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Abstract
Schlager mice (BPH/2J) are hypertensive due to a greater contribution of the sympathetic nervous system (SNS) and renin-
angiotensin system (RAS). The kidneys of BPH/2J are hyper-innervated suggesting renal nerves may contribute to the
hypertension. We therefore determined the effect of bilateral renal denervation (RD) on hypertension in BPH/2J. Mean
arterial pressure (MAP) was measured by radiotelemetry before and for 3 weeks after RD in BPH/2J and BPN/3J. The
effects of pentolinium and enalaprilat were examined to determine the contribution of the SNS and RAS, respectively. After
3 weeks, MAP was −10.9 ± 2.1 mmHg lower in RD BPH/2J compared to baseline and −2.1 ± 2.2 mmHg in sham BPH/2J
(P < 0.001, n= 8–10). RD had no effect in BPN/3J (P > 0.1). The depressor response to pentolinium was greater in BPH/2J
than BPN/3J, but in both cases the response in RD mice was similar to sham. Enalaprilat decreased MAP more in RD BPH/
2J compared to sham (−12 vs −3 mmHg, P < 0.001) but had no effect in BPN/3J. RD reduced renal noradrenaline in both
strains but more so in BPH/2J. RD reduced renin mRNA and protein, but not plasma renin in BPH/2J to levels comparable
with BPN/3J mice. We conclude that renal nerves contribute to hypertension in BPH mice as RD induced a sustained fall in
MAP, which was associated with a reduction of intrarenal renin expression. The lack of inhibition of the depressor effects of
pentolinium and enalaprilat by RD suggests that vasoconstrictor effects of the SNS or RAS are not involved.

Keywords BPH/2J mice ● hypertension ● renal denervation ● autonomic nervous system ● renin-angiotensin system ● renal
renin expression

Introduction

BPH/2J mice are a genetic model of hypertension developed
by Schlager in the 1970s and selected for their elevated blood
pressure after crossing 8 normotensive strains [1]. BPN/3J
mice are a normotensive strain obtained from the same base
population as BPH/2J mice and used as their controls. BPH/2J
mice are suggested to have a neurogenic form of hypertension
due to greater activity of the sympathetic nervous system
(SNS). This was first demonstrated when the mean arterial
pressure (MAP) of BPH/2J mice was reduced by sympathetic
ganglion blockade to a level similar to that of normotensive
BPN/3J mice [2]. Elevated MAP in BPH/2J mice was asso-
ciated with an increase in central nervous system neuronal
activity, shown by immunohistochemistry to be 1.7-fold
greater in the medial amygdala (MeAm) of BPH/2J mice than
in BPN/3J mice [2]. Lesions in the MeAm reduced MAP of
BPH/2J mice to a level toward that of the BPN/3J strain,
confirming the contribution of the MeAm to SNS overactivity
and the hypertension of BPH/2J mice [3]. Furthermore, BPH/
2J mice have greater renal sympathetic innervation compared
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with BPN/3J mice [4]. Recently, the renin-angiotensin system
(RAS) was implicated in the hypertension of BPH/2J mice,
with evidence that renal renin (Ren1) mRNA expression was
greater in BPH/2J mice compared with BPN/3J mice [4]. This
increase in renin mRNA expression was correlated with a
greater depressor response to the ganglion inhibitor pentoli-
nium. Thus, we hypothesized that exaggerated renal sympa-
thetic activity contributes to elevated MAP in BPH/2J mice at
least partly through a mechanism that includes greater renal
renin expression. Renal denervation (RD) of BPH/2J mice is
therefore likely to reduce MAP effectively in this neurogenic
hypertensive strain. RD is known to reduce MAP in a number
of other experimental animal models of hypertension such as
the spontaneously hypertensive rat (SHR) [5], DOCA saline
hypertension [6] but not in Dahl salt sensitive hypertension
[7], mild DOCA salt hypertension [8], or Angiotensin II
hypertension [9]. In patients with resistant hypertension,
catheter-based RD has received much attention [10, 11]
especially more recently with the trial that showed its effec-
tiveness in hypertensive patients that had been withdrawn
from therapy [12]. Thus, although there have been very many
renal denervation studies reported, very few have examined
the underlying mechanism. The aim of this study was to
determine the effects of bilateral RD on MAP in BPH/2J and
BPN/3J mice. To assess the relative contributions of the SNS
and RAS in the maintenance of BP following RD, pentoli-
nium and the angiotensin-converting enzyme (ACE) inhibitor
enalaprilat respectively were used. Furthermore, the effect of
RD on renal renin mRNA and protein expression was
determined.

Methods

Animals

Experiments were performed on normotensive BPN/3J
(n= 18) and genetically hypertensive BPH/2J (n= 12)
adult male mice with an average age of 14 weeks at the time
of the first surgery. All experiments were approved by the
Alfred Medical Research Education Precinct Animal Ethics
Committee and conducted in accordance with the Australian
Code of Practice for Scientific Use of Animals. Animals
were housed individually under conditions of light (12 h on
and off) and temperature control with environmental
enrichment and free access to food and water. See online
data supplement for surgery and experimental sequence of
events (Supplementary Figure 1).

