Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Exploring the high prevalence, comorbidities, and indicators of mild autonomous cortisol secretion in primary aldosteronism: a cohort study and systematic review

A Comment to this article was published on 03 June 2025

Abstract

Emerging evidence has suggested a significant prevalence of mild autonomous cortisol secretion (MACS) among patients diagnosed with primary aldosteronism (PA). However, MACS’s clinical characteristics and implications in PA patients remain largely unexplored. To investigate the prevalence, comorbidities, and indicators of MACS in PA patients, we conducted a retrospective cohort study including 874 PA patients with dexamethasone suppression test results in the Taiwan Primary Aldosteronism Investigators (TAIPAI) cohort between February 2011 and February 2024. Additionally, we performed a systematic review and meta-analysis of 11 studies, encompassing a total of 2882 PA patients (CRD42023486755). After including the TAIPAI cohort data in the meta-analysis, the prevalence of MACS among PA patients was 21.9% (95% confidence interval [C.I.]: 18.1, 26.2), with a negative correlation with estimated glomerular filtration rate (eGFR) (r = –0.028, P < 0.01). The characteristics associated with MACS in PA patients included older age (mean difference [MD] = 5.51 year, P < 0.01), higher plasma aldosterone concentration (MD = 5.36 ng/dL, P < 0.01), lower plasma renin activity (MD = –0.15 ng/mL/h, P < 0.01), lower eGFR (MD = -4.91 mL/min/1.73 m2, P = 0.01), and larger adrenal tumor size (MD = 0.41 cm, P < 0.01). MACS was significantly associated with chronic kidney disease (odds ratio [OR] = 1.96, P < 0.01), diabetes mellitus (OR = 1.60, P = 0.04), and cardiovascular diseases (OR = 1.37, P = 0.02) among PA patients. The high prevalence and strong association of MACS with comorbidities underscore the importance of identifying it in PA patients. Clinical features such as advanced age, significant aldosterone-renin dysregulation, impaired kidney function, diabetes, cardiovascular disease, and large adrenal tumors are indicators for MACS screening in PA patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Some or all datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author upon reasonable request.

References

  1. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  2. Vaidya A, Mulatero P, Baudrand R, Adler GK. The expanding spectrum of primary aldosteronism: implications for diagnosis, pathogenesis, and treatment. Endocr Rev. 2018;39:1057–88.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48:2293–300.

    Article  CAS  PubMed  Google Scholar 

  4. Colussi G, Catena C, Lapenna R, Nadalini E, Chiuch A, Sechi LA. Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients. Diab care. 2007;30:2349–54.

    Article  CAS  Google Scholar 

  5. Remde H, Hanslik G, Rayes N, Quinkler M. Glucose metabolism in primary aldosteronism. Horm Metab Res = Horm- und Stoffwechselforschung = Hormones et Metab. 2015;47:987–93.

    Article  CAS  Google Scholar 

  6. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diab Endocrinol. 2018;6:41–50.

    Article  CAS  Google Scholar 

  7. Rossi R, Tauchmanova L, Luciano A, Di Martino M, Battista C, Del Viscovo L, et al. Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab. 2000;85:1440–8.

    CAS  PubMed  Google Scholar 

  8. Fassnacht M, Tsagarakis S, Terzolo M, Tabarin A, Sahdev A, Newell-Price J, et al. European Society of Endocrinology clinical practice guidelines on the management of adrenal incidentalomas, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol. 2023;189:G1–g42.

    Article  CAS  PubMed  Google Scholar 

  9. Prete A, Bancos I. Mild autonomous cortisol secretion: pathophysiology, comorbidities and management approaches. Nat Rev Endocrinol. 2024;20:460–73.

