Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys

A Comment to this article was published on 09 August 2024

Abstract

To explore the mechanism of the hypertension in dopamine receptor-4 (Drd4) null mice, we determined the salt sensitivity and renal sodium transport proteins in Drd4−/− and Drd4+/+ mice with varied salt diets. On normal NaCl diet (NS), mean arterial pressures (MAP, telemetry) were higher in Drd4−/− than Drd4+/+; Low NaCl diet (LS) tended to decrease MAP in both strains; high NaCl diet (HS) elevated MAP with sodium excretion decreased and pressure-natriuresis curve shifted to right in Drd4−/− relative to Drd4+/+ mice. Drd4−/− mice exhibited increased renal sodium–hydrogen exchanger 3 (NHE3), sodium–potassium-2–chloride cotransporter (NKCC2), sodium–chloride cotransporter (NCC), and outer medullary α-epithelial sodium channel (αENaC) on NS, decreased NKCC2, NCC, αENaC, and αNa+–K+–ATPase on LS, and increased αENaC on HS. NKCC2, NCC, αENaC, and αNa+–K+–ATPase in plasma membrane were greater in Drd4−/− than in Drd4+/+ mice with HS. D4R was expressed in proximal and distal convoluted tubules, thick ascending limbs, and outer medullary collecting ducts and colocalized with NKCC2 and NCC. The phosphorylation of NKCC2 was enhanced but ubiquitination was reduced in the KO mice. There were no differences between the mouse strains in serum aldosterone concentrations and urinary dopamine excretions despite their changes with diets. The mRNA expressions of renal NHE3, NKCC2, NCC, and αENaC on NS were not altered in Drd4−/− mice. Thus, increased protein expressions of NHE3, NKCC2, NCC and αENaC are associated with hypertension in Drd4−/− mice; increased plasma membrane protein expression of NKCC2, NCC, αENaC, and αNa+–K+–ATPase may mediate the salt sensitivity of Drd4−/− mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McDonough AA. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2010;298:R851–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carbajal-Contreras H, Murillo-de-Ozores AR, Magana-Avila G, Marquez-Salinas A, Bourqui L, Tellez-Sutterlin M, et al. Arginine vasopressin regulates the renal Na-Cl and Na-K-Cl cotransporters through with-no-lysine kinase 4 and Inhibitor 1 phosphorylation. Am J Physiol Renal Physiol. 2023. https://doi.org/10.1152/ajprenal.00343.2023.

  3. Wang XY, Masilamani S, Nielsen J, Kwon TH, Brooks HL, Nielsen S, et al. The renal thiazide-sensitive Na-Cl cotransporter as mediator of the aldosterone-escape phenomenon. J Clin Investig. 2001;108:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deng Q, Kakizoe Y, Iwata Y, Nakagawa T, Miyasato Y, Nakagawa M, et al. The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats. Hypertens Res. 2023;46:50–62.

    Article  CAS  PubMed  Google Scholar 

  5. Burrow CR, Devuyst O, Li X, Gatti L, Wilson PD. Expression of the beta2-subunit and apical localization of Na+-K+-ATPase in metanephric kidney. Am J Physiol. 1999;277:F391–403.

    CAS  PubMed  Google Scholar 

  6. Armando I, Villar VA, Jose PA. Dopamine and renal function and blood pressure regulation. Compr Physiol. 2011;1:1075–117.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Villar VAM, Jose PA, Zeng C. Renal dopamine receptors and oxidative stress: role in hypertension. Antioxid Redox Signal. 2021;34:716–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bek MJ, Wang X, Asico LD, Jones JE, Zheng S, Li X, et al. Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor-deficient mice. Hypertension. 2006;47:288–95.

    Article  CAS  PubMed  Google Scholar 

  9. Sen S, Nesse R, Sheng L, Stoltenberg SF, Gleiberman L, Burmeister M, et al. Association between a dopamine-4 receptor polymorphism and blood pressure. Am J Hypertens. 2005;18:1206–10.

    Article  CAS  PubMed  Google Scholar 

  10. Sun D, Wilborn TW, Schafer JA. Dopamine D4 receptor isoform mRNA and protein are expressed in the rat cortical collecting duct. Am J Physiol. 1998;275:F742–51.

    CAS  PubMed  Google Scholar 

  11. Keck TM, Suchland KL, Jimenez CC, Grandy DK. Dopamine D4 receptor deficiency in mice alters behavioral responses to anxiogenic stimuli and the psychostimulant methylphenidate. Pharm Biochem Behav. 2013;103:831–41.

