Abstract
Repetitive DNA sequences are ubiquitous in eukaryotic genomes, significantly influencing their structure, function, and evolution. They can facilitate genomic rearrangements, contributing to chromosomal and genomic diversity. Chrysomelidae (Coleoptera) beetles are known for their highly diverse karyotypes and heterochromatin distribution. In this study, we advanced the understanding of the intricate relationship between satellite DNA-like sequences (named here solely as satDNA) and genome organization/reshuffling using three species of Eumolpinae chrysomelids. We investigated the satellitomes of three species with divergent karyotypes that had undergone independent chromosomal fusions: Colaspis laeta (2n = 22, Xyp), with a conserved karyotype; Endocephalus bigatus (2n = 10, neo-XY); and Iphimeis dives (2n = 14, neo-XY). Our comparative analysis revealed highly divergent patterns of satDNA origin, organization, and evolution. In species with reduced chromosome numbers and neo-sex chromosomes, we observed a high abundance of transposable element-related (TE-related) satDNAs. In Colaspis laeta, the sex chromosomes (Xyp) showed an advanced level of differentiation. However, in the species with a reduction in diploid number, such a level of differential enrichment of repetitive DNAs was not observed in the sex chromosomes, indicating an early stage of differentiation. Our findings support the hypothesis that chromosomal rearrangements and reorganization of repetitive DNA sequences are connected, with extensive reshuffling observed in species with reduced diploid numbers. Moreover, the data reinforce the involvement of TEs in satDNA origin, which could spread widely throughout the genome, including euchromatic areas. This study provides new insights into the evolutionary dynamics of repetitive DNAs in non-model species, emphasizing the impact of chromosomal rearrangements on genome architecture and evolution.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout









Similar content being viewed by others
Data availability
The raw reads used in the project are deposited at NCBI under the Bioproject accession numbers SRX29965143, SRX29965142, and SRX29965141. Monomers of each satDNA family are available on NCBI.
References
Ahmed M, Liang P (2012) Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012:947089. https://doi.org/10.1155/2012/947089
Anjos A, Milani D, Bardella VB, Paladini A, Cabral-de-Mello DC (2023) Evolution of satDNAs on holocentric chromosomes: insights from hemipteran insects of the genus Mahanarva. Chromosome Res 31:5. https://doi.org/10.1007/s10577-023-09710-2.
Arkhipova IR (2006) Distribution and phylogeny of Penelope-like elements in eukaryotes. Syst Biol 55:875–885. https://doi.org/10.1080/10635150601077683.
Bachtrog D (2003) Accumulation of Spock and Worf, two novel non-LTR retrotransposons, on the neo-Y chromosome of Drosophila miranda. Mol Biol Evol 20:173–181. https://doi.org/10.1093/molbev/msg035.
Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11. https://doi.org/10.1186/s13100-015-0041-9.
Belyayev A, Josefiová J, Jandová M, Mahelka V, Krak K, Mandák B (2020) Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome. Mob DNA 11:20. https://doi.org/10.1186/s13100-020-00219-7.
Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420. https://doi.org/10.1007/s10577-015-9499-z.
Blackmon H, Demuth JP (2015) Genomic origins of insect sex chromosomes. Curr Opin Insect Sci 7:45–50. https://doi.org/10.1016/j.cois.2014.12.003.
Bouchard P, Smith ABT, Douglas H, Gimmel ML, Brunke AJ, Kanda K (2017) Biodiversity of Coleoptera. In: Foottit RG, Adler PH (eds) Insect biodiversity, 2nd edn. Wiley, New York, pp 337–417 https://doi.org/10.1002/9781118945568.ch11
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199. https://doi.org/10.1186/s13059-018-1577-z.
Brajković J, Feliciello I, Bruvo-Mađarić B, Ugarković D (2012) Satellite DNA-like elements associated with genes within euchromatin of the beetle Tribolium castaneum. G3 2:931–941. https://doi.org/10.1534/g3.112.003467.
Cabral-de-Mello DC, Palacios-Gimenez OM (2024) Repetitive DNAs: the ‘invisible’ regulators of insect adaptation and speciation. Curr Opin Insect Sci 67:101295. https://doi.org/10.1016/j.cois.2024.101295.
Cabral-de-Mello DC, Mora P, Rico-Porras JM, Ferretti ABSM, Palomeque T, Lorite P (2023) The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. Insect Mol Biol 32:725–737. https://doi.org/10.1111/imb.12868.
