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Easy domain adaptation method for filling the
species gap in deep learning-based fruit detection
Wenli Zhang 1, Kaizhen Chen1, Jiaqi Wang1, Yun Shi2 and Wei Guo 3

Abstract
Fruit detection and counting are essential tasks for horticulture research. With computer vision technology
development, fruit detection techniques based on deep learning have been widely used in modern orchards.
However, most deep learning-based fruit detection models are generated based on fully supervised approaches,
which means a model trained with one domain species may not be transferred to another. There is always a need to
recreate and label the relevant training dataset, but such a procedure is time-consuming and labor-intensive. This
paper proposed a domain adaptation method that can transfer an existing model trained from one domain to a new
domain without extra manual labeling. The method includes three main steps: transform the source fruit image (with
labeled information) into the target fruit image (without labeled information) through the CycleGAN network;
Automatically label the target fruit image by a pseudo-label process; Improve the labeling accuracy by a pseudo-label
self-learning approach. Use a labeled orange image dataset as the source domain, unlabeled apple and tomato image
dataset as the target domain, the performance of the proposed method from the perspective of fruit detection has
been evaluated. Without manual labeling for target domain image, the mean average precision reached 87.5% for
apple detection and 76.9% for tomato detection, which shows that the proposed method can potentially fill the
species gap in deep learning-based fruit detection.

Introduction
There is a vital need in the horticulture research field to

understand fruit-related phenotypic traits, such as fruit
number, size, and color. With the rapid development of
modern computer technology, the demand for visual
detection techniques in agriculture has increased. An
object detection technique can obtain the location and
category information of the fruit in the image, such as
fruit positioning1,2, fruit estimation3,4, and automatic fruit
picking5,6, which is the technical basis for intelligent work
in the orchard.
Recently, owing to the advantages of deep learning-

based object detection techniques7–13, which perform

high detection accuracy and good model robustness, they
have gradually replaced traditional detection methods and
are widely applied in orchard fruit detection. On the other
hand, most deep learning-based fruit detection techniques
adopt the supervised learning strategy, which requires a
large number of labeled fruit image datasets to train the
model. However, a model generated with a dataset col-
lected for one species may not work for another species;
hence, new species always require labeling new data to
train the new model, which is labor-intensive and time-
consuming. Therefore, reducing the dataset labeling
workload has become a topic of intense interest14.
In the current stage, most related works use a strongly

supervised labeling method15 that requires drawing
bounding boxes around the target objects with location
and category information for model training. Mu et al.16

collected fruit images of tomatoes in a greenhouse, Wang
et al.4 collected mango fruit images at night orchards,
then labeled each visible target fruit in the images by tight
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bounding boxes manually. Although the strongly super-
vised labeling method provides better detection perfor-
mance, the labeling cost were high and time-consuming.
Some works then tried to train detection models based

on weakly-supervised labeling methods to reduce the
labeling cost. For example, researchers used image-level
labels17–20 (providing information on the category of
objects in the image, no specific location information) and
dot labels21 (marking object location information with
dots) to reduce the overall cost and time consumption by
lessening the labeling time of individual labels. Bellocchio
et al.22,23 proposed a weakly supervised deep architecture
that relies only on an image level binary classifier(whether
the image contains instances of the fruit or not) to train
the fruit counting model on source images. The unsu-
pervised transformation learning and pseudo-label pro-
cess are further combined to generate target fruit images
and related labels and then applied to the fruit counting
task on target images. Because pseudo labels are acquired
only for the generated fruit images and different from
actual target fruit images, the model did not fit well with
the actual target fruit images. Lu et al.24 used dot anno-
tated method to perform maize tassel counting task in
localized regions of the farmland. Ghosal et al.25 proposed
active learning inspired weakly supervised deep learning
framework, and Lagandula et al.26 combined dot-
annotated methods with active learning methods27,28 to
reduce labeling time cost more than 50% on sorghum and
wheat images. However, the weakly supervised labeling
method still requires a certain amount of manual data
labeling work.
Some researchers also suggested that unsupervised

learning methods29–31 can be applied to agriculture since
they do not require data labeling. Wachs et al.29 proposed
a method based on K-means clustering to achieve the
unsupervised detection of green apples in infrared and
RGB images with an accuracy of 53.2%. Dubey et al.30

