Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of dietary potassium and salt substitution in the prevention and management of hypertension

Abstract

Cardiovascular diseases (CVD) continue to be the leading cause of deaths and disability worldwide and the major contributor is hypertension. Despite all the improvements in detecting hypertension together with technological advances and affordable, efficacious and relatively free of adverse effects anti-hypertensive agents, we continue to struggle to prevent the onset of hypertension and to control blood pressure (BP) to acceptable targets. The poor control of hypertension is commonly due to non-adherence to medications. Another reason is the failure to adopt diet and lifestyle changes. Reduction of dietary salt intake is important for lowering BP but the role of potassium intake is also important. Globally the intake of sodium is double that of the recommended 2 gm per day (equivalent to 5 gm of sodium chloride/salt) and half that of the daily recommended intake of potassium of 3500 mg/day, giving a sodium-to-potassium ratio of >1, when ideally it should be <1. Many studies have shown that a higher potassium intake is associated with lower BPs, particularly when coupled concurrently with a lower sodium intake giving a lower sodium to potassium ratio. Most hypertension guidelines, while recommending reduction of salt intake to a set target, do not specifically recommend a target for potassium intake nor potassium supplementation. Here we review the role of potassium and salt substitution with potassium in the management of hypertension. Hence, the focus of dietary changes to lower BP and improve BP control should not be on reduction of salt intake alone but more importantly should include an increase in potassium intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. WHO. The Top 10 Causes of Death 2020 https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

  2. World Heart Federation Hypertension https://world-heart-federation.org/what-we-do/hypertension/.

  3. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Selected major risk factors and global and regional burden of disease. Lancet 2002;360:1347–60.

    PubMed  Google Scholar 

  4. Chia Y-C, Buranakitjaroen P, Chen C-H, Divinagracia R, Hoshide S, Park S, et al. Current status of home blood pressure monitoring in Asia: Statement from the HOPE Asia Network. J Clin Hypertension. 2017;19:1192–201.

    Google Scholar 

  5. Kario K, Tomitani N, Buranakitjaroen P, Chia YC, Park S, Chen CH, et al. Home blood pressure control status in 2017-2018 for hypertension specialist centers in Asia: Results of the Asia BP@Home study. J Clin Hypertens. 2018;20:1686–95.

    Google Scholar 

  6. Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, et al. Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2011;171:1183–91.

    PubMed  Google Scholar 

  7. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ. 1988;297:319–28.

    Google Scholar 

  8. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. The Trials of Hypertension Prevention Collaborative Research Group. Arch Intern Med. 1997;157:657–67.

    Google Scholar 

  9. Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135:1019–28.

    CAS  PubMed  Google Scholar 

  10. Whelton PK, Appel L, Charleston J, Dalcin AT, Ewart C, Fried L, et al. The Effects of Nonpharmacologic Interventions on Blood Pressure of Persons With High Normal Levels: Results of the Trials of Hypertension Prevention, Phase I. JAMA 1992;267:1213–20.

    Google Scholar 

  11. Whelton PK, Appel LJ, Espeland MA, Applegate WB, Ettinger WH Jr., Kostis JB, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). TONE Collaborative Research Group. JAMA 1998;279:839–46.

    CAS  PubMed  Google Scholar 

  12. Umesawa M, Iso H, Date C, Yamamoto A, Toyoshima H, Watanabe Y, et al. Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan Collaborative Cohort Study for Evaluation of Cancer Risks. Am J Clin Nutr. 2008;88:195–202.

    CAS  PubMed  Google Scholar 

  13. Neal B, Wu J. Sodium, Blood Pressure, and the Likely Massive Avoidable Burden of Cardiovascular Disease. Circulation 2021;143:1568–70.

    PubMed  Google Scholar 

  14. He FJ, Li J, MacGregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ: Br Med J. 2013;346:f1325.

    Google Scholar 

  15. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl J Med. 2001;344:3–10.

    CAS  PubMed  Google Scholar 

  16. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev. 2005;85:679–715.

    CAS  PubMed  Google Scholar 

  17. Adrogué HJ, Madias NE. Sodium and Potassium in the Pathogenesis of Hypertension. N. Engl J Med. 2007;356:1966–78.

    PubMed  Google Scholar 

  18. Soleimani M, Bergman JA, Hosford MA, McKinney TD. Potassium depletion increases luminal Na + /H+ exchange and basolateral Na + :CO3 = :HCO3- cotransport in rat renal cortex. J Clin Invest. 1990;86:1076–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi M, Katz AI. The kidney in potassium depletion. I. Na + -K + -ATPase activity and [3H]ouabain binding in MCT. Am J Physiol. 1987;252:F437–46.