Preliminary surgery

Mice underwent two surgical procedures under isoflurane
open circuit anaesthesia (4% induction and 1.5–2%

maintenance in oxygen; Forthane, Abbott Australasia,
Botany, NSW, Australia). Carprofen (5 mg/kg, sub-
cutaneously, Rimadyl, Pfizer Australia, West Ryde, NSW,
Australia) and local bupivacaine (2 mg/kg, AstraZeneca,
North Ryde, NSW, Australia) were given before surgery
and carprofen was given again 24 h post surgery for
analgesia. In the first operation, a BP radiotelemetry trans-
mitter (model TA11PA-C10; Data Sciences International, St
Paul, MN, USA) was implanted [13]. The catheter of the
telemetry device was inserted into the left carotid artery and
the transmitter was positioned subcutaneously along the
right flank. Three weeks following telemetry surgery,
bilateral RD was conducted as described previously [14].
Before surgery, mice also received atropine (1.2 mg/kg,
intraperitoneally, Sigma, St Louis, USA) to reduce secre-
tions. Kidneys were exposed by an abdominal midline
incision. All visible renal nerves were cut, renal vessels
were stripped, painted with a solution of 10% phenol in
absolute ethanol and enclosed for 3 min by a sterile gelatine
sponge (1 × 4 mm) soaked with the 10% phenol solution.
The gelatine sponge was removed and surrounding tissue
was rinsed with normal saline (Baxter Healthcare, Old
Toongabbie, NSW, Australia). The muscle and skin layers
were separately sutured, and the mice received Hartmann’s
solution (0.3 mL/mouse, subcutaneously) before being
returned to their home cages. Sham-treated mice underwent
surgery to expose the kidneys, but phenol was not applied.

Cardiovascular measurements

After a 10-day recovery period from telemetry surgery,
baseline cardiovascular parameters and locomotor activity
were recorded over 72 h. Following RD, cardiovascular
parameters and locomotor activity were recorded over 24 h
on 6 occasions within 3 weeks (days 3, 6, 9, 12, 18 and 21
post surgery). All recordings of systolic arterial pressure
(SAP), diastolic arterial pressure (DAP), calculated MAP,
heart rate (HR), and locomotor activity were obtained in
freely moving mice in their home cage. The recordings were
sampled at 1000 Hz using an analogue-to-digital data
acquisition card (National Instruments 6024E, Austin,
Texas, USA) [15]. The beat-to-beat data were detected on
line and analysed later using a program written in the
LabVIEW programming language (National Instruments,
Austin, Texas, USA).

Cardiovascular variability and the cardiac
baroreceptor sensitivity

Spectral analysis of cardiovascular variability and the baror-
eceptor HR reflex gain were measured during the active dark
period as described previously in sham and RD BPN/3J and
BPH/2J mice (n= 6–8) [3]. The auto- and cross-power
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spectra were determined for multiple 50% overlapping seg-
ments of MAP and HR using a Fast Fourier transform. The
cardiac baroreflex sensitivity was estimated as the average
value of the transfer gain in the frequency band between 0.3
and 0.5 Hz. Baroreflex slope was considered significant if the
coherence between MAP and HR across several overlapping
segments in the analysed frequency band was >0.4. Data
periods with low locomotor activity were chosen (4 from each
circadian period) from 48-hour recordings minimizing the
influence of physical activity.

Assessment of cardiovascular reactivity in response
to stress tests

A series of behavioural tests were conducted during the
inactive period 2 weeks after RD surgery (days 12–17 post
surgery) in order to test whether activation of the SNS had
been affected. Following a 60 min baseline recording, ani-
mals were exposed to one of three stimuli (restraint stress,
dirty cage-switch stress and feeding), for 60 min on three
separate days [3]. Restraint stress involved guiding the
mouse into a cylindrical Plexiglas restrainer with a sliding
back plate to confine the animal. Immobilization minimizes
the contribution of locomotor activity to cardiovascular
responses to stress. Dirty cage-switch stress involved pla-
cing the mouse in a cage previously occupied by another
male mouse. This aversive stressor has been demonstrated
to induce sustained pressor responses as well as increased
locomotor activity [16]. Feeding stress involved presenting
palatable food (pieces of almond) to mice that had been
fasted overnight and observing the eating patterns each min
during the 60 min period.

Cardiovascular response to ACE inhibition and
ganglion blockade

Following a 30 min baseline recording, mice were admi-
nistered the ACE inhibitor enalaprilat (1 mg/kg intraper-
itoneal; Merck & Co, Keniworth, NJ, USA), followed
40 min later by the ganglion blocker, pentolinium (5 mg/kg,
intraperitoneal; Sigma-Aldrich, Castle Hill, NSW Australia)
as described previously [3]. ACE inhibition prior to gang-
lion blockade has been shown to reduce the compensatory
response of the RAS following ganglion blockade,
unmasking the full contribution of the SNS in BPH/2J mice
[4]. The cardiovascular responses were evaluated during
both the light (inactive) period and the dark (active) period,
on separate days, 2 weeks after RD surgery.