utilized the K-means clustering algorithm to perform fruit
segmentation and localization based on color features.
Zhang et al.31 proposed an unsupervised learning condi-
tional random field image segmentation algorithm to
segment plant organs such as fruits, leaves, and stems
from green house plant images without manual labeling.
However, in most agricultural field work, because of the
complexity of the context and the diversity of objectives in
the actual scenario, unsupervised learning methods did
not performed as accurate as supervised learning meth-
ods. To address the high dataset labeling cost, some
researchers also suggest that public available datasets32–37

can be used to train fruit detection models. Sa et al.32

presented the DeepFruit dataset, which contains apple,
avocado, capsicum, mango, orange, rockmelon, and
strawberry; Bargoti et al.33 presented a acfr-multifruit-
2016 dataset that contains mango, almond, and apple;

Muresan et al.34 presented Fruit-360 dataset that contains
131 categories of fruit images with a single background.
However, owing to the different image acquisition con-
ditions in each fruit dataset, including lighting conditions,
occluding conditions, and shooting distance, the trained
fruit detection model showed low generalization ability
when applied to real applications, and it is also kown that
train a model based on target scenes will always performs
best.
Therefore, we consider to train several locally good

models for each domain based on their own data for fruit
detection tasks. Then the main problem shifts to how to
generate labeled data for new domain efficiently, which
the Generative Adversarial Networks (GAN)38 seems to
be a powerful tool for it. GAN have been widely used for
image transformation tasks. Stein et al.39 and Zhang
et al.40 proposed a GAN-based image transformation
method to implement image transformation between
simulated and real images for cross-domain segmentation
tasks. Roy et al.41 proposed Semantic-Aware GAN, which
introduces multiple loss functions to optimize model
training and can be applied to image transformation
between image domains with large geometric shape dif-
ferences. Valerio et al.42 proposed to combine multiple
regression leaf counting model and adversarial network
idea to achieved cross-domain leaf counting for in the
unlabeled target domain by extracting domain invariant
features from different plant species. However, the above
research mainly focuses on improving the generated
image quality for image transformation, not labeling
images for the new target domain. So in this paper, we
propose a new method to use GAN to automatically label
different fruit image datasets by only using a set of
existing labeled fruit images.
The proposed method first uses the CycleGAN43 net-

work to transfer the source domain fruit dataset (with
labeled information) to the target domain fruit dataset
(without labeled information), then applies the pseudo-
label method to label the target fruit dataset. Finally, it
uses a self-learning method of pseudo labels further to
improve the labeling accuracy. The performance of the
proposed method from the perspective of fruit detection
has been evaluated then by a labeled orange image dataset
and unlabeled apple and tomato image dataset.

Materials and methods
Dataset acquisition
The experiments in this paper contain two datasets:

CycleGAN datasets and object detection datasets.

CycleGAN datasets
The image transformation experiments used the

apple2orange dataset43 and the orange2tomato dataset.
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(1)The apple2orange dataset contains orange and apple
to train the image transformation model between orange
and apple. The training set containes 995 apple images
and 1019 orange images, while the test set containes 266
apple images and 248 orange images, with a uniform
image resolution of 256 × 256 pixels.
(2)The orange2tomato dataset contains orange images

from apple2orange dataset and the tomato images col-
lected from the Internet. The training set contains 654
tomato images and 1019 orange images, while the test set
contains 102 tomato images and 248 orange images, with
a uniform image resolution of 256 × 256 pixels.

Object detection datasets
The following source fruit dataset and target fruit

dataset were used in the fruit detection experiments:
(1) Source orange dataset: The dataset was collected

from an orange orchard in Sichuan Province, China. In
total, 664 orange images were collected using a DJI Osmo
Action camera (Shenzhen DJI Science & Technology Co.,
Ltd.), including down-light, back-light, dense target,
blocking target, and other fruit scenes. Relevant annota-
tion tools were exploited to obtain the coordinate infor-
mation of each orange annotation box, i.e., the x and y
coordinates of the two points in the upper left and lower
right corners of the annotation box. Afterward, the images
were resized to 416 × 416, and randomly divided into a
training set and a test set according to a 7:3 ratio.
(2) Target dataset: apple and tomato dataset:
Target apple dataset: The dataset is based on the

MineApple dataset37, which contains images of red and
green apples in a variety of highly cluttered environments,
with an average target fruit size of 40 × 40 pixels. In total,
504 images of red apples from the original training set
were selected as the experimental training set, with an
image resolution of 1280 × 720 and no data labeling. In
total, 82 red apple images from the original test set were
selected as the experimental test set. The images were
cropped to 719 × 898 to remove the influence of fallen
apples on the ground and then been labeled with relevant
labeling tools for later experimental validation.

