Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal exercise represses FGF21 via SIRT1 to improve the phenotypic transformation of vascular smooth muscle in hypertensive offspring

Abstract

Maternal exercise during pregnancy is widely recognized as an effective means of promoting cardiovascular health in offspring. Few studies have explored how maternal exercise impacts vascular function and phenotypic switching in hypertensive offspring, despite the known involvement of vascular structural and functional remodeling in hypertension pathogenesis. Research indicates a significant relationship between elevated blood pressure and fibroblast growth factor 21 (FGF21) levels. It remains unclear whether maternal exercise during pregnancy can improve vascular function in hypertensive offspring by regulating FGF21 and its underlying mechanisms. In this study, pregnant spontaneously hypertensive rats and Wistar-Kyoto rats were randomly assigned to either a sedentary or exercise group. The exercise group underwent weightless swimming exercise from gestation day 1 (GD1) to GD20. The aim was to investigate the epigenetic modifications mediated by histone deacetylase sirtuin 1 (SIRT1) during the fetal period and the phenotypic changes in the mesenteric arteries (MAs) of hypertensive offspring. We found that maternal exercise significantly improved vascular remodeling in hypertensive offspring. Specifically, maternal exercise upregulated SIRT1 expression, which led to decreased H3K9ac (histone H3 lysine 9 acetylation) in the promoter region of the FGF21 gene. This epigenetic modification resulted in the transcriptional downregulation of FGF21 in the MAs of hypertensive fetuses. These results suggest that maternal exercise may lower blood pressure in hypertensive offspring by regulating deacetylation of the FGF21 gene promoter region through SIRT1, thereby reversing phenotypic switching and vascular structural remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma S, Yang L, Zhao M, Magnussen CG, Xi B. Trends in hypertension prevalence, awareness, treatment and control rates among Chinese adults, 1991-2015. J Hypertens. 2021;39:740–48.

    Article  CAS  PubMed  Google Scholar 

  2. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev. 2016;68:476–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension. 2000;36:312–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Wang Y, Piao H, Li B, Zhu Z, Li D, et al. Bioinformatics analysis reveals microRNA-193a-3p regulates ACTG2 to control phenotype switch in human vascular smooth muscle cells. Front Genet. 2020;11:572707.

    Article  CAS  PubMed  Google Scholar 

  5. Dolegowska K, Marchelek-Mysliwiec M, Nowosiad-Magda M, Slawinski M, Dolegowska B. FGF19 subfamily members: FGF19 and FGF21. J Physiol Biochem. 2019;75:229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan X, Shao Y, Wu F, Wang Y, Xiong R, Zheng J, et al. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1-7) axis in mice. Cell Metab. 2018;27:1323–37.

    Article  CAS  PubMed  Google Scholar 

  7. Tao K, Li M, Gu X, Wang M, Qian T, Hu L, et al. Activating transcription factor 4 aggravates angiotensin II-induced cell dysfunction in human vascular aortic smooth muscle cells via transcriptionally activating fibroblast growth factor 21. Korean J Physiol Pharmacol. 2022;26:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kusuyama J, Alves-Wagner AB, Conlin RH, Makarewicz NS, Albertson BG, Prince NB, et al. Placental superoxide dismutase 3 mediates benefits of maternal exercise on offspring health. Cell Metab. 2021;33:939–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Son JS, Zhao L, Chen Y, Chen K, Chae SA, de Avila JM, et al. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. Sci Adv. 2020;6:eaaz0359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li S, Chen Y, Zhang Y, Qiu F, Zeng F, Shi L. Prenatal exercise reprograms the development of hypertension progress and improves vascular health in SHR offspring. Vascul Pharmacol. 2021;139:106885.

    Article  CAS  PubMed  Google Scholar 

  11. Shan M, Li S, Zhang Y, Chen Y, Zhou Y, Shi L. Maternal exercise upregulates the DNA methylation of Agtr1a to enhance vascular function in offspring of hypertensive rats. Hypertens Res. 2023;46:654–66.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Shan M, Ding X, Sun H, Qiu F, Shi L. Maternal exercise represses Nox4 via SIRT1 to prevent vascular oxidative stress and endothelial dysfunction in SHR offspring. Front Endocrinol. 2023;14:1219194.

    Article  Google Scholar 

  13. Lu C, Zhao H, Liu Y, Yang Z, Yao H, Liu T, et al. Novel role of the SIRT1 in endocrine and metabolic diseases. Int J Biol Sci. 2023;19:484–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei Y-J, Wang J-F, Cheng F, Xu HJ, Chen JJ, Xiong J, et al. miR-124-3p targeted SIRT1 to regulate cell apoptosis, inflammatory response, and oxidative stress in acute myocardial infarction in rats via modulation of the FGF21/CREB/PGC1α pathway. J Physiol Biochem. 2021;77:577–87.