Tissue and blood collection and analysis

Three weeks following RD surgery, mice received an
overdose of sodium pentobarbitone (Lethobarb; Virbac

Animal Health, New South Wales, Australia) 2 h after
turning off the lights. A blood sample was collected by
cardiac puncture and plasma and kidneys were snap frozen
in liquid nitrogen and stored at −80 °C. Noradrenaline
content was later measured in kidneys (n= 6–10 per group)
and results were expressed in pg of noradrenaline per g of
wet tissue as previously described [17]. Renal RNA was
extracted and Ren1 mRNA abundance was measured in
BPH/2J and BPN/3J mouse kidneys (n= 7–9 per group),
following removal during the dark (active) period, as we
previously described [4]. Data from left and right kidneys
were averaged.

Renal protein was extracted from the kidney by the use
of RIPA buffer (Sigma-Aldrich) and 1% Halt Protease &
Phosphatase Inhibitor Cocktail (Thermo Scientific, Scor-
seby, Victoria, Australia). Renal protein was quantified
using DCTM Protein Assay and a bovine serum albumin
standard (BioRad, Hercules, CA, USA). Mouse plasma
collected in EDTA tubes (1:10 dilution) and renal protein
(500 µg) were used to determine Ren1 protein with the
Mouse Renin1 (Ren1) ELISA kit (Thermo Scientific)
according to the supplier, in an EnSpire™ Multimode Plate
Reader (PerkinElmer, Glen Waverley, Victoria Australia).
Intra-assay coefficients of variability were calculated and
only those less than 15% variability were accepted. The
overall variability for the plasma plate was 3% and for the
renal protein plate 3.8%.

Data analysis

Data were collected over 24-hour periods and were also
assessed during the 12 h of lights on (inactive period) and
lights off (active period). Responses to the different stres-
sors were calculated by the difference between the 60-min
baseline period and the 60-min stimulus period. The
response to enalaprilat was represented by the difference
between the baseline period (30 min recording before
treatment) and that recorded 20–30 min after treatment. To
calculate the effect of pentolinium, the 30-min period fol-
lowing enalaprilat injection was used as the control period
and compared with the response 10–20 min after pentoli-
nium injection.

Data are expressed as mean ± SEM and were analysed by
split plot repeated measures analysis of variance, which was
a mixed model allowing for within-animal and between-
animal (group) contrasts. Comparisons used were Pstrain,
which was BPH/2J vs BPN/3J, PRD which was sham vs RD
and Pbaseline comparing the effect of denervation or sham
surgery against baseline. Type 1 error was controlled using
Bonferroni adjustment to the probability threshold and
Greenhouse-Geisser correction to reduce inflated residual
degree of freedom [18]. A probability of P < 0.05 was
considered significant.
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Results

Baseline cardiovascular measurements

MAP and HR, measured over 24 h, were 17% and 28%
higher, respectively, in BPH/2J mice compared with BPN/
3J mice (both Pstrain < 0.001, Table 1, baseline pooled from
sham and RD groups). Locomotor activity was 1.5-fold
greater in BPH/2J mice (Pstrain= 0.02, Table 1). During the
dark (active) period, MAP and HR in BPH/2J mice were
21% and 33% greater, respectively (both Pstrain < 0.001),
and locomotor activity was 1.9-fold greater, (Pstrain < 0.001)
than in BPN/3J mice (Table 1). A similar pattern was
observed in MAP and HR during the light (inactive) period
but the differences between strains were smaller. MAP and
HR were 13% and 23% greater, respectively, in BPH/2J
compared to BPN/3J mice (Pstrain < 0.001) but locomotor
activity was similar in the 2 strains (Pstrain= 0.99, Table 1).
BPN/3J mice were heavier than BPH/2J mice by 4.1 g (27.9
vs 23.8 g, n= 16 and n= 18, Pstrain < 0.001), which is
similar to our previous findings [19].

Effects of RD on cardiovascular, locomotor and body
weight measurements

After RD, MAP in BPH/2J mice, averaged over 3 weeks,
was 8.5 ± 0.8 mmHg lower than baseline (Pbaseline < 0.001)
compared to sham-treated mice in which MAP remained
similar to baseline (Pbaseline= 0.86, Fig. 1). The reduction
was evident by day 3 and remained stable from day 6 to the
end of the experiment on day 21 (Fig. 1). There was no
detected change from baseline MAP over the 3 weeks after
sham with the final 3-week reduction being 10.9 ± 2.1
mmHg lower in RD BPH/2J compared to 2.1 ± 2.2 mmHg
lower in sham BPH/2J. RD had no effect in BPN/3J mice
over the 3-week period (Pbaseline > 0.1, Fig. 2). Thus the
effect of RD was markedly greater in BPH/2J than in BPN/
3J mice (Pstrain < 0.001).