Target tomato dataset
The dataset is based on the dataset published by Mu

et al.16, which ware collected from two farms in Tokyo,
Japan. The collected tomato images were pre-processed
and the image resolution was set to 1920 × 1080, where
the training set consisted of 598 unlabeled tomato images
and the test set consisted of 150 labeled tomato images.
Among them, the orange images and apple images were

collected outdoors, and the tomato images were collected
indoors. Besides, most of the tomato images includes
green tomato fruits, so the color features are similar to the
background leaves. The differences in these collection

environments, locations and shooting distances bring
significant challenges to this study.

Workflow of the proposed method
In this paper, a data labeling conversion method

between different species of fruits is proposed to realize
the automatic data labeling of unlabeled fruit datasets and
save the dataset labeling cost in detection tasks. The
flowchart of the algorithm is depicted in Fig. 1.
The application context comprises a labeled source fruit

dataset Ds and an unlabeled target fruit dataset DU
T , both

from Object detection dataset. We assume the sets Ds ¼
f I1S ; l

1
S

� �
; I2S ; l

2
S

� �
; ¼ ¼ ; INS

S ; lNS
S

� �g and DU
T ¼ fI1T ; I2T ; ¼

¼ ; INT
T g, where IS and IT represent the image in the

source fruit dataset and the target fruit dataset, respec-
tively. lS represents the labeling information of the cor-
responding images in the source fruit dataset, and N
represents the number of images in the dataset. The
overall steps of the method are as follows:
Step 1: The fruit images were imported from the dataset

Ds into the CycleGAN testing network for image trans-
formation (the CycleGAN network is noted as M1 and the
associated model weight parameter is noted as w1); there
upon, construct a fake apple dataset DF with the labeling
information of the source fruit dataset Ds, where DF ¼

I1F ; l
1
S

� �
; I2F ; l

2
S

� �
; ¼ ¼ ; INS

F ; lNS
S

� �� �
and IF represents the

transformed fake target fruit image.
Step 2: Feed dataset DF into the fruit detection model

called Improved-Yolov337 for training, the obtained fruit
detection model is noted as M2, and the weight parameter
of the model is noted as w2.
Step 3: Using the dataset DU

T as the test set input model
M2, obtain the detection box of the real target fruit in the
image IT, and treat the detection box as the pseudo-label
information of the image IT. Subsequently, use the self-
learning method of the pseudo label to improve the
accuracy of the labels. Finally, obtain the dataset DU

T with
pseudo labels and note as DL

T , where DL
T ¼

fðI1T ; l1T Þ; ðI2T ; l2T Þ; ¼ ¼ ; ðINT
T ; lNT

T Þg and lT represent the
labeling information for the associated image IT.
Step 4: Output the above dataset DL

T with label
information.
The data labeling conversion algorithm includes the

implementation of the following four functional modules.

A: Image transformation
The generative adversarial network38 has been one of

the most popular models in recent years. The model
mainly improves the performance of the discriminator
network in distinguishing true and false images and
guides the generator network to output more realistic
images through the zero-sum game between the generator
network and the discriminator network. In this study, the
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CycleGAN43 network was deployed to realize image
transformation among different species of fruits.
The purpose of the CycleGAN network is to learn the

domain mapping between two image domains, X (source
domain) and Y (target domain), through unpaired sample

images in the dataset, thereby realizing the image trans-
formation between domains without supervision. As
shown in Fig. 2a, the CycleGAN network includes two
generator networks G and F, for image transformation
between two image domains in different directions, and

Fig. 2 Image transformation network related components. a represents a mapping function diagram between two image domains X and Y,
including two mappings, G:X->Y and F:Y->X, and two discriminators, DX and DY; b represents the discriminator network diagram; and c represents
the generator network diagram