    CAS  PubMed  Google Scholar 

  20. Furusho T, Uchida S, Sohara E. The WNK signaling pathway and salt-sensitive hypertension. Hypertension Res. 2020;43:733–43.

    CAS  Google Scholar 

  21. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, et al. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 2013;83:811–24.

    CAS  PubMed  Google Scholar 

  22. Cogswell ME, Loria CM, Terry AL, Zhao L, Wang CY, Chen TC, et al. Estimated 24-Hour Urinary Sodium and Potassium Excretion in US Adults. Jama 2018;319:1209–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. US. National Institute of Health Fact Sheet on Potassium https://ods.od.nih.gov/factsheets/Potassium-HealthProfessional/.

  24. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium; Oria M, Harrison M, Stallings VA, editors. Dietary Reference Intakes for Sodium and Potassium 2019. Washington (DC): National Academies Press (US); Mar. Summary. https://www.ncbi.nlm.nih.gov/books/NBK545430/.

  25. WHO. 2012 World Health Organisation on Guidelines on Potassium Intake in Adults and Children http://apps.who.int/iris/bitstream/handle/10665/77986/9789241504829_eng.pdf;jsessionid=1EB8AC75269F6113DCBECE2955799B26?sequence=1. 2012.

  26. Tan M, He FJ, Wang C, MacGregor GA. Twenty-Four-Hour Urinary Sodium and Potassium Excretion in China: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2019;8:e012923.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Zhang P, Wu J, Ma J, Xu J, Zhang X, et al. Twenty-Four-Hour Urinary Sodium and Potassium Excretion and Their Associations With Blood Pressure Among Adults in China: Baseline Survey of Action on Salt China. Hypertension 2020;76:1580–8.

    CAS  PubMed  Google Scholar 

  28. Asakura K, Uechi K, Sasaki Y, Masayasu S, Sasaki S. Estimation of sodium and potassium intakes assessed by two 24 h urine collections in healthy Japanese adults: a nationwide study. Br J Nutr. 2014;112:1195–205.

    CAS  PubMed  Google Scholar 

  29. Uechi K, Sugimoto M, Kobayashi S, Sasaki S. Urine 24-Hour Sodium Excretion Decreased between 1953 and 2014 in Japan, but Estimated Intake Still Exceeds the WHO Recommendation. J Nutr. 2017;147:390–7.

    CAS  PubMed  Google Scholar 

  30. Lee HS, Duffey KJ, Popkin BM. Sodium and potassium intake patterns and trends in South Korea. J Hum Hypertens. 2013;27:298–303.

    CAS  PubMed  Google Scholar 

  31. Public Health England National Diet and Nutrition Survey. Assessment of salt intake from urinary sodium in adults (aged 19 to 64 years) in England, 2018 to 2019 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/876252/Report_England_Sodium_Survey_2018-to-2019__3_.pdf accessed 27 Oct 2022. 2019.

  32. Ambak R, He FJ, Othman F, Michael V, Mohd Yusoff MF, Aris T. Salt intake was higher among males and those with high BMI and waist circumference: introduction to the Malaysian Community Salt Survey (MyCoSS), a population-based salt intake survey in Malaysia. J Health, Popul Nutr. 2021;40:23.

    PubMed  Google Scholar 

  33. Palaniveloo L, Ambak R, Othman F, Mohd Zaki NA, Baharudin A, Abdul Aziz NS, et al. Low potassium intake and its association with blood pressure among adults in Malaysia: findings from the MyCoSS (Malaysian Community Salt Survey). J Health, Popul Nutr. 2021;40:7.

    PubMed  Google Scholar 

  34. Chailimpamontree W, Kantachuvesiri S, Aekplakorn W, Lappichetpaiboon R, Sripaiboonkij Thokanit N, Vathesatogkit P, et al. Estimated dietary sodium intake in Thailand: A nationwide population survey with 24-hour urine collections. J Clin Hypertension. 2021;23:744–54.