HR fell by −38 ± 5 b/min in BPH/2J mice in the 3 weeks
following RD (Pbaseline < 0.001) but was also lower than
baseline after sham surgery (−31 ± 5 b/min, Pbaseline <
0.001, Fig. 1). In BPN/3J mice, HR was elevated from
baseline following denervation (+18 ± 5 b/min, Pbaseline=
0.027) but there was no change following sham surgery
(Pbaseline= 0.42, Fig. 2).

In BPH/2J mice there was a modest reduction in loco-
motor activity level from baseline following RD (Pbaseline=
0.011) but not sham treatment and there was no effect on
activity following either sham or RD in BPN/3J mice
(Pbaseline > 0.1).

There was no difference in the body weight change over
the 3 weeks in sham or denervated BPN/3J mice (Pstrain=
0.67, Fig. 2). Averaged over the 3 weeks, there was a Ta

bl
e
1
A
ve
ra
ge

ba
se
lin

e
m
ea
n
ar
te
ri
al

pr
es
su
re
,
he
ar
t
ra
te

an
d
lo
co
m
ot
or

ac
tiv

ity
in

no
rm

ot
en
si
ve

(B
P
N
/3
J)

an
d
ge
ne
tic
al
ly

hy
pe
rt
en
si
ve

(B
P
H
/2
J)

m
ic
e

24
h

D
ar
k
(a
ct
iv
e)

L
ig
ht

(i
na
ct
iv
e)

D
ar
k
lig

ht
di
ff
er
en
ce

B
P
N
/3
J

B
P
H
/2
J

P
-v
al
ue

B
P
N
/3
J

B
P
H
/2
J

P
-v
al
ue

B
P
N
/3
J

B
P
H
/2
J

P
-v
al
ue

B
P
N
/3
J

B
P
H
/2
J

P
-v
al
ue

n=
16

n=
18

n=
16

n=
18

n=
16

n=
18

n=
16

n=
18

M
A
P
(m

m
H
g)

10
9.
7
±
0.
9

12
8
±
1.
8

<0
.0
01

11
2
±
1.
1

13
5
±
2.
0

<0
.0
01

10
7.
4
±
1.
0

12
1.
1
±
1.
9

<0
.0
01

4.
5
±
1.
2

14
.1
±
1.
3

<0
.0
01

S
A
P
(m

m
H
g)

12
3.
0
±
1.
2

14
7.
0
±
2.
0

<0
.0
01

12
5.
3
±
1.
3

15
4.
7
±
2.
3

<0
.0
01

12
0.
8
±
1.
4

13
9.
2
±
1.
9

<0
.0
01

4.
5
±
1.
2

15
.5
±
1.
5

<0
.0
01

D
A
P
(m

m
H
g)

96
.1
±
1.
0

11
0.
2
±
1.
8

<0
.0
01

98
.3
±
1.
3

11
6.
5
±
1.
8

<0
.0
01

94
.0
±
1.
0

10
3.
8
±
1.
9

<0
.0
01

4.
29

±
1.
2

12
.7
±
1.
2

<0
.0
01

H
R

(b
/m

in
)

45
2
±
8

58
0
±
11

<0
.0
01

47
3
±
10

63
0
±
12

<0
.0
01

43
2
±
8

53
0
±
12

<0
.0
01

41
±
8

10
0
±
9

<0
.0
01

A
ct
iv
ity

(u
ni
ts
)

0.
86

±
0.
18

1.
3
±
0.
12

0.
02

0.
94

±
0.
22

1.
83

±
0.
20

<0
.0
01

0.
77

±
0.
15

0.
77

±
0.
08

0.
99

0.
17

±
0.
14

1.
06

±
0.
19

<0
.0
01

B
as
el
in
e
va
lu
es

ar
e
m
ea
n
±
S
E
M

m
ea
su
re
d
ov

er
24

h,
12

h
in

th
e
da
rk

(a
ct
iv
e)

pe
ri
od

,
12

h
in

th
e
lig

ht
(i
na
ct
iv
e)