Fig. 1 Workflow of data labeling conversion method. The method mainly includes fruit generate module, fruit training/detection module and
label generation module, to relize the automatic data labeling of unlabeled fruit datasets
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two discriminator networks DX and DY. The generator
network (Fig. 2c) consists of an encoder, a transformer,
and a decoder, which operate as follows: first, the source
domain image is input into the encoder and the image
feature vector is extracted. Afterward, the source domain
feature vector is transformed into a target domain feature
vector by a transformer, which consists of a residual
module constructed of two convolutional layers; this
enables the retention of the feature information in the
image of the source domain while transforming. Finally,
the feature vector of the target domain image output from
the transformer is passed through the deconvolution
network to reconstruct the low-level features and gen-
erate the target domain image. In addition, the dis-
criminator network (Fig. 2b) mainly consists of
convolutional layers, which are firstly used to extract
image features. The extracted feature vectors are there-
upon determined by the one-dimensional output con-
volutional layer of the last layer and the authenticity of the
image is finally determined.
To address the problem of large differences in features

between fruits of different species, this paper implements

feature transfer between fruits, which is more effective in
allowing the model to learn the target fruit features
directly. When the CycleGAN network training is com-
pleted, the generator network can be used to realize image
transformation for different species of fruit images. The
operation is as follows. First, train CycleGAN network
using different species of source fruit dataset and target
fruit dataset, both from CycleGAN dataset, and the image
input size of the CycleGAN network is 256*256. Second,
using the trained CycleGAN network, according to Eq.
(1), transform the source fruit image IiS in the dataset Ds

into the fake target fruit image IiF (as shown in Fig. 3),
where w1 represents the weight parameter of the Cycle-
GAN network. By combining the original labeling infor-
mation in the dataset Ds, the fake fruit dataset DF with the
source fruit labeling information was constructed.

IiF ¼ M1 w1; I
i
S

� �
; i ¼ 0; 1; 2; ::::::;NS ð1Þ

Finally, obtain the fruit detection model M2 by training
dataset DF, which could be applied to the detection task of
the dataset DU

T .

Fig. 3 Examples of source fruit image and generated fake fruit image. The figure shows the image transformation effects at different shooting
distances, where the first column shows the source orange image, and the second column shows the generated fake apple image and the third
column shows the generated fake tomato image
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B: Fruit detection network
The detection model applied in this study is grounded

on Improved-Yolov344. The model structure is depicted
in Fig. 4. Improved-Yolov3 is designed based on the
original Yolov3 model, which removes the deep network
detection branch with a downsampling rate of 32 and
adds a shallow network detection branch with a down-
sampling rate of 4, fuse the deep and shallow network
features by Feature Pyramid Network(FPN) network
structure, to improve the small-scale fruit detection
performance. More detailed information on Improved-
Yolov3 can be found at44.

C: Pseudo-label generation
The traditional dataset label is based on manual label-

ing, while pseudo labeling is a machine-generated
bounding box similar to manual labeling. This paper
proposes a pseudo-labeling approach to generate labels in
the dataset DU

T automatically. Because the fruit features of
the fake fruit images generated by the CycleGAN network
are more similar to those of naturally grown target fruit
images, the model M2 has some ability to detect real
target fruits. Therefore, the labeling information (pseudo
label) in the dataset DU

T can be obtained by the model M2.
The operation is as follows.
First, use the fruit detection model M2 to obtain the

detection bounding box information for real target fruit
images in the dataset DU

T . Thereupon, utilize the
acquired detection bounding box as pseudo label of the
dataset DU

T to construct the dataset DL
T with labeling

information automatically and realize the conversion of
labeling information between different species of fruit
datasets.

D: Pseudo-label self-learning
The detection bounding box obtained by the model M2

in real target fruit images IT is used as a pseudo label, and
because the model M2 is trained from the fake fruit
dataset DF, it is prone to the presence of a false detection
bounding box in real target fruit images IT, resulting in
noise in the generated pseudo label. Therefore, how to
reduce the impact of noise in pseudo labels is one of the
main research points in this paper.
In the process of acquiring pseudo labels, the setting of

the confidence threshold is related to the quality and
quantity of the acquired pseudo labels. When the con-
fidence threshold higher, the acquired pseudo label has a
higher probability of correctly labeling the target fruit in the
image, while a high confidence threshold leads to a lower
number of pseudo labels, and the opposite is also true.
Therefore, this paper proposes a pseudo-label self-learning
method, which includes a pseudo-label noise filtering
operation and a cyclic update operation to reduce the
effects of pseudo-label noise, thereby improving the labeling
accuracy of pseudo labels, as shown in Algorithm 1. The
pseudo-label self-learning method is described as follows.
Pseudo-label noise filtering: First, set the initial con-

fidence threshold θ . The unlabeled target fruit dataset DU
T

is used as the test set input model M2 to obtain all the
detection boxes, as shown in the following equation.

