Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis

Abstract

Arterial stiffness has been suggested as an independent cardiovascular risk factor. This systematic review and meta-analysis aimed to quantify the association between brachial-ankle pulse wave velocity (baPWV) and prognosis in atherosclerotic cardiovascular disease (ASCVD) patients. The PubMed, EMBASE, and Cochrane Library databases were searched for cohort studies examining the association of high baPWV with prognosis in ASCVD patients. High baPWV was defined by the cutoffs provided by each study. The outcomes of interest were cardiovascular events, cardiovascular mortality, and all-cause mortality. Hazard ratios (HRs) and 95% confidence intervals (CIs) were combined using the random-effects model with inverse variance weighting. We identified 15 studies that were eligible for inclusion in the meta-analysis. The overall HRs and 95% CIs of cardiovascular events, cardiovascular mortality, and all-cause mortality for high baPWV were 2.55 (1.61–4.03), 2.66 (1.88–3.76), and 1.77 (1.09–2.87), respectively. The association between baPWV and cardiovascular events remained significant, irrespective of determination methods for cutoffs of baPWV, classification of ASCVD, outcome definitions, Newcastle-Ottawa Scale score and average age, independent of age and hypertension. Significantly higher HRs were observed in the subgroups of >3 years follow-up duration (p for interaction: 0.04), cutoff points by ROC curves (p for interaction: 0.04) and an average age of <65 years (p for interaction: 0.01). A 1 standard deviation increase in baPWV was associated with a 1.41-fold (1.24–1.60) increase in the risk of cardiovascular events. High baPWV is independently associated with an increased risk of cardiovascular events, cardiovascular mortality, and all-cause mortality in ASCVD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fuster V. Global burden of cardiovascular disease: time to implement feasible strategies and to monitor results. J Am Coll Cardiol. 2014;64:520–2.

    Article  PubMed  Google Scholar 

  2. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107:139–46.

    Article  PubMed  Google Scholar 

  3. Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74:1237–63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kirigaya J, Iwahashi N, Tahakashi H, Minamimoto Y, Gohbara M, Abe T, et al. Impact of cardio-ankle vascular index on long-term outcome in patients with acute coronary syndrome. J Atheroscler Thromb. 2020;27:657–68.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laurent S, Marais L, Boutouyrie P. The noninvasive assessment of vascular aging. Can J Cardiol. 2016;32:669–79.

    Article  PubMed  Google Scholar 

  6. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  PubMed  Google Scholar 

  7. Baier D, Teren A, Wirkner K, Loeffler M, Scholz M. Parameters of pulse wave velocity: determinants and reference values assessed in the population-based study LIFE-Adult. Clin Res Cardiol. 2018;107:1050–61.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hoshide S, Yano Y, Haimoto H, Yamagiwa K, Uchiba K, Nagasaka S, et al. Morning and evening home blood pressure and risks of incident stroke and coronary artery disease in the Japanese general practice population: the Japan morning surge-home blood pressure study. Hypertension. 2016;68:54–61.

    Article  CAS  PubMed  Google Scholar 

  9. Munakata M, Konno S, Miura Y, Yoshinaga K, Group JTS. Prognostic significance of the brachial-ankle pulse wave velocity in patients with essential hypertension: final results of the J-TOPP study. Hypertens Res. 2012;35:839–42.

    Article  CAS  PubMed  Google Scholar 

  10. Maeda Y, Inoguchi T, Etoh E, Kodama Y, Sasaki S, Sonoda N, et al. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: the Kyushu Prevention Study of Atherosclerosis. Diabetes Care. 2014;37:2383–90.

    Article  CAS  PubMed  Google Scholar 

  11. Turin TC, Kita Y, Rumana N, Takashima N, Kadota A, Matsui K, et al. Brachial-ankle pulse wave velocity predicts all-cause mortality in the general population: findings from the Takashima study, Japan. Hypertens Res. 2010;33:922–5.

    Article  PubMed  Google Scholar 

  12. Tomiyama H, Koji Y, Yambe M, Shiina K, Motobe K, Yamada J, et al. Brachial – ankle pulse wave velocity is a simple and independent predictor of prognosis in patients with acute coronary syndrome. Circ J. 2005;69:815–22.