pe
ri
od

an
d
w
er
e
an
al
ys
ed

by
sp
lit

pl
ot

an
al
ys
is

of
va
ri
an
ce
.
T
he

di
ff
er
en
ce

be
tw
ee
n
va
lu
es

m
ea
su
re
d
in

th
e
da
rk

an
d
in

th
e
lig

ht
pe
ri
od

s
is
al
so

sh
ow

n
(d
ar
k
lig

ht
di
ff
er
en
ce
).
P
fo
r
co
m
pa
ri
so
n
of

B
P
N
/3
J
w
ith

B
P
H
/2
J.
C
om

pa
ri
so
ns

w
er
e
m
ad
e
be
tw
ee
n
B
P
N

(n
=
16

),
B
P
H

(n
=
18

)
st
ra
in
s
w
ith

ba
se
lin

e
va
lu
es

fr
om

sh
am

an
d
de
ne
rv
at
ed

m
ic
e
po

ol
ed
.
A

pr
ob

ab
ili
ty

of
P
<
0.
05

w
as

co
ns
id
er
ed

si
gn

ifi
ca
nt

an
d
in
di
ca
te
d
in

bo
ld

M
A
P
m
ea
n
ar
te
ri
al

pr
es
su
re
,
SA

P
sy
st
ol
ic

ar
te
ri
al

pr
es
su
re
,
D
A
P
di
as
to
lic

ar
te
ri
al

pr
es
su
re
,
H
R
he
ar
t
ra
te

Renal nerves contribute to hypertension in Schlager BPH/2J mice 309



modest decrease in body weight in denervated BPH/2J mice
particularly between day 3 and 9 that was not observed in
sham treated mice (Pstrain= 0.013, Fig. 1). By day 21 there
was no difference in the body weight between the sham or
RD BPH/2J mice (Fig. 1).

Effects of RD on circadian pattern of cardiovascular
measurements

As the extent of the hypotensive effects of RD were
relatively constant over the 3 weeks, the average of the
24-hour recordings of MAP, HR and activity during this
time were compared to baseline recordings but shown by
hourly average to show more clearly the nocturnal pattern
(Figs. 3 and 4). BPH/2J showed markedly higher levels of
MAP, HR and activity during the active (dark) period
compared to the inactive (light) period. By contrast BPN/
3J exhibited much lesser day night differences in all
variables.

We determined whether the changes occurring over the
3 weeks were evident in both the light and dark period
(Figs. 3 and 4). The hypotensive effect of RD were equally
evident in BPH/2J mice during both active (dark) and
inactive (light) periods (Effect between day night P= 0.40,
Fig. 3). There was no hypotensive effect of RD in BPN/3J
mice at 3 weeks compared to baseline and this was shown
both during the dark and light period (Fig. 3). Similarly, the
maintenance of MAP over the 3-week period in sham mice
of both strains was evident in both the light and dark
(Fig. 4). By contrast, the HR gradually reduced over the
3-week period in BPH/2J.

Effect of RD on cardiovascular variability and
cardiac baroreceptor sensitivity

During the dark (active) period, mid frequency and high
frequency MAP and HR power were 2–3-fold greater in
BPH/2J than in BPN/3J mice (Table 2, P < 0.05) but
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baroreflex gain were similar between strains (Table 2).
Low frequency and total MAP and HR power were
similar in the 2 strains (Table 2). RD had no effect on any
frequency MAP or HR power in BPN/3J mice and MAP
power in BPH/2J. However, all frequency of HR power
was less in BPH/2J RD mice compared to sham (Table 2).
Also there was a trend for baroreflex gain to be less in RD
BPH/2J compared to sham (Table 2, P= 0.060).

During the inactive period, only MAP, HR and mid
frequency HR power were higher in sham BPH/2J
compared to sham BPN/3J. MAP power, other HR fre-
quencies and baroreflex gain were similar between
the 2 strains (Supplementary Table 1). RD reduced
day (inactive) HR in BPN/3J but had no other effects on
MAP power or HR power or baroreflex gain. RD reduced
MAP in BPH/2J but did not affect other inactive power
spectral parameters in this strain (Supplementary
Table 1).

Effects of RD on cardiovascular responses to
enalaprilat and pentolinium during the active and
inactive period

The acute hypotensive effects of enalaprilat were small and
only observed in BPH/2J during the active period and not in
BPN/3J (−3.4 mmHg in BPH/2J vs +3.0 mmHg in BPN/
3J, Pstrain= 0.04, Fig. 5). During the active (dark) period,
treatment with the ACE inhibitor enalaprilat following RD
in BPH/2J mice induced a greater reduction in MAP from
baseline compared to the sham procedure (−11.6 ± 1.8 vs
−3.4 ± 1.8 mmHg, respectively, PRD= 0.01, Fig. 5). Con-
versely, in BPN/3J mice, treatment with enalaprilat had no
effect on MAP, regardless of whether it was after RD or
sham surgery (Fig. 5). Injection of the ganglion blocker
pentolinium after enalaprilat treatment caused a similar
depressor response in RD and sham BPH/2J mice (−50 ± 3
and −45 ± 4 mmHg, respectively, Fig. 5) which was also
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similar in RD and sham BPN/3J mice (−35 ± 4 vs −28 ± 4
mmHg, respectively, PRD= 0.2, Fig. 5). The depressor
response to pentolinium during the active period was greater
in BPH/2J mice compared with BPN/3J mice, regardless of
whether mice underwent sham or RD (Pstrain < 0.002).