XNi�1

j¼0

lijT ¼ M2ðw2; I
i
T ; θÞ ð2Þ

where lijT denotes the jth detection box information of the
ith real target fruit image and Ni denotes the total number
of detection boxes for the ith real target fruit image, where

Fig. 4 Structure of the Improved-Yolov3 model. The model mainly consists of Darknet53 backbone, FPN network structure and multi-level
detection head
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i ¼ 0; 1; 2; ::::::;NT−1. Subsequently, count the sum of
the scores of all detection boxes and calculate the average
score Saver according to Eq. (3), filter out the detection
boxes below the average score Saver, and the higher score
of the detection box is regarded as the pseudo label of the
real target fruit dataset DU

T , as shown in Eq. (4).

Saver ¼
ScoreðPNT�1

i¼0

PNi�1
j¼0 lijT ÞPNT�1

i¼0 Ni

ð3Þ

XNi�1

j¼0

lijT ¼ Filterð
XNi�1

j¼0

lijT ; SaverÞ ð4Þ

where the Score function indicates that the scores of the
acquired detection boxes are summed and the Filter
function indicates that the detection boxes below the set
score value are filtered.
Pseudo-label cycle update: When the model M2 is fine-

tuned using the real target fruit dataset DL
T for a certain

number of epochs, the modelM2 learns the features of the
real target fruit image, improves the detection perfor-
mance of the real target fruit image. At this time, the
detection box of the unlabeled real target fruit dataset DU

T
obtained by the model M2 is more comprehensive and
accurate, and the labeling accuracy of the pseudo label is
higher. Therefore, the method in this study re-obtains the
detection box of the dataset DU

T by using the current fruit
detection modelM2 at certain intervals of training epochs.
The pseudo-label information of the unlabeled dataset DU

T
is updated by the aforementioned pseudo-label noise fil-
tering method to improve the labeling accuracy.

Algorithm 1: Pseudo-label Self-learning

Input

Unlabeled Images IT, labeled dataset DF, Object Detector M2,

Confidence threshold θ, Number of pseudo-label updates N

Output

Label lT
1: Initialize M2 with DF

2: for n← 1 to N do:

3: Input M2 with IT, obtain lT
4: Filter noise label lT based on Eqs. (2)–(4),

obtain labeled dataset DT

5: Update M2 via fine-tuning with DT

6: end

7: Output: label lT

Experimental setup
This experiment deploys a deep learning framework for

model training and testing on a computer platform with

an Intel Core i7-8700K CPU processor (32GB of RAM),
GeForce GTX 1080Ti GPU graphics card (12GB of video
memory), and an operating system with ubuntu18.04LTS,
using the Python 3.6.5 programming language to imple-
ment the construction, training, and validation of network
models under the Pytorch 1.0.0 deep learning framework.
CycleGAN model training: The network was trained

using a mini-batch adaptive moment estimation (Adam)
optimizer with a momentum factor of 0.5 and a batch size
of one. The learning rate for the first 100 training epochs
was set to 0.0002, the learning rate for the next 100
training epochs was set to zero with linear recession, and
other relevant parameter information from the original
paper43 was applied.
Improved-Yolov3 model training: The detection model

is trained in a computer hardware environment with a
GPU to improve the convergence rate of model training.
Stochastic gradient descent with a mini-batch with a
momentum factor was used to train the network. The
value of the momentum factor was set to 0.9, the decay
was 0.0005, and the batch size was four, the initial
learning rate was 0.001, and the learning rate was adjusted
using the cosine annealing function. A larger learning rate
in the early stage helps the network converge quickly, and
a smaller learning rate in the later stage made the network
more stable and obtains the optimal solution.

Evaluate metrics
To evaluate the detection performance of the Improved-

Yolov3 model, this paper uses Precision, Recall, F1 score,
and mAP as the evaluation metrics. A predicted bounding
box is considered correct (true positive) if it overlaps
more than the intersection-over-union threshold with a
labeled bounding box. Otherwise, the predicted bounding
box is considered false positive. When the labeled
bounding box has an intersection over union with a
predicted bounding box lower than the threshold value, it
is considered false negative. The standard intersection-
over-union threshold value of 0.5 was adopted. The
relevant formulae are shown in the following equations.

