamy L, Peterson T (2011). Transposable Elements as Catalysts for Chromosome Rearrangements. In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_18.
Zhang S, Xu N, Fu L et al. (2025) Integrated Analysis of the Complete Sequence of a Macaque Genome. Nature 640(8059):714–721. https://doi.org/10.1038/s41586-025-08596-w
Zhang Y, McCord RP, Ho Y-J et al. (2012) Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations. Cell 148(5):908–921. https://doi.org/10.1016/j.cell.2012.02.002
Zhao W-W, Wu M, Chen F et al. (2015) Robertsonian Translocations: An Overview of 872 Robertsonian Translocations Identified in a Diagnostic Laboratory in China. PLOS ONE 10(5):e0122647. https://doi.org/10.1371/journal.pone.0122647
Zheng S, Tao H, Song Y et al. (2025) The Origin, Evolution, and Translocation of Sex Chromosomes in Silurus Catfish Mediated by Transposons. BMC Biol 23(1):54. https://doi.org/10.1186/s12915-025-02160-8
Zhou B, Hu P, Liu G et al. (2024) Evolutionary Patterns and Functional Effects of 3D Chromatin Structures in Butterflies with Extensive Genome Rearrangements. Nat Commun 15(1):6303. https://doi.org/10.1038/s41467-024-50529-0
Zhou C, McCarthy SA, Durbin R (2023) YaHS: Yet Another Hi-C Scaffolding Tool. Bioinformatics 39(1):btac808. https://doi.org/10.1093/bioinformatics/btac808
Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL (2004) Transposition of hAT Elements Links Transposable Elements and V(D)J Recombination. Nature 432(7020):995–1001. https://doi.org/10.1038/nature03157
Zhou Q, Bachtrog D (2012) Sex-Specific Adaptation Drives Early Sex Chromosome Evolution in Drosophila. Science 337(6092):341–345. https://doi.org/10.1126/science.1225385
Acknowledgements
We thank Drs. Simen Sandve, Nicola Barson, and the anonymous reviewers for their valuable comments on an earlier version of this manuscript. This work was supported by the Research Council of Norway through the FRIPRO Young Talent grant (NFR 325874).
Author information
Authors and Affiliations
Contributions
Célian Diblasi developed the concept of the article and was responsible for writing the initial draft. Marie Saitou supervised the project and revised the manuscript for clarity and scientific accuracy. Both authors contributed to the final version and approved it for submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethics
This article does not report any original data involving human participants, animals, or sensitive information. Therefore, no ethical approval was required.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Associate editor: Omer Gokcumen.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Diblasi, C., Saitou, M. Beyond inversions and deletions: the evolutionary and functional insights from translocations, fissions, and fusions in animal genomes. Heredity (2025). https://doi.org/10.1038/s41437-025-00785-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41437-025-00785-7