Cabral-de-Mello DC, Yoshido A, Milani D, Šíchová J, Sahara K, Marec F (2024) The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution. DNA Res 31:dsae030. https://doi.org/10.1093/dnares/dsae030.
Cabral-de-Mello DC, Marec F (2021) Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol Genet Genomics 296:513–526. https://doi.org/10.1007/s00438-021-01765-2.
Cai Z, Petersen B, Sahana G, Madsen LB, Larsen K, Thomsen B et al (2017) The first draft reference genome of the American mink (Neovison vison). Sci Rep 7:14564. https://doi.org/10.1038/s41598-017-15169-z.
Camacho JPM, Cabrero J, López-León MD, Martín-Peciña M, Perfectti F, Garrido-Ramos MA et al (2022) Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol 20:36. https://doi.org/10.1186/s12915-021-01216-9.
Caraballo DA (2023) Reassessing the causal connection between satDNA dynamics and chromosomal evolution in Ctenomys (Rodentia, Ctenomyidae): unveiling the overlooked importance of the Y chromosome. Contrib Zool 92:533–546. https://doi.org/10.1163/18759866-bja10052.
Casola C, Lawing AM, Betrán E, Feschotte C (2007) PIF-like transposons are common in Drosophila and have been repeatedly domesticated to generate new host genes. Mol Biol Evol 24:1872–1888. https://doi.org/10.1093/molbev/msm116.
Craig RJ, Yushenova IA, Rodriguez F, Arkhipova IR (2021) An ancient clade of penelope-like retroelements with permuted domains is present in the green lineage and protists, and dominates many invertebrate genomes. Mol Biol Evol 38:5005–5020. https://doi.org/10.1093/molbev/msab225.
Crossley MS, Chen YH, Groves RL, Schoville SD (2017) Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. Mol Ecol 26:6284–6300. https://doi.org/10.1111/mec.14339.
Dias GB, Heringer P, Svartman M, Kuhn GC (2015) Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression. Chromosome Res 23:597–613. https://doi.org/10.1007/s10577-015-9480-x.
Dias GB, Svartman M, Delprat A, Ruiz A, Kuhn GC (2014) Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biol Evol 6:1302–1313. https://doi.org/10.1093/gbe/evu108.
Farré M, Bosch M, López-Giráldez F, Ponsà M, Ruiz-Herrera A (2011) Assessing the role of tandem repeats in shaping the genomic architecture of great apes. PLoS ONE 6:e27239. https://doi.org/10.1371/journal.pone.0027239.
Félix AP, Amorim IC, Milani D, Cabral-de-Mello DC, Moura RC (2024) Differential amplification and contraction of satellite DNAs in the distinct lineages of the beetle Euchroma gigantea. Gene 927:148723. https://doi.org/10.1016/j.gene.2024.148723.
Ferretti ABSM, Milani D, Palacios-Gimenez OM, Ruiz-Ruano FJ, Cabral-de-Mello DC (2020) High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. Heredity 125:124–137. https://doi.org/10.1038/s41437-020-0327-7.
Fu X, Meyer-Rochow VB, Ballantyne L, Zhu X (2024) An improved chromosome-level genome assembly of the firefly Pyrocoelia pectoralis. Insects 15(1):43. https://doi.org/10.3390/insects15010043.
Gagalova KK, Whitehill JGA, Culibrk L, Lin D, Lévesque-Tremblay V, Keeling CI et al (2022) The genome of the forest insect pest Pissodes strobi reveals genome expansion and evidence of a Wolbachia endosymbiont. G3 12:jkac038. https://doi.org/10.1093/g3journal/jkac038.
Garrido-Ramos MA (2017) Satellite DNA: An evolving topic. Genes 8:230. https://doi.org/10.3390/genes8090230.
Gómez-Zurita J, Jolivet P, Vogler AP (2005) Molecular systematics of Eumolpinae and the relationships with Spilopyrinae (Coleoptera Chrysomelidae). Mol Phylogenet Evol 34:584–600. https://doi.org/10.1016/j.ympev.2004.11.022.
Goubert C (2023) Assembly-free detection and quantification of transposable elements with dnaPipeTE. Met Mol Biol 2607:25–43. https://doi.org/10.1007/978-1-0716-2883-6_2.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883.
Gržan T, Dombi M, Despot-Slade E, Veseljak D, Volarić M, Meštrović N et al (2023) The low-copy-number satellite DNAs of the model beetle Tribolium castaneum. Genes 14:999. https://doi.org/10.3390/genes14050999.