    Article  PubMed  Google Scholar 

  10. Nakajima Y, Yamada M, Taguchi R, Satoh T, Hashimoto K, Ozawa A, et al. Cardiovascular complications of patients with aldosteronism associated with autonomous cortisol secretion. J Clin Endocrinol Metab. 2011;96:2512–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fujimoto K, Honjo S, Tatsuoka H, Hamamoto Y, Kawasaki Y, Matsuoka A, et al. Primary aldosteronism associated with subclinical Cushing syndrome. J Endocrinol Invest. 2013;36:564–7.

    CAS  PubMed  Google Scholar 

  12. Gerards J, Heinrich DA, Adolf C, Meisinger C, Rathmann W, Sturm L, et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol cosecretion. J Clin Endocrinol Metab. 2019;104:3192–202.

    Article  PubMed  Google Scholar 

  13. Hiraishi K, Yoshimoto T, Tsuchiya K, Minami I, Doi M, Izumiyama H, et al. Clinicopathological features of primary aldosteronism associated with subclinical Cushing’s syndrome. Endocr J. 2011;58:543–51.

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda S, Hikima Y, Kabeya Y, Iida S, Oikawa Y, Isshiki M, et al. Clinical characterization of patients with primary aldosteronism plus subclinical Cushing’s syndrome. BMC Endocr Disord. 2020;20:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng K-Y, Liao H-W, Chan C-K, Lin W-C, Yang S-Y, Tsai Y-C, et al. Presence of subclinical hypercortisolism in clinical aldosterone-producing adenomas predicts lower clinical success. Hypertension. 2020;76:1537–44.

    Article  CAS  PubMed  Google Scholar 

  16. Hung K, Lee BC, Chen PT, Liu KL, Chang CC, Wu VC, et al. Influence of autonomous cortisol secretion in patients with primary aldosteronism: subtype analysis and postoperative outcome. Endocr Connect. 2023;12:e230121.

  17. Heinrich DA, Adolf C, Holler F, Lechner B, Schneider H, Riester A, et al. Adrenal insufficiency after unilateral adrenalectomy in primary aldosteronism: long-term outcome and clinical impact. J Clin Endocrinol Metab. 2019;104:5658–64.

    Article  PubMed  Google Scholar 

  18. Wu VC, Hu YH, Wu CH, Kao CC, Wang CY, Yang WS, et al. Administrative data on diagnosis and mineralocorticoid receptor antagonist prescription identified patients with primary aldosteronism in Taiwan. J Clin Epidemiol. 2014;67:1139–49.

    Article  PubMed  Google Scholar 

  19. Wu VC, Yang SY, Lin JW, Cheng BW, Kuo CC, Tsai CT, et al. Kidney impairment in primary aldosteronism. Clin Chim Acta. 2011;412:1319–25.

    Article  CAS  PubMed  Google Scholar 

  20. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nishikawa T, Omura M, Satoh F, Shibata H, Takahashi K, Tamura N, et al. Guidelines for the diagnosis and treatment of primary aldosteronism-the Japan Endocrine Society 2009. Endocr J. 2011;58:711–21.

    Article  CAS  PubMed  Google Scholar 

  22. Barker TH, Migliavaca CB, Stein C, Colpani V, Falavigna M, Aromataris E, et al. Conducting proportional meta-analysis in different types of systematic reviews: a guide for synthesisers of evidence. BMC Med Res Methodol. 2021;21:189.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2012;49:1–15.

    Article  Google Scholar 

  24. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  25. Tabuchi Y, Otsuki M, Kasayama S, Kosugi K, Hashimoto K, Yamamoto T, et al. Clinical and endocrinological characteristics of adrenal incidentaloma in Osaka region, Japan. Endocr J. 2016;63:29–35.

    Article  CAS  PubMed  Google Scholar 

  26. Inoue K, Yamazaki Y, Tsurutani Y, Suematsu S, Sugisawa C, Saito J, et al. Evaluation of cortisol production in aldosterone-producing adenoma. Horm Metab Res. 2017;49:847–53.