    Article  CAS  Google Scholar 

  12. Helms CM, Gubner NR, Wilhelm CJ, Mitchell SH, Grandy DK. D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking. Pharm Biochem Behav. 2008;90:387–93.

    Article  CAS  Google Scholar 

  13. Li J, Xu S, Yang L, Yang J, Wang CJ, Weinstein AM, et al. Sex difference in kidney electrolyte transport II: impact of K(+) intake on thiazide-sensitive cation excretion in male and female mice. Am J Physiol Ren Physiol. 2019;317:F967–77.

    Article  Google Scholar 

  14. Masilamani S, Wang X, Kim GH, Brooks H, Nielsen J, Nielsen S, et al. Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. Am J Physiol Ren Physiol. 2002;283:F648–57.

    Article  Google Scholar 

  15. Chen K, Deng K, Wang X, Wang Z, Zheng S, Ren H, et al. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Hypertension. 2015;65:153–60.

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Escano CS, Asico L, Jones JE, Barte A, Lau YS, et al. Upregulation of renal D5 dopamine receptor ameliorates the hypertension in D3 dopamine receptor-deficient mice. Hypertension. 2013;62:295–301.

    Article  CAS  PubMed  Google Scholar 

  17. Ecelbarger CA, Terris J, Hoyer JR, Nielsen S, Wade JB, Knepper MA. Localization and regulation of the rat renal Na(+)-K(+)-2Cl- cotransporter, BSC-1. Am J Physiol. 1996;271:F619–28.

    CAS  PubMed  Google Scholar 

  18. Hager H, Kwon TH, Vinnikova AK, Masilamani S, Brooks HL, Frokiaer J, et al. Immunocytochemical and immunoelectron microscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney. Am J Physiol Ren Physiol. 2001;280:F1093–106.

    Article  CAS  Google Scholar 

  19. Zhang Y, Magyar CE, Norian JM, Holstein-Rathlou NH, Mircheff AK, McDonough AA. Reversible effects of acute hypertension on proximal tubule sodium transporters. Am J Physiol. 1998;274:C1090–100.

    Article  CAS  PubMed  Google Scholar 

  20. Yu Y, Xiao L, Ren Z, Zhu G, Wang W, Jia Y, et al. Glucose-induced decrease of cystathionine beta-synthase mediates renal injuries. FASEB J. 2021;35:e21576.

    Article  CAS  PubMed  Google Scholar 

  21. Wang P, Zhu G, Wu Q, Shen L, Liu D, Wang Z, et al. Renal CD81 interacts with sodium potassium 2 chloride cotransporter and sodium chloride cotransporter in rats with lipopolysaccharide-induced preeclampsia. FASEB J. 2023;37:e22834.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Li F, Jose PA, Ecelbarger CM. Reduction of renal dopamine receptor expression in obese Zucker rats: role of sex and angiotensin II. Am J Physiol Ren Physiol. 2010;299:F1164–70.

    Article  CAS  Google Scholar 

  23. Escano CS, Armando I, Wang X, Asico LD, Pascua A, Yang Y, et al. Renal dopaminergic defect in C57Bl/6J mice. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carlson SH, Wyss JM. Long-term telemetric recording of arterial pressure and heart rate in mice fed basal and high NaCl diets. Hypertension. 2000;35:E1–5.

    Article  CAS  PubMed  Google Scholar 

  25. Yang LE, Sandberg MB, Can AD, Pihakaski-Maunsbach K, McDonough AA. Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status. Am J Physiol Ren Physiol. 2008;295:F1003–16.

    Article  CAS  Google Scholar 

  26. Gao DQ, Canessa LM, Mouradian MM, Jose PA. Expression of the D2 subfamily of dopamine receptor genes in kidney. Am J Physiol. 1994;266:F646–50.

    CAS  PubMed  Google Scholar 

  27. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Investig. 1999;104:R19–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He D, Ren H, Wang H, Jose PA, Zeng C, Xia T, et al. Effect of D(4) dopamine receptor on Na(+)-K(+)-ATPase activity in renal proximal tubule cells. Cardiol Discov. 2023;3:24–9.

    Article  PubMed  Google Scholar 

  29. Helkamaa T, Mannisto PT, Rauhala P, Cheng ZJ, Finckenberg P, Huotari M, et al. Resistance to salt-induced hypertension in catechol-O-methyltransferase-gene-disrupted mice. J Hypertens. 2003;21:2365–74.

    Article  CAS  PubMed  Google Scholar 

  30. Ueda A, Ozono R, Oshima T, Yano A, Kambe M, Teranishi Y, et al. Disruption of the type 2 dopamine receptor gene causes a sodium-dependent increase in blood pressure in mice. Am J Hypertens. 2003;16:853–8.