Hejníčková M, Dalíková M, Zrzavá M, Marec F, Lorite P, Montiel EE (2023) Accumulation of retrotransposons contributes to W chromosome differentiation in the willow beauty Peribatodes rhomboidaria (Lepidoptera: Geometridae). Sci Rep. 13: 534. https://doi.org/10.1038/s41598-023-27757-3.
Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A et al (2020) Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep. 10: 19230. https://doi.org/10.1038/s41598-020-75728-9.
Jurka J, Klonowski P, Dagman V, Pelton P (1996) CENSOR—a program for identification and elimination of repetitive elements from DNA sequences. Comput Chem 20:119–121. https://doi.org/10.1016/s0097-8485(96)80013-1.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199.
Kostmann A, Augstenová B, Frynta D, Kratochvíl L, Rovatsos M (2021) Cytogenetically elusive sex chromosomes in scincoidean lizards. Int J Mol Sci 22:8670. https://doi.org/10.3390/ijms22168670.
Kretschmer R, Ferguson-Smith MA, de Oliveira EHC (2018) Karyotype evolution in birds: from conventional staining to chromosome painting. Genes 9:181. https://doi.org/10.3390/genes9040181.
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659. https://doi.org/10.1093/bioinformatics/btl158.
de Lima LG, Ruiz-Ruano FJ (2022) In-depth satellitome analyses of 37 Drosophila species illuminate repetitive DNA evolution in the Drosophila genus. Genome Biol Evol 14:evac064. https://doi.org/10.1093/gbe/evac064.
López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. Genome Dyn 7:1–28. https://doi.org/10.1159/000337118.
Lorite P, Torres MI, Palomeque T (2013) Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). Bull Entomol Res 103:538–546. https://doi.org/10.1017/S0007485313000060.
Lorite P, Palomeque T, Garnería I, Petitpierre E (2000) Characterization and chromosome location of satellite DNA in the leaf beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genetica 110:143–150. https://doi.org/10.1023/a:1017926127213.
Lorite P, Carrillo JA, Garnería I, Petitpierre E, Palomeque T (2002) Satellite DNA in the elm leaf beetle, Xanthogaleruca luteola (Coleoptera, Chrysomelidae): characterization, interpopulation analysis, and chromosome location. Cytogenet Genome Res 98:302–307. https://doi.org/10.1159/000071053.
Louzada S, Lopes M, Ferreira D, Adega F, Escudeiro A, Gama-Carvalho M et al (2020) Decoding the role of satellite DNA in genome architecture and plasticity-an evolutionary and clinical affair. Genes 11:72. https://doi.org/10.3390/genes11010072.
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC (2021) Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosomal rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 75:2027–2041. https://doi.org/10.1111/evo.14287.
Mathers TC, Wouters RHM, Mugford ST, Swarbreck D, van Oosterhout C, Hogenhout SA (2021) Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the x chromosome. Mol Biol Evol 38:856–875. https://doi.org/10.1093/molbev/msaa246.
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M (2015) Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res 23:583–596. https://doi.org/10.1007/s10577-015-9483-7.
Montiel EE, Mora P, Rico-Porras JM, Palomeque T, Lorite P (2022) Satellitome of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the most diverse among insects. Front Ecol Evol 10:808. https://doi.org/10.3389/fevo.2022.826808.
Mora P, Vela J, Ruiz-Ruano FJ, Ruiz-Mena A, Montiel EE, Palomeque T et al (2020) Satellitome analysis in the ladybird beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes 11:783. https://doi.org/10.3390/genes11070783.
Mora P, Pita S, Montiel EE, Rico-Porras JM, Palomeque T, Panzera F et al (2023) Making the genome huge: the case of Triatoma delpontei, a Triatominae species with more than 50% of its genome full of satellite DNA. Genes 14:371. https://doi.org/10.3390/genes14020371.
Mora P, Rico-Porras JM, Palomeque T, Montiel EE, Pita S, Cabral-de-Mello DC et al (2024a) Satellitome analysis of Adalia bipunctata (Coleoptera): revealing centromeric turnover and potential chromosome rearrangements in a comparative interspecific study. Int J Mol Sci 25:9214. https://doi.org/10.3390/ijms25179214.