Precision ¼ Tp
Tpþ Fp

´ 100% ð5Þ

Recall ¼ Tp
Tpþ Fn

´ 100% ð6Þ

F1 Score ¼ 2 ´Precison ´Recall
Precisonþ Recall

´ 100% ð7Þ

mAP ¼ JðPrecison; RecallÞ ð8Þ

where J(•) represents the area calculation function under
Precision and Recall curves.
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Results
The datasets used in this experiment are described

below:
(1)Dataset DS: contains the images of source oranges

and the associated labeling information.
(2)Dataset DU

T apple: contains the images of real apples
without labeling information.
(3)Dataset DU

T tomato: contains the images of real toma-
toes without labeling information.

Evaluation of datasets DS and DF

In this study, the fruit detection model Improved-
Yolov344 was trained and tested using the dataset DS and
the dataset DF, respectively. DS contains source orange
dataset DS_orange, and DF contains fake apple datasets
DF_apple and fake tomato datasets DF_tomato. As shown in
Table 1, the mAP value obtained by the model Improved-
Yolov3 tested in the dataset DS_orange is 95.1%. Because the
fake apple image and the fake tomato image were
obtained by transforming the orange fruit image in the
dataset DS, the fruit location information is the same in
both datasets, with the main divergence being that the
underlying features in the image, such as fruit color and
texture, are different. After testing, the mAP value of the

Improved-Yolov3 model on the dataset DF_apple and
DF_tomato are 94.8% and 96.7%, respectively; hence, the
difference between the values of each experimental metric
on the datasets DS and DF is not large, and both have high
detection accuracy.

Attachment
The following is the attachment related to this paper,

mainly including the picture form of the related table.

Adding pseudo labels obtained through different
confidence thresholds
As shown in Tables 2, 3, for models obtained from

pseudo labels that fine-tune at different confidence
thresholds, this experiment was conducted to compare
the test results of real apple images and real tomato
images. Because there are certain differences in the fea-
tures between the fake fruit images generated by the
CycleGAN network and the natural real-grown fruit
images, the model M2 is fine-tuned using a pseudo-
labeling method to reduce the learned feature variability
by fitting the feature distribution of the real fruit images.
The experiments in this study obtain pseudo labels for the
dataset DU

T apple and DU
T tomato by setting different con-

fidence thresholds, and the quality and quantity of pseudo
labels varied depending on the confidence threshold set-
tings, which impacted fruit detection model M2. The
confidence threshold values ranged from 0.1 to 0.9, and
the interval between the values under experimental
comparison was 0.1. (The bolded part of the following
table indicates the model performance results obtained
under the current optimal confidence threshold
parameters).

Table 1 Evaluation results for datasets DS and DF in the
Improved-Yolov3 model

Model Datasets Precision Recall F1 Score mAP

Improved-Yolov3 DS_orange 0.886 0.923 0.904 0.951

Improved-Yolov3 DF_apple 0.889 0.920 0.904 0.948

Improved-Yolov3 DF_tomato 0.913 0.941 0.927 0.967

Table 2 Label conversion of orange dataset to apple dataset: the pseudo-labeling method obtaining pseudo labels by
setting different confidence thresholds, generating a real apple dataset DL

T apple with labeling information, and finally
verifying the validity of the generated labels by the model’s detection performance

Model Pseudo label Conf Precision Recall F1 Score mAP

Improved-Yolov3 × None 0.704 0.658 0.68 0.653

√ 0.1 0.724 0.72 0.722 0.769

√ 0.2 0.747 0.746 0.746 0.788

√ 0.3 0.768 0.769 0.768 0.805

√ 0.4 0.783 0.786 0.784 0.828

√ 0.5 0.79 0.8 0.795 0.829

√ 0.6 0.803 0.808 0.805 0.852

√ 0.7 0.813 0.822 0.817 0.845

√ 0.8 0.815 0.798 0.806 0.843

√ 0.9 0.79 0.796 0.793 0.836

Zhang et al. Horticulture Research           (2021) 8:119 Page 8 of 13



When the real fruit image is tested directly using the
model M2 obtained from the dataset DF, the mAP value
obtained from the real apple and tomato datasets were
65.3% and 71.1%. When using the pseudo-labeling
method, as the set confidence threshold increased, the
accuracy of the pseudo-label labeling increases, the noise
in the pseudo label decreases, and the mAP of the model
tends to increase incrementally. When the confidence
threshold exceeds a certain value, the mAP value of the
model at that time decreases as the confidence threshold
value increases, and the reason for the analysis is that the
low number of pseudo label with high threshold leads to a
decrease in the diversity of features learned, which affects
the generalization ability of the model. The model mAP
value reached 85.2% when the confidence threshold was

0.6 in the real apple dataset (as shown in Table 2). The
model mAP value reached 75.2% when the confidence
threshold was 0.5 (as shown in Table 3) in the real tomato
dataset, which showed that introducing the pseudo-
labeling method improved the fruit detection
performance.

