Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Metabolic phenotypes and fatty acid profiles associated with histopathology of primary aldosteronism

A Comment to this article was published on 16 April 2025

Abstract

Primary aldosteronism (PA) caused by aldosterone hypersecretion is treated by adrenalectomy or medications. Histopathologic examination of resected adrenals reveals diverse histopathologic features. This study aimed to investigate the potential association of peripheral and adrenal tissue metabolic profiles with the histopathologic features of PA. The retrospective study included 105 surgically treated and 43 medically treated patients with PA. Adrenal specimens were categorized according to the HISTALDO (HISTopathology of primary ALDOsteronism) consensus. Peripheral and adrenal tissue metabolic profiles were assessed, including adiposity, adipokines and fatty acid abundances. The distinct fatty acid, arachidonic acid, was further functionally characterized. Surgically treated patients with classical histopathologic findings (n = 71) displayed lower body mass indexes, a lower prevalence of obesity, smaller waist circumference and visceral adipose tissue areas, and lower leptin concentrations compared with operated patients with the nonclassical histopathology (n = 34). No such differences were identified between the nonclassical histopathology group and medically treated group. Distinct concentrations of 18 out of 35 peripheral venous fatty acids, including arachidonic acid, were identified among the 3 groups. Further, accumulation of arachidonic acid was demonstrated in 4 aldosterone-producing adenomas compared with paired adjacent cortex possibly linked with suppressed peroxisomal beta-oxidation. Stimulation of human adrenocortical cells with arachidonic acid or peroxisomal beta-oxidation inhibitor caused 3.8-fold (P = 0.0050) and 1.7-fold (P = 0.0328) amplification of CYP11B2 expression, respectively, which were ablated by BAPTA-AM or KN93, and induced oxidative stress and apoptosis. Our findings show metabolic heterogeneity related to histopathology and support a role for arachidonic acid in PA pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of the article will be made available on reasonable request by the corresponding authors.

References

  1. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y, Reincke M, Williams TA. Prevalence, diagnosis and outcomes of treatment for primary aldosteronism. Best Pract Res Clin Endocrinol Metab. 2020;34:101365.

    Article  CAS  PubMed  Google Scholar 

  3. Williams TA, Reincke M. Pathophysiology and histopathology of primary aldosteronism. Trends Endocrinol Metab. 2022;33:36–49.

    Article  CAS  PubMed  Google Scholar 

  4. Williams TA, Gomez-Sanchez CE, Rainey WE, Giordano TJ, Lam AK, Marker A, et al. International histopathology consensus for unilateral primary aldosteronism. J Clin Endocrinol Metab. 2021;106:42–54.

    Article  PubMed  Google Scholar 

  5. Omata K, Satoh F, Morimoto R, Ito S, Yamazaki Y, Nakamura Y, et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension. 2018;72:874–80.

    Article  CAS  PubMed  Google Scholar 

  6. Williams TA, Gong S, Tsurutani Y, Tezuka Y, Thuzar M, Burrello J, et al. Adrenal surgery for bilateral primary aldosteronism: an international retrospective cohort study. Lancet Diabetes Endocrinol. 2022;10:769–71.

    Article  PubMed  Google Scholar 

  7. Ohno Y, Sone M, Inagaki N, Yamasaki T, Ogawa O, Takeda Y, et al. Obesity as a key factor underlying idiopathic hyperaldosteronism. J Clin Endocrinol Metab. 2018;103:4456–64.

    Article  PubMed  Google Scholar 

  8. Akehi Y, Yanase T, Motonaga R, Umakoshi H, Tsuiki M, Takeda Y, et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: a large, multicenter cohort study in Japan. Diabetes Care. 2019;42:938–45.

    Article  CAS  PubMed  Google Scholar 

  9. Spyroglou A, Handgriff L, Muller L, Schwarzlmuller P, Parasiliti-Caprino M, Fuss CT, et al. The metabolic phenotype of patients with primary aldosteronism: impact of subtype and sex - a multicenter-study of 3566 Caucasian and Asian subjects. Eur J Endocrinol. 2022;187:361–72.

    Article  CAS  PubMed  Google Scholar 

  10. Eisinger K, Liebisch G, Schmitz G, Aslanidis C, Krautbauer S, Buechler C. Lipidomic analysis of serum from high fat diet induced obese mice. Int J Mol Sci. 2014;15:2991–3002.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chouchani ET, Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat Metab. 2019;1:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hodson L, Gunn PJ. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol. 2019;15:689–700.

