Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In utero hypoxia attenuated acetylcholine-mediated vasodilatation via CHRM3/p-NOS3 in fetal sheep MCA: role of ROS/ERK1/2

Abstract

Hypoxia can lead to adult middle cerebral artery (MCA) dysfunction and increase the risk of cerebrovascular diseases. It is largely unknown whether intrauterine hypoxia affects fetal MCA vasodilatation. This study investigated the effects and mechanisms of intrauterine hypoxia on fetal MCA vasodilatation. Near-term fetal sheep were exposed to intrauterine hypoxia. Human umbilical vein endothelial cells (HUVECs) were exposed to hypoxia in cellular experiments. Vascular tone measurement, molecular analysis, and transmission electron microscope (TEM) were utilized to determine vascular functions, tissue anatomy, and molecular pathways in fetal MCA. In fetal MCA, acetylcholine (ACh) induced reliable relaxation, which was markedly attenuated by intrauterine hypoxia. Atropine, P-F-HHSiD, L-NAME, and u0126 blocked most ACh-mediated dilation, while AF-DX 116 and tropicamide partially inhibited the dilation. Indomethacin and SB203580 did not significantly change ACh-mediated dilation. Tempol and PS-341 could restore the attenuated ACh-mediated vasodilatation following intrauterine hypoxia. The mRNA expression levels of CHRM2 and CHRM3 and the protein levels of CHRM3, p-NOS3, SOD2, ERK1/2, p-ERK1/2, MAPK14, and p-MAPK14 were significantly reduced by intrauterine hypoxia. The dihydroethidium assay showed that the production of ROS was increased under intrauterine hypoxia. TEM analysis revealed endothelial cells damaged by intrauterine hypoxia. In HUVECs, hypoxia increased ROS formation and decreased the expression of CHRM3, p-NOS3, SOD1, SOD2, SOD3, ERK1/2, p-ERK1/2, and p-MAPK14, while tempol and PS-341 potentiated p-NOS3 protein expression. In conclusion, in utero hypoxia reduced ACh-mediated vasodilatation in ovine MCA predominantly via decreased CHRM3 and p-NOS3, and the decreased NOS3 bioactivities might be attributed to ROS and ERK1/2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational hypoxia and developmental plasticity. Physiological Rev. 2018;98:1241–334.

    Article  CAS  Google Scholar 

  2. Kirkham FJ, Zafeiriou D, Howe D, Czarpran P, Harris A, Gunny R, et al. Fetal stroke and cerebrovascular disease: Advances in understanding from lenticulostriate and venous imaging, alloimmune thrombocytopaenia and monochorionic twins. Eur J Paediatr Neurol. 2018;22:989–1005.

    Article  PubMed  Google Scholar 

  3. Cananzi SG, Mayhan WG. In utero exposure to alcohol impairs reactivity of cerebral arterioles and increases susceptibility of the brain to damage following ischemia/reperfusion in adulthood. Alcohol Clin Exp Res. 2019;43:607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashwal S, Dale PS, Longo LD. Regional cerebral blood flow: Studies in the fetal lamb during hypoxia, hypercapnia, acidosis, and hypotension. Pediatr Res. 1984;18:1309–16.

    Article  CAS  PubMed  Google Scholar 

  5. Thorpe RB, Hubbell MC, Silpanisong J, Williams JM, Pearce WJ. Chronic hypoxia attenuates the vasodilator efficacy of protein kinase g in fetal and adult ovine cerebral arteries. Am J Physiol Heart Circulatory Physiol. 2017;313:H207–H219.

    Article  Google Scholar 

  6. Pearce WJ. Fetal cerebrovascular maturation: effects of hypoxia. Semin Pediatr Neurol. 2018;28:17–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pearce WJ. The fetal cerebral circulation: three decades of exploration by the llu center for perinatal biology. Adv Exp Med Biol. 2014;814:177–91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thorpe RB, Hubbell MC, Silpanisong J, Williams JM, Pearce WJ. Chronic hypoxia attenuates the vasodilator efficacy of protein kinase g in fetal and adult ovine cerebral arteries. Am J Physiol Heart Circ Physiol. 2017;313:H207–h219.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Long W, Zhang L, Longo LD. Fetal and adult cerebral artery k(atp) and k(ca) channel responses to long-term hypoxia. J Appl Physiol. 2002;92:1692–701.