    Article  CAS  PubMed  Google Scholar 

  15. Stoll S, Wang C, Qiu H. DNA methylation and histone modification in hypertension. Int J Mol Sci. 2018;19:1174.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Man AWC, Li H, Xia N. The role of sirtuin1 in regulating endothelial function, arterial remodeling and vascular aging. Front Physiol. 2019;10:1173.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298:564–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Himuro H, Kogure M, Nakaya N, Nakamura T, Hatanaka R, Chiba I, et al. The association of birth weight and current BMI on the risk of hypertension: the Tohoku medical megabank community-based cohort study. Hypertens Res. 2024; 8. https://doi.org/10.1038/s41440-024-01827-z.

  19. Hu X, Zhang L. Uteroplacental circulation in normal pregnancy and preeclampsia: functional adaptation and maladaptation. Int J Mol Sci. 2021;22:8622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barrientos G, Pussetto M, Rose M, Staff AC, Blois SM, Toblli JE. Defective trophoblast invasion underlies fetal growth restriction and preeclampsia-like symptoms in the stroke-prone spontaneously hypertensive rat. Mol Hum Reprod. 2017;23:509–19.

    Article  CAS  PubMed  Google Scholar 

  21. Chae SA, Son JS, Du M. Prenatal exercise in fetal development: a placental perspective. FEBS J. 2022;289:3058–71.

    Article  CAS  PubMed  Google Scholar 

  22. Webb AJS, Werring DJ. New insights into cerebrovascular pathophysiology and hypertension. Stroke. 2022;53:1054–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.

    Article  CAS  PubMed  Google Scholar 

  24. Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168:686–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li G, Xu K, Xing W, Yang H, Li Y, Wang X, et al. Swimming exercise alleviates endothelial mitochondrial fragmentation via inhibiting dynamin-related protein-1 to improve vascular function in hypertension. Hypertension. 2022;9:e116–28.

    Google Scholar 

  26. Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16:654–67.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Liu D, Long X-X, Fang Q-C, Jia W-P, Li H-T. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J. 2021;134:2931–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine. Int J Biol Sci. 2023;19:66–88.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Voelter-Mahlknecht S. Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenetics. 2016;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kusuyama J, Alves-Wagner AB, Makarewicz NS, Goodyear LJ. Effects of maternal and paternal exercise on offspring metabolism. Nat Metab. 2020;2:858–72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci. 2018;55:71–101.

    Article  CAS  PubMed  Google Scholar 

  32. Shimizu S, Fukuda N, Chen L, Matsumoto T, Kaneda A, Endo M, et al. Abnormal epigenetic memory of mesenchymal stem and progenitor cells caused by fetal malnutrition induces hypertension and renal injury in adulthood. Hypertens Res. 2024; 26. https://doi.org/10.1038/s41440-024-01756-x.

  33. Wang F, Chen H-Z. Histone deacetylase SIRT1, smooth muscle cell function, and vascular diseases. Front Pharmacol. 2020;11:537519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jing H, Lin H. Sirtuins in epigenetic regulation. Chem Rev. 2015;115:2350–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao P, Xu T-T, Lu J, Li L, Xu J, Hao DL, et al. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med. 2014;92:347–57.

    Article  CAS  PubMed  Google Scholar 

  36. Matsui S, Sasaki T, Kohno D, Yaku K, Inutsuka A, Yokota-Hashimoto H, et al. Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nat Commun. 2018;9:4604.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lu H, Jia C, Wu D, Jin H, Lin Z, Pan J, et al. Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis. 2021;12:865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu Y, Pais G, Becker V, Körbel C, Ampofo E, Ebert E, et al. Suppression of endothelial miR-22 mediates non-small cell lung cancer cell-induced angiogenesis. Mol Ther Nucleic Acids. 2021;26:849–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu Y, Zhang XH, Ebersole B, Ribnicky D, Wang ZQ. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Sci Rep. 2013;3:3142.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32371183, 32200941, and 32071174), the National Key Research and Development Program of China (2022YFC3600201), and the Fundamental Research Funds for the Central Universities (2024JCYJ001 and 2024YJSY002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, M., Qiu, F., Li, P. et al. Maternal exercise represses FGF21 via SIRT1 to improve the phenotypic transformation of vascular smooth muscle in hypertensive offspring. Hypertens Res 48, 353–365 (2025). https://doi.org/10.1038/s41440-024-01991-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01991-2

Keywords

Search

Quick links