During the inactive (light) period, there was a marked
difference in the effect of enalaprilat administration on
MAP between the 2 groups of BPH/2J mice, with a fall in
MAP after RD (−4.2 ± 2.9 mmHg) but a rise in MAP in
sham treated mice (10 ± 2 mmHg, PRD= 0.004, Fig. 5).
Conversely, in BPN/3J mice, enalaprilat had little effect on
MAP after sham surgery or RD (Fig. 5). Pentolinium
injection after enalaprilat induced similar marked depressor
responses in both RD and sham BPH/2J mice and also
similar in RD and sham BPN/3J mice (Fig. 5). The
depressor response to pentolinium during the inactive per-
iod was greater in BPH/2J mice compared with BPN/3J
mice, regardless of whether mice underwent sham or RD
(Pstrain < 0.001).

Effects of RD on cardiovascular responses to cage-
switch, feeding and restraint tests

RD decreased the hypertensive effect of dirty cage-switch in
BPH/2J mice by 21 % (PRD < 0.001) but had no effect on
the response in BPN/3J mice (Supplementary Figure 2). The

tachycardia induced by cage-switch was reduced by RD in
both BPH/2J and BPN/3J mice (PRD < 0.05). RD did not
alter the elevated locomotor activity observed in BPH/2J
mice but reduced it in BPN/3J mice (P= 0.014, Supple-
mentary Figure 2).

RD did not affect the cardiovascular responses or loco-
motor activity during the feeding or the restraint test in
either BPH/2J and BPN/3J mice (Supplementary Figures 3
and 4).

Effects of RD on plasma renin, intrarenal renin and
intrarenal Ren1 mRNA levels

Intrarenal renin protein was similar in BPN/3J and BPH/2J
but reduced in both strains by RD (P < 0.05 for both,
Fig. 6). By contrast plasma renin levels were similar in both
strains with intact or denervated renal nerves (Fig. 6). The
expression of Ren1 mRNA was 1.6-fold higher in kidneys
of sham BPH/2J mice compared to sham BPN/3J mice
(Pstrain= 0.002, Fig. 6) and RD abolished the difference
between strains (Fig. 6). The expression of PRR mRNA in
sham-treated mice was ~ 30% lower in BPH (n= 8) com-
pared with BPN mice (n= 8, P= 0.002, Fig. 6). There was
no difference in PRR mRNA abundance in sham compared
with renal denervated BPN/3J (n= 7, P= 0.74) or BPH/2J
mice (n= 10, P= 0.16).
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Effects of RD on renal noradrenaline levels

Renal noradrenaline content in the kidneys of sham dener-
vated BPH/2J mice was 342 ± 16 pg/g being 1.7 times
higher than the 200 ± 23 pg/g measured in sham denervated
BPN/3J mice (Pstrain < 0.001). After RD, noradrenaline
content was 112 ± 15 pg/g in BPH/2J mice compared to
shams (PRD < 0.001) and 99 ± 15 pg/g in BPN/3J mice (PRD

= 0.004). Thus, noradrenaline content of the kidney after
RD was similar in both strains. In BPH/2J there tended to be
a correlation between the level of noradrenaline in the
kidney and the hypotensive effect of RD or sham treatment
measured after 3 weeks (r= 0.56, n= 12, P= 0.056) but
this was not evident in BPN/3J mice (Supplementary
Figure 5).

Discussion

The present study shows that BPH/2J mice have elevated
renal noradrenaline levels compared with BPN/3J mice,
providing support for enhanced renal sympathetic activity
in this hypertensive strain. Importantly, RD resulted in a
46% reduction in the hypertension over 3 weeks, whereas
sham surgery had minimal effect on MAP in BPH/2J
mice. By contrast, denervation had little effect on MAP in

BPN/3J mice. Thus, our findings support an important
role for renal nerves in the hypertension in BPH/2J mice.
The reduction in MAP in denervated BPH/2J mice was
not likely due to a reduction in the SNS vasomotor tone
as the hypotension produced by pentolinium was the
same in denervated and sham BPH/2J. Also, there was
not a reduction in the tonic vasomotor effects of the RAS
as evidenced by the rapid effect of ACE inhibitor enala-
prilat (within 30 min). Indeed, the hypotensive effects of
enalaprilat actually increased after RD in BPH/2J sug-
gesting a partial compensatory mechanism rather than the
reason for the MAP reduction. Interestingly, this occurred
without any change to plasma renin protein levels. We
found that there was higher renin mRNA level in the
kidney of BPH/2J compared to normotensive BPN/3J.
The antihypertensive effects produced by RD were
associated with reductions in intrarenal renin protein
levels accompanied by lower levels of renal renin mRNA
compared to sham BPH/2J mice. Taken together, these
findings support the notion that the integrity of renal
nerves is important for maintaining hypertension in BPH/
2J mice and that the antihypertensive effects of RD were
associated with a reduction in renal renin mRNA. These
findings are consistent with the proposal by Marques
et al. of the important role of intrarenal renin in human
hypertension [20].
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The reduction in MAP produced by RD was similar
during the active and inactive phase in BPH/2J suggesting
that the effect is independent of activity (see Fig. 1). It is
therefore similar to the pattern observed following MeAm
lesions in this strain, which produced an 11 mmHg reduc-
tion in MAP during both the inactive and active phase [3].
However, the RAS and the SNS contributions were atte-
nuated in the BPH/2J with lesions of the MeAm, which
contrasts the current study. RD had also very little effect on
the response to stress. In the present study, RD reduced the
pressor response to dirty cage-switch stress in BPH/2J mice
but did not affect the pressor response to other stressors.
Thus, the hypotensive effect of RD is not a consequence of
attenuated stress reactivity involving the SNS. Furthermore,
we did not observe any significant reduction in the aug-
mented locomotor activity associated with BPH/2J mice
[19]. We also observed a reduction in HR but this was
similar in both sham and RD mice and therefore, unrelated
to RD. We have seen a similar reduction in HR in BPH/2J
over 3 weeks in a previous study not involving RD [3].
Interestingly there was a reduction in baroreflex gain in
BPH/2J, which was due to a reduction in the HR power (at
all frequencies) rather than a change in fluctuations in MAP
(see Table 2) and as such reflects less cardiac vagal activity.