Pseudo-label self-learning method to reduce noise labels
There is the effect of noise in the acquired pseudo

labels, i.e., incorrect labeling information in the generated
pseudo labels affects the training of the fruit detection
model. In this paper, pseudo-label noise filtering and cycle
update methods are proposed to reduce the impact of
noisy pseudo labels. From Tables 4, 5, it is obvious that, as
the set confidence threshold increases, the mAP value of

Table 3 Label conversion of orange dataset to tomato dataset: the pseudo-labeling method obtaining pseudo labels by
setting different confidence thresholds, generating a real tomato dataset DL

T tomato with labeling information, and finally
verifying the validity of the generated labels by the model detection performance

Model Pseudo label Conf Precision Recall F1 Score mAP

Improved-Yolov3 × None 0.723 0.725 0.724 0.711

√ 0.1 0.753 0.751 0.752 0.729

√ 0.2 0.754 0.756 0.755 0.732

√ 0.3 0.745 0.747 0.746 0.738

√ 0.4 0.769 0.767 0.768 0.741

√ 0.5 0.77 0.769 0.769 0.752

√ 0.6 0.765 0.765 0.765 0.748

√ 0.7 0.76 0.759 0.759 0.745

√ 0.8 0.748 0.747 0.748 0.744

√ 0.9 0.705 0.708 0.707 0.688

Table 4 Label conversion of orange dataset to apple dataset: for the pseudo label obtained with different confidence
thresholds, the pseudo-label self-learning method is further adopted to reduce the influence of noise in the pseudo label
and generate a real apple dataset DL

T apple with higher quality labels

Model Pseudo label Conf Precision Recall F1 Score mAP

Improved-Yolov3 √ 0.1 0.698 0.733 0.715 0.77

√ 0.2 0.747 0.749 0.748 0.79

√ 0.3 0.765 0.771 0.768 0.807

√ 0.4 0.786 0.779 0.782 0.822

√ 0.5 0.793 0.802 0.797 0.828

√ 0.6 0.801 0.796 0.798 0.847

√ 0.7 0.828 0.836 0.832 0.875

√ 0.8 0.814 0.808 0.811 0.847

√ 0.9 0.793 0.801 0.797 0.838
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the fruit detection model M2 increases and decreases
thereupon, mainly due to the effect of the confidence
threshold on the quality and quantity of the generated
pseudo labels. In the real apple dataset, when the con-
fidence threshold was 0.7, the model mAP value reached
87.5% (as show in Table 4), which is 2.3% higher than the
best mAP value in Table 2. In the real tomato dataset,
when the confidence threshold was 0.6, the model mAP
value reached 76.9% (as show in Table 5), which is 1.7%
higher than the best mAP value in Table 5.

Generated datasets labels
From the comparison of the above experimental results,

it is clear that the proposed method can generate higher
quality label data automatically. In the real apple dataset,
the mAP value of the training model reached 87.5% when
obtained pseudo-labels with a confidence threshold of 0.7.
In the real tomato dataset, the mAP value of the training
model reached 76.9% when obtained pseudo-labels with a
confidence threshold of 0.6. The above two models have
also been applied to visualize apple and tomato detection
in real scenarios. As shown in Fig. 5, the image includes
target fruit (including apple and tomato) in various sce-
narios, including complex situations, such as occlusion,
shadowing, and underexposure, with the blue box repre-
senting the detection results of models. In particular, most
of the target fruit in the image can be detected, and the
generated detection boxes can well surround the target
apples at different locations in the image, which improves
the quality of the generated labels, verifies the effective-
ness of the proposed method in this study.