    Article  CAS  PubMed  Google Scholar 

  13. Witt A, Mateska I, Palladini A, Sinha A, Wolk M, Harauma A, et al. Fatty acid desaturase 2 determines the lipidomic landscape and steroidogenic function of the adrenal gland. Sci Adv. 2023;9:eadf6710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer LS, Wang X, Susnik E, Burrello J, Burrello A, Castellano I, et al. Immunohistopathology and steroid profiles associated with biochemical outcomes after adrenalectomy for unilateral primary aldosteronism. Hypertension. 2018;72:650–57.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer LS, Handgriff L, Lim JS, Udager AM, Kinker IS, Ladurner R, et al. Single-center prospective cohort study on the histopathology, genotype, and postsurgical outcomes of patients with primary aldosteronism. Hypertension. 2021;78:738–46.

    Article  CAS  PubMed  Google Scholar 

  16. Gong S, Sun N, Meyer LS, Tetti M, Koupourtidou C, Krebs S, et al. Primary aldosteronism: spatial multiomics mapping of genotype-dependent heterogeneity and tumor expansion of aldosterone-producing adenomas. Hypertension. 2023;80:1555–67.

    Article  CAS  PubMed  Google Scholar 

  17. Williams TA, Lenders JWM, Mulatero P, Burrello J, Rottenkolber M, Adolf C, et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol. 2017;5:689–99.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi H, Abe M, Soma M, Takeda Y, Kurihara I, Itoh H, et al. Development and validation of subtype prediction scores for the workup of primary aldosteronism. J Hypertens. 2018;36:2269–76.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z, Song B, Wei H, Liu Y, Zhang W, Yang Y, et al. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1. Drug Resist Updat. 2024;73:101040.

    Article  CAS  PubMed  Google Scholar 

  20. Gomez-Perez SL, Haus JM, Sheean P, Patel B, Mar W, Chaudhry V, et al. Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed tomography image: a step-by-step guide for clinicians using national institutes of health imageJ. JPEN J Parenter Enteral Nutr. 2016;40:308–18.

    Article  PubMed  Google Scholar 

  21. Williams TA, Monticone S, Schack VR, Stindl J, Burrello J, Buffolo F, et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension. 2014;63:188–95.

    Article  CAS  PubMed  Google Scholar 

  22. Ling G, Bruno J, Albert SG, Dhindsa S. Fatty acids as a direct regulator of aldosterone hypersecretion. Mol Cell Endocrino. 2023;561:111836.

    Article  CAS  Google Scholar 

  23. Gong S, Tetti M, Reincke M, Williams TA. Primary aldosteronism: metabolic reprogramming and the pathogenesis of aldosterone-producing adenomas. Cancers. 2021;13:3716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: a review. J Adv Res. 2018;11:23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zalckvar E, Schuldiner M. Beyond rare disorders: a new era for peroxisomal pathophysiology. Mol Cell. 2022;82:2228–35.

    Article  CAS  PubMed  Google Scholar 

  27. Kamijo K, Taketani S, Yokota S, Osumi T, Hashimoto T. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem. 1990;265:4534–40.

    Article  CAS  PubMed  Google Scholar 

  28. Van den Branden C, Roels F. Thioridazine: a selective inhibitor of peroxisomal beta-oxidation in vivo. FEBS Lett. 1985;187:331–3.

    Article  PubMed  Google Scholar 

  29. Matrozova J, Steichen O, Amar L, Zacharieva S, Jeunemaitre X, Plouin PF. Fasting plasma glucose and serum lipids in patients with primary aldosteronism: a controlled cross-sectional study. Hypertension. 2009;53:605–10.

    Article  CAS  PubMed  Google Scholar 

  30. Somloova Z, Widimsky J Jr, Rosa J, Wichterle D, Strauch B, Petrak O, et al. The prevalence of metabolic syndrome and its components in two main types of primary aldosteronism. J Hum Hypertens. 2010;24:625–30.

    Article  CAS  PubMed  Google Scholar 

  31. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60:2441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antraco VJ, Hirata BKS, de Jesus Simao J, Cruz MM, da Silva VS, da Cunha de Sa RDC, et al. Omega-3 polyunsaturated fatty acids prevent nonalcoholic steatohepatitis (NASH) and stimulate adipogenesis. Nutrients. 2021;13:622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murakami M, Rhayem Y, Kunzke T, Sun N, Feuchtinger A, Ludwig P, et al. In situ metabolomics of aldosterone-producing adenomas. JCI Insight. 2019;4:e130356.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Hao X, Han L, Yan Z, Shen W-J, Dong D, et al. Tissue-specific ablation of ACSL4 results in disturbed steroidogenesis. Endocrinology. 2019;160:2517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamazaki Y, Omata K, Tezuka Y, Ono Y, Morimoto R, Adachi Y, et al. Tumor cell subtypes based on the intracellular hormonal activity in KCNJ5-mutated aldosterone-producing adenoma. Hypertension. 2018;72:632–40.

    Article  CAS  PubMed  Google Scholar 

  36. Murakami M, Sun N, Li F, Feuchtinger A, Gomez-Sanchez C, Fassnacht M, et al. In situ metabolomics of cortisol-producing adenomas. Clin Chem. 2023;69:149–59.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hac-Wydro K, Wydro P. The influence of fatty acids on model cholesterol/phospholipid membranes. Chem Phys Lipids. 2007;150:66–81.