Mora P, Hospodářská M, Voleníková AC, Koutecký P, Štundlová J, Dalíková M et al (2024b) Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol Ecol 33:e17256 https://doi.org/10.1111/mec.17256
de Moraes RLR, de Menezes FCS, Vidal JAD, Goes CAG, Dos Santos RZ, Stornioli JHF et al (2023) Chromosomal rearrangements and satellite DNAs: extensive chromosome reshuffling and the evolution of neo-sex chromosomes in the genus Pyrrhulina (Teleostei; Characiformes). Int J Mol Sci 24:13654. https://doi.org/10.3390/ijms241713654.
Negm S, Greenberg A, Larracuente AM, Sproul JS (2021) RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles. Mol Ecol Res 21:969–981. https://doi.org/10.1111/1755-0998.13305.
Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinforma 11: 378. https://doi.org/10.1186/1471-2105-11-378.
Novák P, Neumann P, Macas J (2020) Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15:3745–3776. https://doi.org/10.1038/s41596-020-0400-y.
Novák P, Robledillo LA, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 45:e111. https://doi.org/10.1093/nar/gkx257.
Oppert B, Muszewska A, Steczkiewicz K, Šatović-Vukšić E, Plohl M, Fabrick JA et al (2022) The genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): adaptation for success. Genes 13:446. https://doi.org/10.3390/genes13030446.
Oppert B, Dossey AT, Chu FC, Šatović-Vukšić E, Plohl M, Smith TPL et al (2023) The genome of the yellow mealworm, Tenebrio molitor: it’s bigger than you think. Genes 14:2209. https://doi.org/10.3390/genes14122209.
Paço A, Freitas R, Vieira-da-Silva A (2019) Conversion of DNA sequences: from a transposable element to a tandem repeat or to a gene. Genes 10:1014. https://doi.org/10.3390/genes10121014.
Paço A, Adega F, Meštrović N, Plohl M, Chaves R (2015) The puzzling character of repetitive DNA in Phodopus genomes (Cricetidae, Rodentia). Chromosome Res 23:427–440. https://doi.org/10.1007/s10577-015-9481-9.
Palomeque T, Muñoz-López M, Carrillo JA, Lorite P (2005) Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae). Chromosome Res 13:795–807. https://doi.org/10.1007/s10577-005-1013-6.
Palomeque T, Carrillo JA, Muñoz-López M, Lorite P (2006) Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. Gene 371:194–205. https://doi.org/10.1016/j.gene.2005.11.032.
Panzera F, Cuadrado Á, Mora P, Palomeque T, Lorite P, Pita S (2023) Differential spreading of microsatellites in holocentric chromosomes of chagas disease vectors: genomic and evolutionary implications. Insects 14:772. https://doi.org/10.3390/insects14090772.
Peona V, Weissensteiner MH, Suh A (2018) How complete are “complete” genome assemblies? An avian perspective. Mol Ecol Res 18:1188–1195. https://doi.org/10.1111/1755-0998.12933.
Peona V, Palacios-Gimenez OM, Lutgen D, Olsen RA, Kakhki NA, Andriopoulos P et al (2023) An annotated chromosome-scale reference genome for Eastern black-eared wheatear (Oenanthe melanoleuca). G3 13:jkad088. https://doi.org/10.1093/g3journal/jkad088.
Pereira JA, Milani D, Ferretti ABSM, Bardella VB, Cabral-de-Mello DC, Lopes DM (2021) The extensive amplification of heterochromatin in Melipona bees revealed by high throughput genomic and chromosomal analysis. Chromosoma 130:251–262. https://doi.org/10.1007/s00412-021-00764-x.
Petitpierre E (2011) Cytogenetics, cytotaxonomy and chromosomal evolution of Chrysomelinae revisited (Coleoptera, Chrysomelidae). ZooKeys 157:67–79. https://doi.org/10.3897/zookeys.157.1339.
Petitpierre E, Segarra C (1985) Chromosomal variability and evolution of Chrysomelidae (Coleoptera), particularly that of Chrysomelinae and Palearctic Alticinae. Entomography 3:403–426.
Petitpierre E (1988) Cytogenetics, cytotaxonomy and genetics of Chrysomelidae. In: Jolivet P, Petitpierre, E, Hsiao TH (eds) Biology of Chrysomelidae. Springer, Dordrecht, pp 131–159. https://doi.org/10.1007/978-94-009-3105-3_9
Plohl M, Meštrović N, Mravinac B (2012) Satellite DNA evolution. Genome Dyn 7:126–152. https://doi.org/10.1159/000337122.
Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357. https://doi.org/10.1159/000121084.