    Article  CAS  PubMed  Google Scholar 

  10. Su H, Chen X, Zhang Y, Qi L, He Y, Lv J, et al. In utero hypoxia altered ang ii-induced contraction via pkcβ in fetal cerebral arteries. J Endocrinol. 2020;244:213–22.

    Article  CAS  PubMed  Google Scholar 

  11. Gericke A, Sniatecki JJ, Goloborodko E, Steege A, Zavaritskaya O, Vetter JM, et al. Identification of the muscarinic acetylcholine receptor subtype mediating cholinergic vasodilation in murine retinal arterioles. Investig Ophthalmol Vis Sci. 2011;52:7479–84.

    Article  CAS  Google Scholar 

  12. Gonzales RJ, Krause DN, Duckles SP. Testosterone suppresses endothelium-dependent dilation of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2004;286:H552–560.

    Article  CAS  PubMed  Google Scholar 

  13. Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol. 2020;34:101550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsukahara T, Kassell NF, Hongo K, Vollmer DG, Ogawa H. Muscarinic cholinergic receptors on the endothelium of human cerebral arteries. J Cereb Blood Flow Metab. 1989;9:748–53.

    Article  CAS  PubMed  Google Scholar 

  15. Dauphin F, Hamel E. Muscarinic receptor subtype mediating vasodilation feline middle cerebral artery exhibits m3 pharmacology. Eur J Pharmacol. 1990;178:203–13.

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu T, Rosenblum WI, Nelson GH. M3 and m1 receptors in cerebral arterioles in vivo: Evidence for downregulated or ineffective m1 when endothelium is intact. Am J Physiol. 1993;264:H665–669.

    CAS  PubMed  Google Scholar 

  17. Linville DG, Hamel E. Pharmacological characterization of muscarinic acetylcholine binding sites in human and bovine cerebral microvessels. Naunyn-Schmiedeberg’s Arch Pharmacol. 1995;352:179–86.

    Article  CAS  Google Scholar 

  18. Van Charldorp KJ, Davidesko D, Van, Zwieten PA. Selectivity of methoctramine for muscarinic receptors in porcine cerebral arteries. Eur J Pharmacol. 1988;150:197–9.

    Article  PubMed  Google Scholar 

  19. Dauphin F, Ting V, Payette P, Dennis M, Hamel E. Vasocontractile muscarinic m1 receptors in cat cerebral arteries: Pharmacological identification and detection of mrna. Eur J Pharmacol. 1991;207:319–27.

    Article  CAS  PubMed  Google Scholar 

  20. Yamada M, Basile AS, Fedorova I, Zhang W, Duttaroy A, Cui Y, et al. Novel insights into m5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sci. 2003;74:345–53.

    Article  CAS  PubMed  Google Scholar 

  21. Williams JM, Hull AD, Pearce WJ. Maturational modulation of endothelium-dependent vasodilatation in ovine cerebral arteries. Am J Physiol Regulatory Integr Comp Physiol. 2005;288:R149–157.

    Article  CAS  Google Scholar 

  22. White CR, Hamade MW, Siami K, Chang MM, Mangalwadi A, Frangos JA, et al. Maturation enhances fluid shear-induced activation of enos in perfused ovine carotid arteries. Am J Physiol Heart Circulatory Physiol. 2005;289:H2220–2227.

    Article  CAS  Google Scholar 

  23. Geary GG, Osol GJ, Longo LD. Development affects in vitro vascular tone and calcium sensitivity in ovine cerebral arteries. J Physiol. 2004;558:883–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Res. 2017;120:713–35.

    Article  PubMed  Google Scholar 

  25. Xiao D, Hu XQ, Huang X, Zhou J, Wilson SM, Yang S, et al. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress. PloS One. 2013;8:e73731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu X, Gao Q, Tu Q, Zhong Y, Zhu D, Mao C, et al. Prenatal hypoxia enhanced angiotensin ii-mediated vasoconstriction via increased oxidative signaling in fetal rats. Reprod Toxicol. 2016;60:21–28.

    Article  CAS  PubMed  Google Scholar 

  27. Jukic I, Mihaljevic Z, Matic A. Angiotensin ii type 1 receptor is involved in flow-induced vasomotor responses of isolated middle cerebral arteries: Role of oxidative stress. Am J Physiol Heart Circ Physiol. 2021;320:H1609–h1624.

