Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Human plasma metabolomics reveals metabolic targets for intervention in salt-sensitive hypertension

Abstract

Salt-sensitive hypertension (SSH) is a major risk factor for cardiovascular disease, but its metabolic mechanisms remain unclear. This study investigates the plasma metabolic profile of SSH patients to identify potential therapeutic targets. Additionally, SSH patients were identified through an oral salt-loading test. Plasma metabolomics was performed by utilizing GC-MS and LC-MS, followed by network correlation analysis, pathway enrichment, receiver operating characteristic analysis, and linear regression analysis. The findings were validated in Dahl salt-sensitive (SS) rats, with glycine supplementation evaluated as a potential therapeutic intervention. Firstly, plasma metabolomics illustrated distinct metabolic alterations in SSH patients, with substantially increased levels of fumaric acid, pyruvat,e and lactic acid, as well as significantly decreased levels of glycine, leucine and β-alanine (p < 0.05). Additionally, Glycine and β-alanine levels decreased by 61% and 68% compared to the control group. Secondly, pathway enrichment analysis identified disruptions in amino acid metabolism, particularly Arginine biosynthesis pathway, TCA pathway, glycine, serine, and threonine metabolism pathways were significantly enriched (p < 0.05). Correlation network analysis identified fumarate as a hub metabolite in the pathophysiology of SSH. Glycine showed the highest predictive value for SSH (AUC = 94.6181%) and was negatively correlated with blood pressure. Finally, glycine supplementation in SS rats substantially reduced salt-induced hypertension (p < 0.001) by improving renal amino acid metabolism and enhancing nitric oxide production. This study identifies glycine as a crucial metabolic target for SSH intervention. Glycine supplementation effectively alleviates SSH in animal models, indicating its potential for clinical applications. Future research should focus on exploring glycine-based therapies in clinical trials.

Intervention targets and validation of salt-sensitive hypertension

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mensah G, Fuster V, Murray C, Roth G. Global burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol. 2023;82:2350–473.

    PubMed  PubMed Central  Google Scholar 

  2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.

    Google Scholar 

  3. Denton D, Weisinger R, Mundy N, Wickings E, Dixson A, Moisson P, et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat Med. 1995;1:1009–16.

    PubMed  CAS  Google Scholar 

  4. Suckling R, He F, Markandu N, MacGregor G. Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int. 2012;81:407–11.

    PubMed  CAS  Google Scholar 

  5. Shi M, He J, Li C, Lu X, He W, Cao J, et al. Metabolomics study of blood pressure salt-sensitivity and hypertension. Nutr Metab Cardiovasc Dis. 2022;32:1681–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Elijovich F, Weinberger M, Anderson C, Appel L, Bursztyn M, Cook N, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68:e7–46.

    PubMed  CAS  Google Scholar 

  7. Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol. 2017;956:61–84.

    PubMed  Google Scholar 

  8. Mu J, Zheng S, Lian Q, Liu F, Liu Z. Evolution of blood pressure from adolescents to youth in salt sensitivies: a 18-year follow-up study in Hanzhong children cohort. Nutr J. 2012;11:70.

    PubMed  PubMed Central  Google Scholar 

  9. Wang L, Hou E, Wang L, Wang Y, Yang L, Zheng X, et al. Reconstruction and analysis of correlation networks based on GC-MS metabolomics data for young hypertensive men. Anal Chim Acta. 2015;854:95–105.

    PubMed  CAS  Google Scholar 

  10. Tian Z, Liang M. Renal metabolism and hypertension. Nat Commun. 2021;12:963.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Cheng Y, Song H, Pan X, Xue H, Wan Y, Wang T, et al. Urinary metabolites associated with blood pressure on a low- or high-sodium diet. Theranostics. 2018;8:1468–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Zheng X, Zhou L, Jin Y, Zhao X, Ahmad H, OuYang Y, et al. Beta-aminoisobutyric acid supplementation attenuated salt-sensitive hypertension in Dahl salt-sensitive rats through prevention of insufficient fumarase. Amino Acids. 2022;54:169–80.

    PubMed  CAS  Google Scholar 

  13. Zheng X, Li X, Chen M, Yang P, Zhao X, Zeng L, et al. The protective role of hawthorn fruit extract against high salt-induced hypertension in Dahl salt-sensitive rats: impact on oxidative stress and metabolic patterns. Food Funct. 2019;10:849–58.