    Article  CAS  PubMed  Google Scholar 

  31. Brown A, Meor Azlan NF, Wu Z, Zhang J. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Acta Pharm Sin. 2021;42:508–17.

    Article  CAS  Google Scholar 

  32. Rosenbaek LL, Petrillo F, van Bemmelen MX, Staub O, Murali SK, Fenton RA. The E3 ubiquitin-protein ligase Nedd4-2 regulates the sodium chloride cotransporter NCC but is not required for a potassium-induced reduction of NCC expression. Front Physiol. 2022;13:971251.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stewen P, Mervaala E, Karppanen H, Nyman T, Saijonmaa O, Tikkanen I, et al. Sodium load increases renal angiotensin type 1 receptors and decreases bradykinin type 2 receptors. Hypertens Res. 2003;26:583–9.

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Schafer JA. Dopamine inhibits vasopressin-dependent cAMP production in the rat cortical collecting duct. Am J Physiol. 1998;275:F62–7.

    CAS  PubMed  Google Scholar 

  35. Marunaka R, Marunaka Y. Interactive actions of aldosterone and insulin on epithelial Na(+) channel trafficking. Int J Mol Sci. 2020;21:3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na(+) channel. Am J Physiol Ren Physiol. 2020;318:F1–13.

    Article  CAS  Google Scholar 

  37. Zhang DD, Duan XP, Xiao Y, Wu P, Gao ZX, Wang WH, et al. Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC and causes hypokalemia during high HS. Am J Physiol Ren Physiol. 2021;320:F883–96.

    Article  CAS  Google Scholar 

  38. Saha B, Shabbir W, Takagi E, Duan XP, Leite Dellova DCA, Demko J, et al. Potassium activates mTORC2-dependent SGK1 phosphorylation to stimulate epithelial sodium channel: role in rapid renal responses to dietary potassium. J Am Soc Nephrol. 2023;34:1019–38.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Persaud A, Jiang C, Liu Z, Kefalas G, Demian WL, Rotin D. Elevated intracellular Na(+) and osmolarity stimulate catalytic activity of the ubiquitin ligase Nedd4-2. Proc Natl Acad Sci USA. 2022;119:e2122495119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Luo Y, Escano CS, Yang Z, Asico L, Li H, et al. Upregulation of renal sodium transporters in D5 dopamine receptor-deficient mice. Hypertension. 2010;55:1431–7.

    Article  CAS  PubMed  Google Scholar 

  41. Hu MC, Bobulescu IA, Quinones H, Gisler SM, Moe OW. Dopamine reduces cell surface Na(+)/H(+) exchanger-3 protein by decreasing NHE3 exocytosis and cell membrane recycling. Am J Physiol Ren Physiol. 2017;313:F1018–25.

    Article  Google Scholar 

  42. Gildea JJ, Shah IT, Van Sciver RE, Israel JA, Enzensperger C, McGrath HE, et al. The cooperative roles of the dopamine receptors, D1R and D5R, on the regulation of renal sodium transport. Kidney Int. 2014;86:118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu MC, Di Sole F, Zhang J, McLeroy P, Moe OW. Chronic regulation of the renal Na(+)/H(+) exchanger NHE3 by dopamine: translational and posttranslational mechanisms. Am J Physiol Ren Physiol. 2013;304:F1169–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors thank Dr. Mark Knepper (National Institutes of Health) for providing rabbit antibodies against sodium transporters, Dr. Pedro Jose (George Washington University) for gifting initial Drd4−/− mice and Figdraw (www.figdraw.com) for providing drawing tool software.

Funding

XW and her colleagues are supported by the National Natural Science Foundation of China (81970605). MZ is supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (JX10413970). ML, ZR, and PW are supported by Nanjing Municipal Health Bureau (YKK22254, YKK21251, YKK20217). ZR is supported by Nanjing Medical University (NMUB2020195).

Author information

Authors and Affiliations

Authors

Contributions

MZ and ML completed most experiments on mice, performed immunostanings with microscopic imaging, analyzed and figured the data and drafted the manuscript. WW completed most of protein work. ZR purified and labeled antibodies and performed qPCR and analyses. PW performed experiments on coimmunoprecipitation. YX provided assistance with purifying antibodies. XW conceptualized, designed the entire study, revised the manuscript critically, and is responsible for the integrity of all data included. All authors read and approved the final version of submitted manuscript.

Corresponding author

Correspondence to Xiaoyan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, M., Wang, W. et al. The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys. Hypertens Res 47, 2144–2156 (2024). https://doi.org/10.1038/s41440-024-01724-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01724-5

Keywords

This article is cited by

Search

Quick links