Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of renal denervation at BP-elevation/reduction sites guided by renal nerve stimulation on atrial neural and structural remodeling in a hypertensive canine model

Abstract

Hypertension is a common condition in cardiovascular medicine, and can lead to atrial enlargement, atrial fibrosis, and even the development of atrial fibrillation. Renal denervation (RDN) causes reduction in blood pressure (BP), but its effects on hypertension-related atrial remodeling remain unclear. This study aimed to explore the effects of RDN at BP-elevation/reduction sites guided by renal nerve stimulation (RNS) on atrial neural and structural remodeling in a hypertensive canine model. The twenty-four Chinese Kunming dogs were divided into three groups: (1) the reduced BP response ablation group (RRA group, n = 8), (2) the renal stimulation control group (RSC group, n = 8), and (3) the elevated BP response ablation group (ERA group, n = 8), which were followed for 4 weeks. Our results showed that in terms of atrial neural remodeling, compared with the RSC group, the ERA group exhibited reduced tyrosine hydroxylase (TH) protein expression and a lower TH/ choline acetyltransferase (ChAT) ratio. In contrast, the RRA group showed lower ChAT and muscarinic acetylcholine receptor 2 (CM2) protein expression, and an elevated TH/ChAT ratio. Compared with the RSC group, the ERA group presented a smaller myocyte area, reduced collagen I protein expression, and lower myocardial interstitial collagen fiber content. In contrast, the RRA group presented a larger myocyte area, increased collagen I protein expression, and greater collagen fiber content. Overall, RDN at elevated BP response sites improved atrial neural and structural remodeling under hypertensive conditions, whereas RDN at reduced BP response sites exacerbated the imbalance between atrial sympathetic and parasympathetic nerve activity and worsened structural remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 Report. JAMA. 2003;289:2560–72.

    Article  PubMed  CAS  Google Scholar 

  2. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71:1269–324.

    Article  PubMed  CAS  Google Scholar 

  3. DiBona GF, Esler M. Translational medicine: The antihypertensive effect of renal denervation. Am J Physiol Regulatory, Integr Comp Physiol 2010;298:R245–53.

    Article  CAS  Google Scholar 

  4. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  5. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (the symplicity htn-2 trial): A randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  PubMed  Google Scholar 

  6. Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: Basic and clinical evidence. Hypertens Res. 2022;45:198–209.

    Article  PubMed  Google Scholar 

  7. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N. Engl J Med. 2014;370:1393–401.

    Article  PubMed  CAS  Google Scholar 

  8. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the symplicity htn-3 trial. Eur Heart J. 2015;36:219–27.

    Article  PubMed  Google Scholar 

  9. Gal P, de Jong MR, Smit JJ, Adiyaman A, Staessen JA, Elvan A. Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: A feasibility study. J Hum Hypertens. 2015;29:292–5.

    Article  PubMed  CAS  Google Scholar 

  10. de Jong MR, Adiyaman A, Gal P, Smit JJ, Delnoy PP, Heeg JE, et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68:707–14.

    Article  PubMed  Google Scholar 

  11. de Jong MR, Hoogerwaard AF, Adiyaman A, Smit JJJ, Heeg JE, van Hasselt B, et al. Renal nerve stimulation identifies aorticorenal innervation and prevents inadvertent ablation of vagal nerves during renal denervation. Blood Press. 2018;27:271–9.

    Article  PubMed  Google Scholar 

  12. Hoogerwaard AF, de Jong MR, Elvan A. Renal nerve stimulation as procedural end point for renal sympathetic denervation. Curr Hypertens Rep. 2018;20:24.

    Article  PubMed  Google Scholar 

  13. Zhou H, Li Y, Xu Y, Liu H, Lai Y, Tan K, et al. Mapping renal innervations by renal nerve stimulation and characterizations of blood pressure response patterns. J Cardiovasc Transl Res. 2022;15:29–37.

    Article  PubMed  Google Scholar 

  14. Tan K, Lai Y, Chen W, Liu H, Xu Y, Li Y, et al. Selective renal denervation guided by renal nerve stimulation: Mapping renal nerves for unmet clinical needs. J Hum Hypertens. 2019;33:716–24.