    CAS  Google Scholar 

  35. Stamler J, Chan Q, Daviglus ML, Dyer AR, Van Horn L, Garside DB, et al. Relation of Dietary Sodium (Salt) to Blood Pressure and Its Possible Modulation by Other Dietary Factors: The INTERMAP Study. Hypertension 2018;71:631–7.

    CAS  PubMed  Google Scholar 

  36. Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl J Med. 2014;371:601–11.

    PubMed  Google Scholar 

  37. Kieneker LM, Gansevoort RT, Mukamal KJ, Boer RAD, Navis G, Bakker SJL, et al. Urinary Potassium Excretion and Risk of Developing Hypertension. Hypertension 2014;64:769–76.

    CAS  PubMed  Google Scholar 

  38. Krishna GG, Miller E, Kapoor S. Increased blood pressure during potassium depletion in normotensive men. N. Engl J Med. 1989;320:1177–82.

    CAS  PubMed  Google Scholar 

  39. Coruzzi P, Brambilla L, Brambilla V, Gualerzi M, Rossi M, Parati G, et al. Potassium depletion and salt sensitivity in essential hypertension. J Clin Endocrinol Metab. 2001;86:2857–62.

    CAS  PubMed  Google Scholar 

  40. Kario K, Chen C-H, Park S, Park C-G, Hoshide S, Cheng H-M, et al. Consensus Document on Improving Hypertension Management in Asian Patients, Taking Into Account Asian Characteristics. Hypertension 2018;71:375–82.

    CAS  PubMed  Google Scholar 

  41. Geleijnse JM, Grobbee DE, Hofman A. Sodium and potassium intake and blood pressure change in childhood. Bmj 1990;300:899–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Perez V, Chang ET. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr. 2014;5:712–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cook NR, Obarzanek E, Cutler JA, Buring JE, Rexrode KM, Kumanyika SK, et al. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. Arch Intern Med. 2009;169:32–40.

    PubMed  PubMed Central  Google Scholar 

  44. Khaw KT, Barrett-Connor E. Dietary potassium and stroke-associated mortality. A 12-year prospective population study. N. Engl J Med. 1987;316:235–40.

    CAS  PubMed  Google Scholar 

  45. Khaw KT, Barrett-Connor E. The association between blood pressure, age, and dietary sodium and potassium: a population study. Circulation 1988;77:53–61.

    CAS  PubMed  Google Scholar 

  46. Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277:1624–32.

    CAS  PubMed  Google Scholar 

  47. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl J Med. 2001;344:3–10.

    CAS  PubMed  Google Scholar 

  48. Chang HC, Cheng HM, Chen CH, Wang TD, Soenarta AA, Turana Y, et al. Dietary intervention for the management of hypertension in Asia. J Clin hypertension (Greenwich, Conn). 2021;23:538–44.

    Google Scholar 

  49. Ma Y, He FJ, Sun Q, Yuan C, Kieneker LM, Curhan GC, et al. 24-Hour Urinary Sodium and Potassium Excretion and Cardiovascular Risk. N. Engl J Med. 2021;386:252–63.

    PubMed  PubMed Central  Google Scholar 

  50. Kwon YJ, Lee HS, Park G, Lee JW. Association between dietary sodium, potassium, and the sodium-to-potassium ratio and mortality: A 10-year analysis. Front Nutr. 2022;9:1053585.

    PubMed  PubMed Central  Google Scholar 

  51. O’Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. Jama 2011;306:2229–38.

    PubMed  Google Scholar 

  52. Liu Z, Man Q, Li Y, Yang X, Ding G, Zhang J, et al. Estimation of 24-hour urinary sodium and potassium excretion among Chinese adults: a cross-sectional study from the China National Nutrition Survey. Am J Clin Nutr. 2024;119:164–73.

    CAS  PubMed  Google Scholar 

  53. 2012 WHO World Health Organisation on Sodium Intake for Adults and Children https://www.who.int/publications/i/item/9789241504836 accessed 15 December 2022 2012.

  54. Salman E, Kadota A, Okami Y, Kondo K, Yoshita K, Okuda N, et al. Investigation of the urinary sodium-to-potassium ratio target level based on the recommended dietary intake goals for the Japanese population: The INTERMAP Japan. Hypertension Res. 2022;45:1850–60.

    CAS  Google Scholar 

  55. Mogi M, Hoshide S, Kario K. The eighth installment in Asian perspectives, salt, pregnancy, and masked hypertension. Hypertension Res. 2022;45:1677–8.