Rico-Porras JM, Mora P, Palomeque T, Montiel EE, Cabral-de-Mello DC, Lorite P (2024) Heterochromatin is not the only place for satDNAs: the high diversity of satDNAs in the euchromatin of the beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes 15:395. https://doi.org/10.3390/genes15040395.
Ruiz-Herrera A, Castresana J, Robinson TJ (2006) Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol 7: R115. https://doi.org/10.1186/gb-2006-7-12-r115.
Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM (2016) High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep 6: 28333. https://doi.org/10.1038/srep28333.
Šatović Vukšić E, Plohl M (2021) Exploring satellite DNAs: specificities of bivalve mollusks genomes. Prog Mol Subcell Biol 60:57–83. https://doi.org/10.1007/978-3-030-74889-0_3.
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV (2020) Functional significance of satellite DNAs: Insights from Drosophila. Front Cell Dev Biol 8:312. https://doi.org/10.3389/fcell.2020.00312.
Smit AFA, Hubley R, Green P (2013–2015) RepeatMasker Open-4.0 http://www.repeatmasker.org. Accessed 20 May 2024
Smith SG, Virkki N (1978) Insecta 5. Coleoptera. Schweizerbart Science Publisher, Stuttgart
Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306. https://doi.org/10.1016/0014-4827(72)90558-7.
Thakur J, Packiaraj J, Henikoff S (2021) Sequence, chromatin and evolution of satellite DNA. Int J Mol Sci 22:4309. https://doi.org/10.3390/ijms22094309.
Traut W, Sahara K, Otto TD, Marec F (1999) Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108:173–180. https://doi.org/10.1007/s004120050366.
Tunjić-Cvitanić M, García-Souto D, Pasantes JJ, Šatović-Vukšić E (2024) Dominance of transposable element-related satDNAs results in great complexity of “satDNA library” and invokes the extension towards “repetitive DNA library”. Mar Life Sci Technol 6:236–251. https://doi.org/10.1007/s42995-024-00218-0.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596.
Vieira-da-Silva A, Louzada S, Adega F, Chaves R (2015) A high-resolution comparative chromosome map of Cricetus cricetus and Peromyscus eremicus reveals the involvement of constitutive heterochromatin in breakpoint regions. Cytogenet Genome Res 145:59–67. https://doi.org/10.1159/000381840.
Virkki N, Purcell CM (1965) Four pairs of chromosomes: the lowest number in Coleoptera. J Hered 56:71–74. https://doi.org/10.1093/oxfordjournals.jhered.a107380.
Vondrak T, Robledillo LA, Novák P, Koblížková A, Neumann P, Macas J (2020) Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J 101:484–500. https://doi.org/10.1111/tpj.14546.
Wells JN, Feschotte C (2020) A field guide to eukaryotic transposable elements. Annu Rev Genet 54:539–561. https://doi.org/10.1146/annurev-genet-040620-022145.
Yano CF, Bertollo LA, Liehr T, Troy WP, Cioffi MdeB (2016) W Chromosome dynamics in Triportheus species (Characiformes, Triportheidae): an ongoing process narrated by repetitive sequences. J Hered 107:342–348. https://doi.org/10.1093/jhered/esw021.
Zattera ML, Bruschi DP (2022) Transposable elements as a source of novel repetitive DNA in the eukaryote genome. Cells 11(21):3373. https://doi.org/10.3390/cells11213373.
Acknowledgements
The authors thank the anonymous reviewers for their helpful input. The study was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2023/02581-2 to DCC-d-M and 2024/01521-9 to PM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 309979/2023-4 to DCC-d-M), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES, financial code 001 to DCC-d-M and AEG), and by Universidad de Jaén (through the program “Plan de Apoyo a la Investigación 2021–2022, Acción 1”).
Author information
Authors and Affiliations
Contributions
JMR-P, PM, AEG, and DCC-d-M did the experimental work; JMR-P, PM, PL, and DCC-d-M analyzed the data; JMR-P, PM, VBB, TP, PL, and DCC-d-M interpreted the results; JMR-P and DCC-d-M wrote the manuscript; PM and DCC-d-M made the manuscript revisions; DCC-d-M coordinated the study; all authors read, revised, and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Research ethics statement
Research ethics committee’s approval was not required for this study.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rico-Porras, J.M., Mora, P., Gasparotto, A.E. et al. Expansion of satellite DNAs derived from transposable elements in beetles with reduced diploid numbers. Heredity 134, 529–541 (2025). https://doi.org/10.1038/s41437-025-00790-w
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41437-025-00790-w