    Article  CAS  PubMed  Google Scholar 

  38. Holthuis JC, Menon AK. Lipid landscapes and pipelines in membrane homeostasis. Nature. 2014;510:48–57.

    Article  CAS  PubMed  Google Scholar 

  39. Fan W, Evans RM. Turning up the heat on membrane fluidity. Cell. 2015;161:962–3.

    Article  CAS  PubMed  Google Scholar 

  40. Issop L, Rone MB, Papadopoulos V. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol. 2013;371:34–46.

    Article  CAS  PubMed  Google Scholar 

  41. Spaulding SC, Bollag WB. The role of lipid second messengers in aldosterone synthesis and secretion. J Lipid Res. 2022;63:100191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun N, Wu Y, Nanba K, Sbiera S, Kircher S, Kunzke T, et al. High-resolution tissue mass spectrometry imaging reveals a refined functional anatomy of the human adult adrenal gland. Endocrinology. 2018;159:1511–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weigand I, Schreiner J, Röhrig F, Sun N, Landwehr L-S, Urlaub H, et al. Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction. Cell Death Dis. 2020;11:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duarte A, Castillo AF, Castilla R, Maloberti P, Paz C, Podesta EJ, et al. An arachidonic acid generation/export system involved in the regulation of cholesterol transport in mitochondria of steroidogenic cells. FEBS Lett. 2007;581:4023–8.

    Article  CAS  PubMed  Google Scholar 

  45. Mele PG, Duarte A, Paz C, Capponi A, Podesta EJ. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line. Endocrinology. 2012;153:3284–94.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (2020). 2023;4:e363.

    Article  CAS  PubMed  Google Scholar 

  47. Stern N, Yanagawa N, Saito F, Hori M, Natarajan R, Nadler J, et al. Potential role of 12 hydroxyeicosatetraenoic acid in angiotensin II-induced calcium signal in rat glomerulosa cells. Endocrinology. 1993;133:843–7.

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Gomez-Sanchez CE, Jaquin D, Aristizabal Prada ET, Meyer LS, Knösel T, et al. Primary aldosteronism: KCNJ5 mutations and adrenocortical cell growth. Hypertension. 2019;74:809–16.

    Article  CAS  PubMed  Google Scholar 

  49. Yang Y, Tetti M, Vohra T, Adolf C, Seissler J, Hristov M, et al. BEX1 is differentially expressed in aldosterone-producing adenomas and protects human adrenocortical cells from ferroptosis. Hypertension. 2021;77:1647–58.

    Article  CAS  PubMed  Google Scholar 

  50. Xie X, Wang X, Mick GJ, Kabarowski JH, Wilson LS, Barnes S, et al. Effect of n-3 and n-6 polyunsaturated fatty acids on microsomal P450 steroidogenic enzyme activities and in vitro cortisol production in adrenal tissue from yorkshire boars. Endocrinology. 2016;157:1512–21.

    Article  CAS  PubMed  Google Scholar 

  51. Maillard V, Desmarchais A, Durcin M, Uzbekova S, Elis S. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells. Reprod Biol Endocrinol. 2018;16:40.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mah CY, Nguyen ADT, Niijima T, Helm M, Dehairs J, Ryan FJ, et al. Peroxisomal beta-oxidation enzyme, DECR2, regulates lipid metabolism and promotes treatment resistance in advanced prostate cancer. Br J Cancer. 2024;130:741–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding L, Sun W, Balaz M, He A, Klug M, Wieland S, et al. Peroxisomal beta-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat Metab. 2021;3:1648–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Turcu AF, Tezuka Y, Lim JS, Salman Z, Sehgal K, Liu H, et al. Multifocal, asymmetric bilateral primary aldosteronism cannot be excluded by strong adrenal vein sampling lateralization: an international retrospective cohort study. Hypertension. 2024;81:604–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Heng Chen (Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University) for assistance with immunoassay measurements.

Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Natural Science Foundation of China [grant number 82300887, 82203330]; the Natural Science Foundation of Jiangsu Province [grant number BK20220717]; the China Postdoctoral Science Foundation [grant number 2022TQ0132, 2022M711589].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiheng Zhang, Tao Yang or Min Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The studies involving humans were approved by The First Affiliated Hospital With Nanjing Medical University, Nanjing, China (approval number 2018-SR-375). The studies were conducted in accordance with the local legislation and institutional requirements.

Informed consent

All patients gave written informed consent for the use of clinical data and biomaterials.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, Y., Williams, T.A. et al. Metabolic phenotypes and fatty acid profiles associated with histopathology of primary aldosteronism. Hypertens Res 48, 1363–1378 (2025). https://doi.org/10.1038/s41440-025-02143-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-025-02143-w

Keywords

This article is cited by

Search

Quick links