    Google Scholar 

  56. Polonia J, Lobo MF, Martins L, Pinto F, Nazare J. Estimation of populational 24-h urinary sodium and potassium excretion from spot urine samples: evaluation of four formulas in a large national representative population. J Hypertens. 2017;35:477–86.

    CAS  PubMed  Google Scholar 

  57. Nowson CA, Morgan TO. Change in blood pressure in relation to change in nutrients effected by manipulation of dietary sodium and potassium. Clin Exp Pharm Physiol. 1988;15:225–42.

    CAS  Google Scholar 

  58. Suppa G, Pollavini G, Alberti D, Savonitto S. Effects of a low-sodium high-potassium salt in hypertensive patients treated with metoprolol: a multicentre study. J Hypertens. 1988;6:787–90.

    CAS  PubMed  Google Scholar 

  59. Glatz N, Chappuis A, Conen D, Erne P, Péchère-Bertschi A, Guessous I, et al. Associations of sodium, potassium and protein intake with blood pressure and hypertension in Switzerland. Swiss Med Wkly. 2017;147:w14411.

    PubMed  Google Scholar 

  60. Zhang Z, Cogswell ME, Gillespie C, Fang J, Loustalot F, Dai S, et al. Association between usual sodium and potassium intake and blood pressure and hypertension among U.S. adults: NHANES 2005-2010. PLoS One. 2013;8:e75289.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Khaw KT, Thom S. Randomised double-blind cross-over trial of potassium on blood-pressure in normal subjects. Lancet 1982;2:1127–9.

    CAS  PubMed  Google Scholar 

  62. MacGregor GA, Smith SJ, Markandu ND, Banks RA, Sagnella GA. Moderate potassium supplementation in essential hypertension. Lancet 1982;2:567–70.

    CAS  PubMed  Google Scholar 

  63. Zhang X, Yuan Y, Li C, Feng X, Wang H, Qiao Q, et al. Effect of a Salt Substitute on Incidence of Hypertension and Hypotension Among Normotensive Adults. J Am Coll Cardiol. 2024;83:711–22.

    CAS  PubMed  Google Scholar 

  64. Cappuccio FP, MacGregor GA. Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J Hypertens. 1991;9:465–73.

    CAS  PubMed  Google Scholar 

  65. Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens. 2003;17:471–80.

    CAS  PubMed  Google Scholar 

  66. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ : Br Med J. 2013;346:f1378.

    Google Scholar 

  67. Huang L, Li Q, Wu JHY, Tian M, Yin X, Yu J, et al. The contribution of sodium reduction and potassium increase to the blood pressure lowering observed in the Salt Substitute and Stroke Study. J Hum Hypertension. 2024;38:298–306.

    CAS  Google Scholar 

  68. Hernandez AV, Emonds EE, Chen BA, Zavala-Loayza AJ, Thota P, Pasupuleti V, et al. Effect of low-sodium salt substitutes on blood pressure, detected hypertension, stroke and mortality. Heart 2019;105:953–60.

    CAS  PubMed  Google Scholar 

  69. Tsai YC, Tsao YP, Huang CJ, Tai YH, Su YC, Chiang CE, et al. Effectiveness of salt substitute on cardiovascular outcomes: A systematic review and meta-analysis. J Clin hypertension (Greenwich, Conn). 2022;24:1147–60.

    Google Scholar 

  70. Jin A, Xie W, Wu Y. Effect of salt reduction interventions in lowering blood pressure in Chinese populations: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2020;10:e032941.

    PubMed  PubMed Central  Google Scholar 

  71. Ascherio A, Rimm EB, Hernán MA, Giovannucci EL, Kawachi I, Stampfer MJ, et al. Intake of Potassium, Magnesium, Calcium, and Fiber and Risk of Stroke Among US Men. Circulation 1998;98:1198–204.

    CAS  PubMed  Google Scholar 

  72. Neal B, Wu Y, Feng X, Zhang R, Zhang Y, Shi J, et al. Effect of Salt Substitution on Cardiovascular Events and Death. N. Engl J Med. 2021;385:1067–77.

    CAS  PubMed  Google Scholar 

  73. Yin X, Paige E, Tian M, Li Q, Huang L, Yu J, et al. The Proportion of Dietary Salt Replaced With Potassium-Enriched Salt in the SSaSS: Implications for Scale-Up. Hypertension 2023;80:956–65.