A small temporary reduction in body weight was observed
in the RD mice, presumably due to loss of fluid related to
increased urine production which is normally observed after
RD [21]. Both body weight and activity were similar to
baseline levels by the 3rd week following denervation or
sham treatment and were not different between groups,
suggesting a likely specific effect on the cardiovascular
system of the RD.

The reduction in MAP of 8 mmHg which we observed
after RD in BPH/2J mice was similar to that reported by
Hart et al. in SHR 6–9 days after surgical RD and in human
subjects 6 months after catheter-based RD [22]. Similar
effects of RD have been shown in other models of hyper-
tension including that induced by hyperinsulinemia [23],
DOCA-salt hypertension [24], in offspring from rats with
reduced uterine perfusion [25], in Dahl salt-sensitive [26],
SHR [22, 27, 28] and in rats with induced cardio-renal
syndrome [29]. Whereas some studies showed that RD fully
abolished hypertension, demonstrating similar BP between
hypertensive and normotensive models after RD [25, 30],
Machino et al. reported a 20% reduction in systolic BP of
SHR 3 months after radiofrequency RD without reaching a
MAP comparable with normotensive rats [28]. These find-
ings are in accordance with recent studies in humans, in

Table 2 Average mean arterial pressure, heart rate and power spectral parameters during the active (dark) period in normotensive (BPN/3J) and
genetically hypertensive (BPH/2J) mice given either sham or renal denervation (RD)

Spectral analysis during the night (active) period

BPN Sham BPH Sham BPN Rx BPH Rx Sham BPN vs
BPH

RD BPN vs
BPH

BPN Sham
vs RD

BPH Sham
vs RD

MAP (mmHg) 103.2 ± 1.9 128.8 ± 2.6 100.8 ± 2.3 117.3 ± 2.8 <0.001 <0.001 >0.5 0.01

HR (beats/min) 418 ± 12 529 ± 20 429 ± 16 522 ± 21 <0.001 0.001 >0.5 >0.5

MAP power (mmHg)2

Low frequency
(0.08–0.3 Hz)

3.08 ± 0.57 3.06 ± 0.52 4.16 ± 0.62 3.09 ± 0.58 >0.5 0.35 0.29 >0.5

Mid frequency (0.3–0.5
Hz)

0.95 ± 0.2 2.05 ± 0.43 1.17 ± 0.29 1.85 ± 0.57 0.01 0.24 >0.5 >0.5

High frequency (0.5–3
Hz)

0.27 ± 0.05 0.94 ± 0.25 0.47 ± 0.12 0.67 ± 0.19 0.003 >0.5 >0.5 0.36

Total 8.26 ± 1.72 9.81 ± 1.70 9.29 ± 1.54 8.98 ± 1.90 >0.5 >0.5 >0.5 >0.5

HR power (beats/min)2

Low frequency
(0.08–0.3 Hz)

246.5 ± 43.8 321.8 ± 49.9 330.1 ± 66.3 160.5 ± 18.8 0.41 0.03 0.33 0.04

Mid frequency (0.3–0.5
Hz)

141.8 ± 26.8 327.5 ± 64.9 206.8 ± 53.1 129.7 ± 34.1 0.01 0.48 >0.5 0.01

High frequency (0.5–3
Hz)

77.7 ± 18.3 180 ± 45.4 152.2 ± 51.7 71.3 ± 14.9 0.04 0.15 0.16 0.04

Total 1162 ± 280 2599 ± 794 2063 ± 754 792 ± 122 0.04 0.11 0.26 0.02

Coherence (0.3–0.5 Hz) 0.57 ± 0.01 0.59 ± 0.02 0.61 ± 0.01 0.58 ± 0.01 >0.5 >0.5 0.22 >0.5

Gain (0.5–3 Hz) 10.62 ± 0.73 12.0 ± 1.23 11.46 ± 0.89 8.77 ± 1.0 >0.5 0.13 >0.5 0.06