Discussion
This paper proposed a new solution to overcome the

current problem of high labeling cost for training data

acquisition: the automatic labeling of unlabeled fruit
datasets. The proposed method could convert labeling
between labeled source fruit datasets and unlabeled
target fruit datasets to achieve the automatic labeling of
target fruit datasets; furthermore, it could be applied
for the automatic labeling of other fruit datasets to
improve the efficiency of fruit detection work in
orchard.
More images of fruit species are currently available in

public resources; hence, it is easier to obtain images
related to the target fruit species. As shown in Table 6, we
collect a large public dataset that included information on
access sources, fruit species, and download addresses. It
could provide a great deal of data support for subsequent
experiments and facilitate experimental testing by other
researchers. Therefore, by using the method in this paper,
the automatic labeling of other datasets could be com-
pleted with solely a small amount of labeling information,
thereby saving a great deal of data labeling work and
improving fruit inspection efficiency.
In addition, in the practical application of this method,

there are certain requirements for the source fruit and
target fruit species in the fruit image transformation
application: (1) the differences in shape and size between
the two fruit species should be as small as possible; and (2)
for the source fruit image, the background color features
and the fruit color features should be distinguished as
clearly as possible. Moreover, in the experimental process,
the pseudo labels are mainly obtained by setting the
confidence threshold manually, which has the con-
tingency of missing the best confidence threshold.
Therefore, more in-depth research on these methods is
needed to solve relevant problems, so that the automatic
data labeling method could be more effective in a
practical level.

Table 5 Label conversion of orange dataset to tomato dataset: For the pseudo label obtained with different confidence
thresholds, the pseudo-label self-learning method is further adapted to reduce the influence of noise in the pseudo label
and generate a real tomato dataset DL

T tomato with higher quality labels

Model Pseudo label Conf Precision Recall F1 Score mAP

Improved-Yolov3 √ 0.1 0.748 0.748 0.748 0.725

√ 0.2 0.757 0.751 0.751 0.731

√ 0.3 0.744 0.749 0.746 0.741

√ 0.4 0.759 0.757 0.758 0.744

√ 0.5 0.766 0.765 0.765 0.764

√ 0.6 0.769 0.767 0.768 0.769

√ 0.7 0.758 0.757 0.758 0.752

√ 0.8 0.743 0.747 0.745 0.748

√ 0.9 0.731 0.735 0.735 0.717
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Conclusion
This paper proposed a domain adaptation method for

filling the species gap in deep learning–based fruit
detection, which can be applied for the acquisition of
labeling information from unlabeled target fruit datasets;

this is a new method to solve the high data labeling cost
problem. The acceptable accuracy of fruit detection by
models trained on the automatically obtained labeled
target fruit image showed the effectiveness of the pro-
posed method. With this automatic labeling method, if

Fig. 5 Examples of detection results of apples and tomatoes in real scenarios. The image includes target fruit in different scenarios, where the
blue boxes indicate the model detection boxes, and finally, the detection boxes can be used as a ground truth for the unlabeled fruit dataset,
enabling the automatic labeling of the dataset

Table 6 Information on some of the current public datasets, including the source of the dataset, the species of fruit, and
the associated download URL

Source Fruit species Web site

Sa I32 Apple, Avocado, Capsicum, Mango, Orange, Rockmelon, Strawberry http://goo.gl/9LmmOU

Bargoti S33 Almonds, Apple, Mango https://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit

Koirala,A35 Mango http://hdl.cqu.edu.au/10018/1261224

Kestur,R36 Mango https://github.com/avadesh02

Liang Q45 Mango, Almond https://pan.baidu.com/s/1pdTyVq9PlbhkR2k4Tl5zA

Hani37 Apple http://rsn.cs.umn.edu/index.php/MinneApple

Tsironis V46 Tomato https://github.com/up2metric/tomatOD

Laboroai Tomato https://github.com/laboroai/LaboroTomato

Kaggle Tomato https://www.kaggle.com/andrewmvd
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there is solely one source fruit dataset with label, the
automatic labeling of data from unlabeled target fruit
dataset could be realized, saving a large amount of data
labeling work. In the future, this method could be applied
for the automatic labeling of more fruit datasets to
improve the efficiency of orchard work.
It is worth mentioning that there is enormous scope for

future research. Notably, we intend to study further on
the following aspects: 1) Concerning the image transfor-
mation method used in this paper, when the fruit color
features and background color features in the source fruit
image are similar, the image transformation task is prone
to fail. If we successfully solved the transformation pro-
blem, the method would be applicable to a wider range of
fruit dataset; for this reason, how to solve the image
transformation problem captures our interest. 2) During
the experiments, pseudo labels are acquired by setting the
confidence thresholds manually and are prone to miss the
optimal threshold acquisition; hence, we plan to investi-
gate further to obtain the best confidence threshold.
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