    CAS  PubMed  Google Scholar 

  74. Langford HG. Sodium-potassium interaction in hypertension and hypertensive cardiovascular disease. Hypertension 1991;17:I155–7.

    CAS  PubMed  Google Scholar 

  75. He FJ, MacGregor GA. Fortnightly review: Beneficial effects of potassium. BMJ 2001;323:497–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vongpatanasin W, Peri-Okonny P, Velasco A, Arbique D, Wang Z, Ravikumar P, et al. Effects of Potassium Magnesium Citrate Supplementation on 24-Hour Ambulatory Blood Pressure and Oxidative Stress Marker in Prehypertensive and Hypertensive Subjects. Am J Cardiol. 2016;118:849–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yin X, Liu H, Webster J, Trieu K, Huffman MD, Miranda JJ, et al. Availability, Formulation, Labeling, and Price of Low-sodium Salt Worldwide: Environmental Scan. JMIR Public Health Surveill. 2021;7:e27423.

    PubMed  PubMed Central  Google Scholar 

  78. Nghiem N, Blakely T, Cobiac LJ, Cleghorn CL, Wilson N. The health gains and cost savings of dietary salt reduction interventions, with equity and age distributional aspects. BMC Public Health. 2016;16:423.

    PubMed  PubMed Central  Google Scholar 

  79. Taylor C, Hoek AC, Deltetto I, Peacock A, Ha DTP, Sieburg M, et al. The cost-effectiveness of government actions to reduce sodium intake through salt substitutes in Vietnam. Arch Public Health. 2021;79:32.

    PubMed  PubMed Central  Google Scholar 

  80. Aminde LN, Phung HN, Phung D, Cobiac LJ, Veerman JL. Dietary Salt Reduction, Prevalence of Hypertension and Avoidable Burden of Stroke in Vietnam: Modelling the Health and Economic Impacts. Front Public Health. 2021;9:682975.

    PubMed  PubMed Central  Google Scholar 

  81. Li K-C, Huang L, Tian M, Tanna GLD, Yu J, Zhang X, et al. Cost-Effectiveness of a Household Salt Substitution Intervention: Findings From 20 995 Participants of the Salt Substitute and Stroke Study. Circulation 2022;145:1534–41.

    PubMed  Google Scholar 

  82. Saavedra-Garcia L, Bernabe-Ortiz A, Gilman RH, Diez-Canseco F, Cárdenas MK, Sacksteder KA, et al. Applying the Triangle Taste Test to Assess Differences between Low Sodium Salts and Common Salt: Evidence from Peru. PLoS One. 2015;10:e0134700.

    PubMed  PubMed Central  Google Scholar 

  83. Li N, Prescott J, Wu Y, Barzi F, Yu X, Zhao L, et al. The effects of a reduced-sodium, high-potassium salt substitute on food taste and acceptability in rural northern China. Br J Nutr. 2008;101:1088–93.

    PubMed  Google Scholar 

  84. Xu X, Zeng L, Jha V, Cobb LK, Shibuya K, Appel LJ, et al. Potassium-Enriched Salt Substitutes: A Review of Recommendations in Clinical Management Guidelines. Hypertension 2024;81:400–14.

    CAS  PubMed  Google Scholar 

  85. Burnier M. Should we eat more potassium to better control blood pressure in hypertension? Nephrol Dialysis Transplant. 2018;34:184–93.

    Google Scholar 

  86. Abdul Aziz NS, Ambak R, Othman F, He FJ, Yusof M, Paiwai F, et al. Risk factors related with high sodium intake among Malaysian adults: findings from the Malaysian Community Salt Survey (MyCoSS) 2017–2018. J Health, Popul Nutr. 2021;40:14.

    PubMed  Google Scholar 

  87. Mognard E, Naidoo K, Laporte C, Tibère L, Alem Y, Khusun H, et al. “Eating Out”, spatiality, temporality and sociality. A database for China, Indonesia, Japan, Malaysia, Singapore and France. Front Nutr. 2023;10:1066737.

    PubMed  PubMed Central  Google Scholar 

  88. Ahmad MH, Man CS, Othman F, He FJ, Salleh R, Noor NSM, et al. High sodium food consumption pattern among Malaysian population. J Health, Popul Nutr. 2021;40:4.

    PubMed  Google Scholar 

  89. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl J Med. 2014;371:612–23.