    Article  CAS  PubMed  Google Scholar 

  27. Bhatt PS, Sam AH, Meeran KM, Salem V. The relevance of cortisol co-secretion from aldosterone-producing adenomas. Hormones. 2019;18:307–13.

    Article  PubMed  Google Scholar 

  28. Gendreitzig P, Künzel HE, Adolf C, Handgriff L, Müller L, Holler F, et al. Autonomous cortisol secretion influences psychopathological symptoms in patients with primary aldosteronism. J Clin Endocrinol Metab. 2021;106:E2423–E33.

    Article  PubMed  Google Scholar 

  29. Kometani M, Yoneda T, Demura M, Aono D, Gondoh Y, Karashima S, et al. Genetic and epigenetic analyses of aldosterone-producing adenoma with hypercortisolemia. Steroids. 2019;151:6.

    Article  Google Scholar 

  30. O’Toole SM, Sze W-CC, Chung T-T, Akker SA, Druce MR, Waterhouse M, et al. Low-grade cortisol cosecretion has limited impact on ACTH-stimulated AVS parameters in primary aldosteronism. J Clin Endocrinol Metab. 2020;105:e3776–e84.

    Article  Google Scholar 

  31. Araujo-Castro M, Paja Fano M, Pla Peris B, González Boillos M, Pascual-Corrales E, García-Cano AM, et al. Autonomous cortisol secretion in patients with primary aldosteronism: prevalence and implications on cardiometabolic profile and on surgical outcomes. Endocr Connect. 2023;12:e230043.

  32. Katabami T, Matsuba R, Kobayashi H, Nakagawa T, Kurihara I, Ichijo T, et al. Primary aldosteronism with mild autonomous cortisol secretion increases renal complication risk. Eur J Endocrinol. 2022;186:645–55.

    Article  CAS  PubMed  Google Scholar 

  33. Q-Q Plot (Quantile to Quantile Plot). In: The Concise Encyclopedia of Statistics.https://doi.org/10.1007/978-0-387-32833-1_331) Springer New York: New York, NY, 2008, 437-9.

  34. Egger M, Smith Davey, Schneider G, Minder M. C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olsen H, Olsen M. Associations of age, BMI, and renal function to cortisol after dexamethasone suppression in patients with adrenal incidentalomas. Front Endocrinol. 2023;13:1055298.

  36. Li X, Xiang X, Hu J, Goswami R, Yang S, Zhang A, et al. Association between serum cortisol and chronic kidney disease in patients with essential hypertension. Kidney Blood Press Res. 2016;41:384–91.

    Article  CAS  PubMed  Google Scholar 

  37. Lai CF, Lin YH, Huang KH, Chueh JS, Wu VC. Kidney function predicts new-onset cardiorenal events and mortality in primary aldosteronism: approach of the 2021 race-free eGFR equation. Hypertens Res. 2024;47:233–44.

    Article  CAS  PubMed  Google Scholar 

  38. Kjellbom A, Lindgren O, Puvaneswaralingam S, Löndahl M, Olsen H. Association between mortality and levels of autonomous cortisol secretion by adrenal incidentalomas : a cohort study. Ann Intern Med. 2021;174:1041–9.

    Article  PubMed  Google Scholar 

  39. Singh S, Atkinson EJ, Achenbach SJ, LeBrasseur N, Bancos I. Frailty in patients with mild autonomous cortisol secretion is higher than in patients with nonfunctioning adrenal tumors. J Clin Endocrinol Metab. 2020;105:e3307–e15.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, et al. Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab. 2006;91:3457–63.

    Article  CAS  PubMed  Google Scholar 

  41. Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab. 2006;91:454–9.

    Article  CAS  PubMed  Google Scholar 

  42. Wu VC, Chan CK, Wu WC, Peng KY, Chang YS, Yeh FY, et al. New-onset diabetes mellitus risk associated with concurrent autonomous cortisol secretion in patients with primary aldosteronism. Hypertension Res. 2023;46:445–55.