    Article  PubMed  Google Scholar 

  15. Liu H, Li Y, Zhou H, Chen W, Xu Y, Du H, et al. Renal nerve stimulation identifies renal innervation and optimizes the strategy for renal denervation in canine. J Transl Med. 2023;21:100.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ripplinger CM, Noujaim SF, Linz D. The nervous heart. Prog Biophys Mol Biol. 2016;120:199–209.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rysevaite K, Saburkina I, Pauziene N, Noujaim SF, Jalife J, Pauza DH. Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm. 2011;8:448–54.

    Article  PubMed  Google Scholar 

  18. Gottlieb LA, Mahfoud F, Stavrakis S, Jespersen T, Linz D. Autonomic nervous system: A therapeutic target for cardiac end-organ damage in hypertension. Hypertension. 2024;81:2027–37.

    Article  PubMed  CAS  Google Scholar 

  19. Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res. 1986;58:356–71.

    Article  PubMed  CAS  Google Scholar 

  20. Koura T, Hara M, Takeuchi S, Ota K, Okada Y, Miyoshi S, et al. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: Preferential direction of conduction block changes from longitudinal to transverse with increasing age. Circulation. 2002;105:2092–8.

    Article  PubMed  Google Scholar 

  21. Ausma J, van der Velden HM, Lenders MH, van Ankeren EP, Jongsma HJ, Ramaekers FC, et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation. 2003;107:2051–8.

    Article  PubMed  Google Scholar 

  22. Lu J, Ling Z, Chen W, Du H, Xu Y, Fan J, et al. Effects of renal sympathetic denervation using saline-irrigated radiofrequency ablation catheter on the activity of the renin-angiotensin system and endothelin-1. J Renin-Angiotensin-Aldosterone Syst. 2014;15:532–9.

    Article  PubMed  CAS  Google Scholar 

  23. Lu J, Wang Z, Zhou T, Chen S, Chen W, Du H, et al. Selective proximal renal denervation guided by autonomic responses evoked via high-frequency stimulation in a preclinical canine model. Circ Cardiovasc Inter. 2015;8:e001847.

    Article  Google Scholar 

  24. Chen W, Du H, Lu J, Ling Z, Long Y, Xu Y, et al. Renal artery vasodilation may be an indicator of successful sympathetic nerve damage during renal denervation procedure. Sci Rep. 2016;6:37218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen WJ, Liu H, Wang ZH, Liu C, Fan JQ, Wang ZL, et al. The impact of renal denervation on the progression of heart failure in a canine model induced by right ventricular rapid pacing. Front Physiol. 2019;10:1625.

    Article  PubMed  Google Scholar 

  26. Liu H, Chen W, Lai Y, Du H, Wang Z, Xu Y, et al. Selective renal denervation guided by renal nerve stimulation in canine. Hypertension. 2019;74:536–45.

    Article  PubMed  CAS  Google Scholar 

  27. Lai Y, Zhou H, Chen W, Liu H, Liu G, Xu Y, et al. The intrarenal blood pressure modulation system is differentially altered after renal denervation guided by different intensities of blood pressure responses. Hypertension Res. 2022;46:456–67.

    Article  Google Scholar 

  28. Schneider CA, Rasband WS, Eliceiri KW. Nih image to imagej: 25 years of image analysis. Nat methods. 2012;9:671–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Govindasamy L, Pedersen B, Lian W, Kukar T, Gu Y, Jin S, et al. Structural insights and functional implications of choline acetyltransferase. J Struct Biol. 2004;148:226–35.

    Article  PubMed  CAS  Google Scholar 

  30. Kakinuma Y, Akiyama T, Sato T. Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J. 2009;276:5111–25.

    Article  PubMed  CAS  Google Scholar 

  31. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chester AH, McCormack A, Miller EJ, Ahmed MN, Yacoub MH. Coronary vasodilation mediated by T cells expressing choline acetyltransferase. Am J Physiol Heart Circ Physiol. 2021;321:H933–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dhein S, van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharm Res. 2001;44:161–82.