    Article  PubMed  Google Scholar 

  13. Nakamura M, Yamashita T, Yajima J, Oikawa Y, Sagara K, Koike A, et al. Brachial-ankle pulse wave velocity as a risk stratification index for the short-term prognosis of type 2 diabetic patients with coronary artery disease. Hypertens Res. 2010;33:1018–24.

    Article  PubMed  Google Scholar 

  14. Ki YJ, Choi DH, Lee YM, Lim L, Song H, Koh YY. Predictive value of brachial-ankle pulse wave velocity for long-term clinical outcomes after percutaneous coronary intervention in a Korean cohort. Int J Cardiol. 2014;175:554–9.

    Article  PubMed  Google Scholar 

  15. Kim J, Song TJ, Song D, Lee KJ, Kim EH, Lee HS, et al. Brachial-ankle pulse wave velocity is a strong predictor for mortality in patients with acute stroke. Hypertension. 2014;64:240–6.

    Article  CAS  PubMed  Google Scholar 

  16. Otsuka K, Fukuda S, Shimada K, Suzuki K, Nakanishi K, Yoshiyama M, et al. Serial assessment of arterial stiffness by cardio-ankle vascular index for prediction of future cardiovascular events in patients with coronary artery disease. Hypertens Res. 2014;37:1014–20.

    Article  PubMed  Google Scholar 

  17. Park KH, Han SJ, Kim HS, Kim MK, Jo SH, Kim SA, et al. Impact of Framingham risk score, flow-mediated dilation, pulse wave velocity, and biomarkers for cardiovascular events in stable angina. J Korean Med Sci. 2014;29:1391–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sugamata W, Nakamura T, Uematsu M, Kitta Y, Fujioka D, Saito Y, et al. Combined assessment of flow-mediated dilation of the brachial artery and brachial-ankle pulse wave velocity improves the prediction of future coronary events in patients with chronic coronary artery disease. J Cardiol. 2014;64:179–84.

    Article  PubMed  Google Scholar 

  19. Woo JS, Kim W, Jang HH, Kim JB, Kim WS, Kim KS. Effect of platelet reactivity, endothelial function, and inflammatory status on outcomes in patients with stable angina pectoris on clopidogrel therapy. Am J Cardiol. 2014;113:786–92.

    Article  CAS  PubMed  Google Scholar 

  20. Seo HJ, Ki YJ, Han MA, Choi DH, Ryu SW. Brachial-ankle pulse wave velocity and mean platelet volume as predictive values after percutaneous coronary intervention for long-term clinical outcomes in Korea: a comparable and additive study. Platelets. 2015;26:665–71.

    Article  CAS  PubMed  Google Scholar 

  21. Ahn KT, Jeong JO, Jin SA, Kim M, Oh JK, Choi UL, et al. Brachial-ankle PWV for predicting clinical outcomes in patients with acute stroke. Blood Press. 2017;26:204–10.

    Article  PubMed  Google Scholar 

  22. Saji N, Murotani K, Shimizu H, Uehara T, Kita Y, Toba K, et al. Increased pulse wave velocity in patients with acute lacunar infarction doubled the risk of future ischemic stroke. Hypertens Res. 2017;40:371–5.

    Article  PubMed  Google Scholar 

  23. Tabata N, Sueta D, Yamashita T, Utsunomiya D, Arima Y, Yamamoto E, et al. Relationship between asymptomatic intra-cranial lesions and brachial-ankle pulse wave velocity in coronary artery disease patients without stroke. Hypertens Res. 2017;40:392–8.

    Article  PubMed  Google Scholar 

  24. Hwang IC, Jin KN, Kim HL, Kim YN, Im MS, Lim WH, et al. Additional prognostic value of brachial-ankle pulse wave velocity to coronary computed tomography angiography in patients with suspected coronary artery disease. Atherosclerosis. 2018;268:127–37.