    Article  CAS  PubMed  Google Scholar 

  28. Miller AA, Drummond GR, Schmidt HH, Sobey CG. Nadph oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circulation Res. 2005;97:1055–62.

    Article  CAS  PubMed  Google Scholar 

  29. Taguchi K, Morishige A, Matsumoto T, Kamata K, Kobayashi T. Enhanced estradiol-induced vasorelaxation in aortas from type 2 diabetic mice may reflect a compensatory role of p38 mapk-mediated enos activation. Pflug Arch: Eur J Physiol. 2012;464:205–15.

    Article  CAS  Google Scholar 

  30. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-activated protein kinases and reactive oxygen species: How can ros activate mapk pathways? J Signal Transduct. 2011;2011:792639.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun T, Cao L, Ping NN, Wu Y, Liu DZ, Cao YX. Formononetin upregulates nitric oxide synthase in arterial endothelium through estrogen receptors and mapk pathways. J Pharm Pharmacol. 2016;68:342–51.

    Article  CAS  PubMed  Google Scholar 

  32. Arroyo JA, Anthony RV, Parker TA, Galan HL. Enos, no, and the activation of erk and akt signaling at mid-gestation and near-term in an ovine model of intrauterine growth restriction. Syst Biol Reprod Med. 2010;56:62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheriyan J, Webb AJ, Sarov-Blat L, Elkhawad M, Wallace SM, Mäki-Petäjä KM, et al. Inhibition of p38 mitogen-activated protein kinase improves nitric oxide-mediated vasodilatation and reduces inflammation in hypercholesterolemia. Circulation 2011;123:515–23.

    Article  CAS  PubMed  Google Scholar 

  34. Wang B, Xing F, Liu N, Chen D, Li Z, Liu J. P38α subtype is a potential target to inhibit enos activity and no production in human endothelial cells. Microvascular Res. 2014;91:58–65.

    Article  CAS  Google Scholar 

  35. Thakor AS, Allison BJ, Niu Y, Botting KJ, Serón-Ferré M, Herrera EA, et al. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia. J pineal Res. 2015;59:80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pearce W. Hypoxic regulation of the fetal cerebral circulation. J Appl Physiol. 2006;100:731–8.

    Article  CAS  PubMed  Google Scholar 

  37. Brugniaux JV, Hodges AN, Hanly PJ, Poulin MJ. Cerebrovascular responses to altitude. Respiratory Physiol Neurobiol. 2007;158:212–23.

    Article  Google Scholar 

  38. Tsukiyama Y, Iranami H, Kinoshita H, Ogawa K, Hatano Y. Effects of halothane and isoflurane on acetylcholine-induced, endothelium-dependent vasodilation in perfused rat mesenteric arterial beds. J Anesthesia. 2003;17:13–21.

    Article  Google Scholar 

  39. Ambroisine ML, Favre J, Oliviero P, Rodriguez C, Gao J, Thuillez C, et al. Aldosterone-induced coronary dysfunction in transgenic mice involves the calcium-activated potassium (bkca) channels of vascular smooth muscle cells. Circulation. 2007;116:2435–43.

    Article  CAS  PubMed  Google Scholar 

  40. Yu Q, Li K, Zhao A, Wei M, Huang Z, Zhang Y, et al. Sorafenib not only impairs endothelium-dependent relaxation but also promotes vasoconstriction through the upregulation of vasoconstrictive endothelin type b receptors. Toxicol Appl Pharmacol. 2021;414:115420.

    Article  CAS  PubMed  Google Scholar 

  41. Choy WY, Wong YF, Kwan YW, Au AL, Lau WH, Raymond K, et al. Role of mitogen-activated protein kinase pathway in acetylcholine-mediated in vitro relaxation of rat pulmonary artery. Eur J Pharmacol. 2002;434:55–64.

    Article  CAS  PubMed  Google Scholar 

  42. Yeo JL, Tan BT, Achike FI. Exploring the mechanism of endothelial involvement in acidosis-induced vasodilatation of aortic tissues from normal and diabetic rats. Eur J Pharmacol. 2010;642:99–106.

    Article  CAS  PubMed  Google Scholar 

  43. Mukohda M, Mizuno R, Ozaki H. Increased blood pressure causes lymphatic endothelial dysfunction via oxidative stress in spontaneously hypertensive rats. Hypertension. Dallas, Tex.: 1979 2020;76:598–606.