    Article  CAS  Google Scholar 

  34. Mompeo B, Maranillo E, Garcia-Touchard A, Larkin T, Sanudo J. The gross anatomy of the renal sympathetic nerves revisited. Clin Anat. 2016;29:660–4.

    Article  PubMed  Google Scholar 

  35. van Amsterdam WAC, Blankestijn PJ, Goldschmeding R, Bleys RLAW. The morphological substrate for renal denervation: Nerve distribution patterns and parasympathetic nerves. A post-mortem histological study. Ann Anat - Anatomischer Anz 2016;204:71–9.

    Article  Google Scholar 

  36. Cheng X, Zhang Y, Chen R, Qian S, Lv H, Liu X, et al. Anatomical evidence for parasympathetic innervation of the renal vasculature and pelvis. J Am Soc Nephrol. 2022;33:2194–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Böhm M, et al. Renal denervation update from the international sympathetic nervous System Summit: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73:3006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kemp DR. A histological and functional study of the gastric mucosal innervation in the dog. Part I; The quantification of the fibre content of the normal supradiphragmatic vagal trunks and their abdominal branches. Aust N. Z J Surg. 1973;43:288–94.

    Article  PubMed  CAS  Google Scholar 

  39. Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, et al. acc/aha/accp/hrs guideline for the diagnosis and management of atrial fibrillation: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2023;2024:e1–e156.

    Google Scholar 

  40. Lauder L, Mahfoud F, Azizi M, Bhatt DL, Ewen S, Kario K, et al. Hypertension management in patients with cardiovascular comorbidities. Eur Heart J. 2023;44:2066–77.

    Article  PubMed  CAS  Google Scholar 

  41. Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, et al. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res. 2021;117:1732–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sohinki D, Stavrakis S. New approaches for treating atrial fibrillation: Focus on autonomic modulation. Trends Cardiovasc Med. 2020;30:433–9.

    Article  PubMed  Google Scholar 

  43. Zhao J, Zhang Y, Yin Z, Zhu Y, Xin F, Zhang H, et al. Impact of proinflammatory epicardial adipose tissue and differentially enhanced autonomic remodeling on human atrial fibrillation. J Thorac Cardiovasc Surg. 2023;165:e158–74.

    Article  PubMed  Google Scholar 

  44. Verheule S, Sato T, Everett T 4th, Engle SK, Otten D, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of tgf-beta1. Circ Res. 2004;94:1458–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  46. Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: The eradicate-af randomized clinical trial. JAMA. 2020;323:248–55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to American Journal Experts for their invaluable assistance in the language editing of this manuscript. This study was supported by the National Natural Science Foundation of China (Grant Numbers: 32071110 and Yin Yue-Hui) and the Natural Science Foundation of Chongqing, China (No. CSTB2024NSCQ-MSX0595 Chen Wei-Jie).

Author information

Authors and Affiliations

Authors

Contributions

DL contributed to conceptualization, methodology, software development, formal analysis, investigation, data curation, original draft preparation, and review and editing. YL, HZ, WC, YL, YR, and XM contributed to the methodology, formal analysis, investigation, data curation, visualization, review and editing. HK, XH, GL, and ZL contributed resources, data curation, review and editing, and visualization. PX and YY contributed to conceptualization, methodology, validation, review and editing, supervision, and project administration. All the authors gave final approval and agreed to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding authors

Correspondence to Peilin Xiao or Yuehui Yin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study was approved by the Animal Experiment Ethics Committee of the Second Affiliated Hospital of Chongqing Medical University, following the guidelines of the National Institutes of Health for the care and use of laboratory animals, and standard experimental animal care was provided at the Animal Experiment Center of Chongqing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dan Li, Long, Y., Zhou, H. et al. Effects of renal denervation at BP-elevation/reduction sites guided by renal nerve stimulation on atrial neural and structural remodeling in a hypertensive canine model. Hypertens Res 48, 2387–2400 (2025). https://doi.org/10.1038/s41440-025-02258-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-025-02258-0

Keywords

Search

Quick links