    Article  CAS  PubMed  Google Scholar 

  25. Tomiyama H, Ohkuma T, Ninomiya T, Nakano H, Matsumoto C, Avolio A, et al. Brachial-ankle pulse wave velocity versus its stiffness index β-transformed value as risk marker for cardiovascular disease. J Am Heart Assoc. 2019;8:e013004.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park HW, Kim HR, Kang MG, Kim K, Koh JS, Park JR, et al. Predictive value of the combination of brachial-ankle pulse wave velocity and ankle-brachial index for cardiovascular outcomes in patients with acute myocardial infarction. Coron Artery Dis. 2020;31:157–65.

    Article  PubMed  Google Scholar 

  27. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.

    Article  CAS  PubMed  Google Scholar 

  28. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2020. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 26 April 2020.

  29. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  32. Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension. 2012;60:556–62.

    Article  CAS  PubMed  Google Scholar 

  33. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69:1045–52.

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka A, Tomiyama H, Maruhashi T, Matsuzawa Y, Miyoshi T, Kabutoya T, et al. Physiological diagnostic criteria for vascular failure. Hypertension. 2018;72:1060–71.

    Article  CAS  PubMed  Google Scholar 

  35. Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA, Group ISTC. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke. 2002;33:1315–20.

    Article  PubMed  Google Scholar 

  36. Sonawane K, Zhu Y, Balkrishnan R, Suk R, Sharrief A, Deshmukh AA, et al. Antihypertensive drug use and blood pressure control among stroke survivors in the United States: NHANES 2003-2014. J Clin Hypertens (Greenwich). 2019;21:766–73.

    Article  CAS  Google Scholar 

  37. Li C, Engstrom G, Hedblad B, Berglund G, Janzon L. Blood pressure control and risk of stroke: a population-based prospective cohort study. Stroke. 2005;36:725–30.

    Article  PubMed  Google Scholar 

  38. Britton M, Carlsson A, de Faire U. Blood pressure course in patients with acute stroke and matched controls. Stroke. 1986;17:861–4.

    Article  CAS  PubMed  Google Scholar 

  39. Tomiyama H, Shiina K. State of the art review: brachial-ankle PWV. J Atheroscler Thromb. 2020;27:621–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vlachopoulos C, Xaplanteris P, Aboyans V, Brodmann M, Cifkova R, Cosentino F, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis. 2015;241:507–32.

    Article  CAS  PubMed  Google Scholar 

  41. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  42. Tanaka H, Munakata M, Kawano Y, Ohishi M, Shoji T, Sugawara J, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens. 2009;27:2022–7.

    Article  CAS  PubMed  Google Scholar 

  43. Yu WC, Chuang SY, Lin YP, Chen CH. Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. J Hum Hypertens. 2008;22:24–31.

    Article  PubMed  Google Scholar 

  44. Meyer ML, Tanaka H, Palta P, Cheng S, Gouskova N, Aguilar D, et al. Correlates of segmental pulse wave velocity in older adults: the atherosclerosis risk in communities (ARIC) study. Am J Hypertens. 2016;29:114–22.

    Article  PubMed  Google Scholar 

  45. Choo J, Shin C, Barinas-Mitchell E, Masaki K, Willcox BJ, Seto TB, et al. Regional pulse wave velocities and their cardiovascular risk factors among healthy middle-aged men: a cross-sectional population-based study. BMC Cardiovasc Disord. 2014;14:5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Janic M, Lunder M, Sabovic M. Arterial stiffness and cardiovascular therapy. Biomed Res Int. 2014;2014:621437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Papadopoulou E, Loutradis C, Tzatzagou G, Kotsa K, Zografou I, Minopoulou I, et al. Dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens. 2021;39:749–58.

    Article  CAS  PubMed  Google Scholar 

  48. Filion KB, Lix LM, Yu OH, Dell’Aniello S, Douros A, Shah BR, et al. Sodium glucose cotransporter 2 inhibitors and risk of major adverse cardiovascular events: multi-database retrospective cohort study. BMJ. 2020;370:m3342.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS), 2017-I2M-2-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Dang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, T., Lv, N., Dang, A. et al. Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Hypertens Res 44, 1175–1185 (2021). https://doi.org/10.1038/s41440-021-00678-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-021-00678-2

Keywords

This article is cited by

Search

Quick links