    Article  CAS  Google Scholar 

  43. Yokota K, Sone M. Autonomous cortisol secretion in patients with primary aldosteronism: a possible risk factor for new-onset diabetes mellitus. Hypertens Res. 2023;46:803–5.

    Article  PubMed  Google Scholar 

  44. Jiang Y, Zhou L, Zhang C, Su T, Jiang L, Zhou W, et al. The influence of cortisol co-secretion on clinical characteristics and postoperative outcomes in unilateral primary aldosteronism. Front Endocrinol (Lausanne). 2024;15:1369582.

    Article  PubMed  Google Scholar 

  45. Tauchmanovà L, Rossi R, Biondi B, Pulcrano M, Nuzzo V, Palmieri EA, et al. Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab. 2002;87:4872–8.

    Article  PubMed  Google Scholar 

  46. Adolf C, Köhler A, Franke A, Lang K, Riester A, Löw A, et al. Cortisol excess in patients with primary aldosteronism impacts left ventricular hypertrophy. J Clin Endocrinol Metab. 2018;103:4543–52.

    Article  PubMed  Google Scholar 

  47. Brosolo G, Catena C, Da Porto A, Bulfone L, Vacca A, Verheyen ND, et al. Differences in regulation of cortisol secretion contribute to left ventricular abnormalities in patients with essential hypertension. Hypertension (Dallas, Tex : 1979). 2022;79:1435–44.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai CH, Liao CW, Wu XM, Chen ZW, Pan CT, Chang YY, et al. Autonomous cortisol secretion is associated with worse arterial stiffness and vascular fibrosis in primary aldosteronism: a cross-sectional study with follow-up data. Eur J Endocrinol. 2022;187:197–208.

    Article  CAS  PubMed  Google Scholar 

  49. Lee B-C, Chang C-C, Kang VJ-W, Huang J-Z, Lin Y-L, Chang Y-Y, et al. Autonomous cortisol secretion promotes vascular calcification in vivo and in vitro under hyperaldosteronism. Hypertens Res. 2025;48:366–77.

    Article  CAS  PubMed  Google Scholar 

  50. Bleier J, Pickovsky J, Apter S, Fishman B, Dotan Z, Tirosh A, et al. The association between adrenal adenoma size, autonomous cortisol secretion and metabolic derangements. Clin Endocrinol. 2022;96:311–8.

    Article  CAS  Google Scholar 

  51. Wu WC, Peng KY, Lu JY, Chan CK, Wang CY, Tseng FY, et al. Cortisol-producing adenoma-related somatic mutations in unilateral primary aldosteronism with concurrent autonomous cortisol secretion: their prevalence and clinical characteristics. Eur J Endocrinol. 2022;187:519–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Yi-Jin Hsiao for her assistance in statistical analysis. We also thank the staff of the Second and Seventh Core Labs, Department of Medical Research at National Taiwan University Hospital, for technical assistance. We express sincere gratitude to all staff of the Taiwan Clinical Trial Consortium.

Funding

This work was supported by the National Science and Technology Council, Taiwan (110-2314-B-002-239, 111-2314-B-002-046); National Taiwan University Hospital (UN110-030); Ministry of Health and Welfare, Taiwan (110-TDU-B-212-124005); Mrs. Hsiu-Chin Lee Kidney Research Fund. The funds played no role in the study design, data collection, analysis and interpretation, manuscript writing, or in the decision to submit this manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fu Lai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Chang, LY., Sheu, JY. et al. Exploring the high prevalence, comorbidities, and indicators of mild autonomous cortisol secretion in primary aldosteronism: a cohort study and systematic review. Hypertens Res 48, 1716–1729 (2025). https://doi.org/10.1038/s41440-025-02172-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-025-02172-5

Keywords

This article is cited by

Search

Quick links