    PubMed  Google Scholar 

  90. Yuan Y, Jin A, Zhao M-H, Wang H, Feng X, Qiao Q, et al. Association of serum potassium level with dietary potassium intake in Chinese older adults: a multicentre, cross-sectional survey. BMJ open. 2023;13:e077249.

    PubMed  PubMed Central  Google Scholar 

  91. Yuan Y, Jin A, Neal B, Feng X, Qiao Q, Wang H, et al. Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial. Nat Med. 2023;29:973–81.

    CAS  PubMed  Google Scholar 

  92. Scientific Advisory Committee on Nutrition (SACN) UK Potassium-based Sodium Replacers: Assessment of the Health Benefits and Risks of using Potassium-based Sodium Replacers in Foods in the UK chrome-extension://efaidnbmnnnibpcajpcglclefindmkajhttps://assets.publishing.service.gov.uk/media/5a82b61bed915d74e34032cc/SACN_COT_-_Potassium-based_sodium_replacers.pdf accessed 27 Oct 2022.

  93. Lai X, Yuan Y, Wang H, Zhang R, Qiao Q, Feng X, et al. Cost-Effectiveness of Salt Substitute and Salt Supply Restriction in Eldercare Facilities: The DECIDE-Salt Cluster Randomized Clinical Trial. JAMA Netw Open. 2024;7:e2355564e.

    Google Scholar 

  94. de Mestral C, Mayén AL, Petrovic D, Marques-Vidal P, Bochud M, Stringhini S. Socioeconomic Determinants of Sodium Intake in Adult Populations of High-Income Countries: A Systematic Review and Meta-Analysis. Am J Public Health. 2017;107:e1–e12.

    PubMed  PubMed Central  Google Scholar 

  95. Brown MK, Song J, MacGregor GA, Tan M, He FJ. Better Late Than Never: The FDA’s Sodium Reduction Targets. Am J Public Health. 2022;112:191–3.

    PubMed  PubMed Central  Google Scholar 

  96. Harun Z, Shahar S, You YX, Manaf ZA, Majid HA, Chia YC, et al. Perceptions, barriers and enablers of salt reduction in Malaysian out-of-home sectors (MySaltOH): from the point of view of policy-makers and food industries. Health Res Policy Syst. 2023;21:17.

    PubMed  PubMed Central  Google Scholar 

  97. Harun Z, Shahar S, You YX, Abdul Manaf Z, Abdul Majid H, Chin CY, et al. Salt reduction policy for out of home sectors: a supplementary document for the salt reduction strategy to prevent and control non-communicable diseases (NCDS) in Malaysia 2021–2025. Health Res Policy Syst. 2024;22:49.

    PubMed  PubMed Central  Google Scholar 

  98. Michael V, You YX, Shahar S, Manaf ZA, Haron H, Shahrir SN, et al. Barriers, Enablers, and Perceptions on Dietary Salt Reduction in the Out-of-Home Sectors: A Scoping Review. Int J Environ Res Public Health. 2021;18:8099.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Viatris for their unrestricted educational grant to HOPE-Asia Network.

The HOPE-Asia Network

Yook-Chin Chia1,2, Jinho Shin4, Hao-Min Cheng8, Apichard Sukonthasarn10, Tzung-Dau Wang11, Huynh, Minh12, Peera Buranakitjaroen13, Jorge Sison14, Saulat Siddique15, Yuda Turana16, Narsingh Verma17, Jam Chin Tay18, Schlaich, Markus19, Ji-Guang Wang20, Kazuomi Kario21.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yook-Chin Chia.

Ethics declarations

Conflict of interest

YCC has received Research grants from Pfizer and Omron, Speaker honorarium from Astra-Zeneca, Medtronic, MIMS, Omron, Xepa-Sol, Viatris, Duopharma and Unrestricted educational grants on behalf of HOPE-Asia Network from Viatris and on behalf of the Malaysian Society for World Action on Salt, Sugar and Health (MyWASSH) from Medtronic. FJH is an unpaid member of Action on Salt and World Action on Salt, Sugar and Health (WASSH). All other authors report no potential conflicts of interest in relation to this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the HOPE-Asia Network are listed below Acknowledgements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chia, YC., He, F.J., Cheng, MH. et al. Role of dietary potassium and salt substitution in the prevention and management of hypertension. Hypertens Res 48, 301–313 (2025). https://doi.org/10.1038/s41440-024-01862-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01862-w

Keywords

This article is cited by

Search

Quick links