Data are expressed as mean ± SEM and were analysed by split plot analysis of variance. Comparisons were made between Sham BPN (n= 8),
Sham BPH (n= 6), RD BPN (n= 6), RD BPH (n= 6) groups. A probability of P < 0.05 was considered significant and indicated in bold
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which the blood pressure of hypertensive patients did not
reach normal values following RD [31]. However, despite
numerous denervation studies, few have elucidated the
underlying mechanism. To assess the contribution of
the SNS with and without RD, we applied ganglion
blockade after ACE inhibition, as this reduces the com-
pensatory response of the RAS to the fall in MAP,
unmasking the full contribution of the SNS [4]. We asses-
sed the contribution of the SNS and the RAS at the end of
the experiment but the reduction in MAP we observed in
BPH/2J was evident within 3 days and remained relatively
stable over the 3-week period. Our observation that the
depressor response to ganglion blockade with pentolinium
was not altered by RD in BPH/2J mice, suggests that renal

nerve ablation did not impact overall SNS-related vaso-
motor activity. This is surprising as we have removed
sympathetic drive to the kidney suggesting that other beds
may have compensated for the loss of renal vasomotor
activity. Similarly, ganglion blockade after RD showed little
difference to the response in BPN/3J mice. We have
included spectral analysis in the present study as we have
previously shown that the mid frequency power is greater in
BPH/2J compared to BPN/3J and that this reflects the
augmented sympathetic activity in the hypertensive strain
[3]. In the present study we did not observe any difference
between the RD and sham mice in this frequency which
supports the findings with ganglionic blockade that SNS
activity has not been affected by RD. The intact pressor
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response to restraint stress, which we have shown to be
reliant on the SNS activation was well maintained sug-
gesting that the activation of the SNS is not near maximal.
Nevertheless, the effect of RD suggests that the enhanced
SNS contribution is predominantly in extra-renal beds.

In the present study, renal catecholamine content was
higher in BPH/2J mice than their normotensive counter-
parts, which may be an indicator of greater renal SNA in
hypertensive mice and provides further support for renal
sympathetic overactivity being closely associated with the
hypertension. Renal noradrenaline content in SHR, stroke-
prone SHR and diabetic rats was similarly elevated com-
pared with normotensive controls [28, 32, 33]. The degree
of reduction being 50–70% in the present study was more
than what is achieved by radiofrequency lesions in rats or
humans [28, 34], but not as complete as in some studies
[35]. Other studies reported that RD decreased renal cate-
cholamines in hypertensive rats to the levels observed in
normotensive controls [28, 32, 33, 36]. Renal noradrenaline
spillover was also markedly reduced after renal nerve
ablation in humans [34]. However, as previously described
in other animal models [25, 28, 37], we observed that RD
also reduced renal noradrenaline in normotensive animals
without affecting BP. We have previously observed a small

fall in MAP in normotensive rabbits following RD in the
order of 6 mmHg and also an enhanced depressor response
to ganglionic blockade which is unlike the effects seen in
the present study [38].

We have previously reported greater renal sympathetic
innervation in BPH/2J mice as well as enhanced Ren1
mRNA in the kidney, which may be mechanistically
associated [4]. In the present study, we found a small but
significantly greater response to ACE inhibitor enalaprilat
in sham BPH/2J compared with BPN/3J mice, confirming
previous findings [4] which suggest a greater contribution
of the RAS to BP maintenance in BPH/2J mice. In sham
BPH/2J mice, expression of renal renin mRNA was
greater, whereas PRR mRNA was lower than sham BPN/
3J mice but there was no difference in plasma renin nor
renal protein levels between strains in the sham groups.
Although we found that renal renin protein was lower in
the denervated groups than sham for both BPN and BPH
mice, it is important to note that renin protein in the
kidney closely reflects renin storage level, whereas, Ren1
mRNA, which was only lower in denervated BPH/2J but
not BPN/3J mice, is more stimulus dependent and thus
reflective of the state of renin production [39]. In this
study, mRNA levels may be more informative since we
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are measuring the effect of SNA, which dynamically
influences renin expression. Since renal denervation only
decreases renal renin protein but not mRNA in BPN mice,
it is possible that while denervation has decreased renin
stores in BPN mice, they have maintained adequate renin
production to maintain BP. Furthermore, given BPH/2J
mice seem to have a far greater dependence on RSNA to
maintain BP, it is possible that BPN mice are more able to
compensate for the loss of RSNA with other regulatory
mechanisms. In the present study RD had no effect on
either renal PRR or plasma renin protein levels in either
strain. However, we have not measured renin enzyme
activity, thus it is possible that plasma renin enzyme
activity may be elevated in sham BPH and may be low-
ered following denervation. Indeed, RD has been shown
to reduce plasma renin activity in SHR [28].

In conclusion, we suggest that hypertension in BPH/2J
mice involves overactivity of predominantly the SNS but
also higher activity intrarenal RAS in the kidney and it is
the latter mechanism, which is responsible for the long-term
antihypertensive effects of RD. These findings support the
continued use of RD in the treatment of hypertension in
humans and explain the mechanisms involved.
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