    Article  CAS  PubMed  Google Scholar 

  44. Xu L, Su L, Liu X. Pkcδ regulates death receptor 5 expression induced by ps-341 through atf4-atf3/chop axis in human lung cancer cells. Mol Cancer Ther. 2012;11:2174–82.

    Article  CAS  PubMed  Google Scholar 

  45. Kao C, Chao A, Tsai CL, Chuang WC, Huang WP, Chen GC, et al. Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating erk phosphorylation. Cell Death Dis. 2014;5:e1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Docherty CC, Kalmar-Nagy J, Engelen M, Nathanielsz PW. Development of fetal vascular responses to endothelin-1 and acetylcholine in the sheep. Am J Physiol Regulatory Integr Comp Physiol. 2001;280:R554–562.

    Article  CAS  Google Scholar 

  47. Docherty CC, Kalmar-Nagy J, Engelen M, Koenen SV, Nijland M, Kuc RE, et al. Effect of in vivo fetal infusion of dexamethasone at 0.75 ga on fetal ovine resistance artery responses to et-1. Am J Physiol Regulatory Integr Comp Physiol. 2001;281:R261–268.

    Article  CAS  Google Scholar 

  48. Inocencio IM, Polglase GR, Miller SL, Sehgal A, Sutherland A, Mihelakis J, et al. Effects of maternal sildenafil treatment on vascular function in growth-restricted fetal sheep. Arteriosclerosis Thrombosis Vasc Biol. 2019;39:731–40.

    Article  CAS  Google Scholar 

  49. Hendriks MG, Pfaffendorf M, van Zwieten PA. Characterization of the muscarinic receptors in the mesenteric vascular bed of spontaneously hypertensive rats. J Hypertension. 1993;11:1329–35.

    Article  CAS  Google Scholar 

  50. Kwon SC. Mechanisms of acetylcholine-induced vasorelaxation in high k+-stimulated rabbit renal arteries. J Vet Med Sci. 2001;63:41–44.

    Article  CAS  PubMed  Google Scholar 

  51. Hearon CM Jr., Richards JC, Racine ML. Amplification of endothelium-dependent vasodilatation in contracting human skeletal muscle: Role of k(ir) channels. J Physiol. 2019;597:1321–35.

    Article  CAS  PubMed  Google Scholar 

  52. Li T, Luo Z, Liu Y, Wang M, Yu X, Cao C, et al. Excessive activation of nmda receptors induced neurodevelopmental brain damage and cognitive deficits in rats exposed to intrauterine hypoxia. Neurochem Res. 2018;43:566–80.

    Article  CAS  PubMed  Google Scholar 

  53. Brayden JE. Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol. 1990;259:H668–673.

    CAS  PubMed  Google Scholar 

  54. Farías JG, Herrera EA, Carrasco-Pozo C, Sotomayor-Zárate R, Cruz G, Morales P, et al. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther. 2016;158:1–23.

    Article  PubMed  Google Scholar 

  55. Alonso-Alconada D, Hilario E, Álvarez FJ, Álvarez A. Apoptotic cell death correlates with ros overproduction and early cytokine expression after hypoxia-ischemia in fetal lambs. Reprod Sci. 2012;19:754–63.

    Article  CAS  PubMed  Google Scholar 

  56. Chen X, Qi L, Fan X, Tao H, Zhang M, Gao Q, et al. Prenatal hypoxia affected endothelium-dependent vasodilation in mesenteric arteries of aged offspring via increased oxidative stress. Hypertension Res. 2019;42:863–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ZX designed the experiments. JT and NL performed surgery and experiments. PZ performed anesthesia. YH and HS performed vascular measurements and molecular tests. YZ (YZ, YZ, YZ) and YY helped with the molecular measurements and cell culture. YH and JT wrote the manuscript, and ZX revised it.

Funding

This work was supported by grants 2019YFA0802601, NSFC (81771592, 82101761), Natural Science Foundation of Jiangsu Province (BK20200194), Suzhou Natural Science Foundation (SYS2019042, KJXW2019006), Wuxi Taihurencai Project Fund, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20-2693).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaqi Tang or Zhice Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Su, H., Li, N. et al. In utero hypoxia attenuated acetylcholine-mediated vasodilatation via CHRM3/p-NOS3 in fetal sheep MCA: role of ROS/ERK1/2. Hypertens Res 45, 1168–1182 (2022). https://doi.org/10.1038/s41440-022-00935-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-022-00935-y

Keywords

This article is cited by

Search

Quick links