    PubMed  CAS  Google Scholar 

  14. Ou Yang Y, Yuan M, Yang Z, Min Z, Jin Y, Tian Z. Revealing the pathogenesis of salt-sensitive hypertension in Dahl salt-sensitive rats through integrated multi-omics analysis. Metabolites. 2022;12:1076.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Qu X, Gao H, Sun J, Tao L, Zhang Y, Zhai J, et al. Identification of key metabolites during cisplatin-induced acute kidney injury using an HPLC-TOF/MS-based non-targeted urine and kidney metabolomics approach in rats. Toxicology. 2020;431:152366.

    PubMed  CAS  Google Scholar 

  16. Yang P, Deng F, Yuan M, Chen M, Zeng L, Ouyang Y, et al. Metabolomics reveals the defense mechanism of histidine supplementation on high-salt exposure-induced hepatic oxidative stress. Life Sci. 2023;314:121355.

    PubMed  CAS  Google Scholar 

  17. Zhao H, Liu Y, Li Z, Song Y, Cai X, Liu Y, et al. Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS. Clin Chim Acta. 2018;486:192–8.

    PubMed  CAS  Google Scholar 

  18. Lin W, Liu Z, Zheng X, Chen M, Gao D, Tian Z. High-salt diet affects amino acid metabolism in plasma and muscle of Dahl salt-sensitive rats. Amino Acids. 2018;50:1407–14.

    PubMed  CAS  Google Scholar 

  19. Li H, Liu Q, Zou Z, Chen Q, Wang W, Baccarelli A, et al. L-arginine supplementation to mitigate cardiovascular effects of walking outside in the context of traffic-related air pollution in participants with elevated blood pressure: A randomized, double-blind, placebo-controlled trial. Environ Int. 2021;156:106631.

    PubMed  CAS  Google Scholar 

  20. Zeng L, Chen M, Ahmad H, Zheng X, Ouyang Y, Yang P, et al. Momordica charantia extract confers protection against hypertension in Dahl salt-sensitive rats. Plant Foods Hum Nutr. 2022;77:373–82.

    PubMed  CAS  Google Scholar 

  21. Rapp J, Garrett M. Will the real Dahl S rat please stand up? Am J Physiol Renal Physiol. 2019;317:F1231–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Rettig R. Does the kidney play a role in the aetiology of primary hypertension? Evidence from renal transplantation studies in rats and humans. J Hum Hypertens. 1993;7:177–80.

    PubMed  CAS  Google Scholar 

  23. Zheng X, Chen M, Li X, Yang P, Zhao X, Ouyang Y, et al. Insufficient fumarase contributes to hypertension by an imbalance of redox metabolism in Dahl salt-sensitive rats. Hypertens Res. 2019;42:1672–82.

    PubMed  CAS  Google Scholar 

  24. Liang M. Hypertension as a mitochondrial and metabolic disease. Kidney Int. 2011;80:15–6.

    PubMed  Google Scholar 

  25. Rinschen M, Palygin O, Guijas C, Palermo A, Palacio-Escat N, Domingo-Almenara X, et al. Metabolic rewiring of the hypertensive kidney. Sci Signal. 2019;12:eaax9760.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Rinschen M, Palygin O, El-Meanawy A, Domingo-Almenara X, Palermo A, Dissanayake L, et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat Commun. 2022;13:4099.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Dissanayake L, Palygin O, Staruschenko A. Lysine and salt-sensitive hypertension. Curr Opin Nephrol Hypertens. 2024;33:441–6.

    PubMed  CAS  Google Scholar 

  28. Stamler J, Brown I, Daviglus M, Chan Q, Kesteloot H, Ueshima H, et al. Glutamic acid, the main dietary amino acid, and blood pressure: the INTERMAP Study (International Collaborative Study of Macronutrients, Micronutrients and Blood Pressure). Circulation. 2009;120:221–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Semnani-Azad Z, Toledo E, Babio N, Ruiz-Canela M, Wittenbecher C, Razquin C, et al. Plasma metabolite predictors of metabolic syndrome incidence and reversion. Metabolism. 2024;151:155742.

    PubMed  CAS  Google Scholar 

  30. Wang Z, Cheng C, Yang X, Zhang C. L-phenylalanine attenuates high salt-induced hypertension in Dahl SS rats through activation of GCH1-BH4. PLoS One. 2021;16:e0250126.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Tian Z, Greene A, Usa K, Matus I, Bauwens J, Pietrusz J, et al. Renal regional proteomes in young Dahl salt-sensitive rats. Hypertension. 2008;51:899–904.

    PubMed  CAS  Google Scholar 

  32. Tian Z, Liu Y, Usa K, Mladinov D, Fang Y, Ding X, et al. Novel role of fumarate metabolism in Dahl-salt sensitive hypertension. Hypertension. 2009;54:255–60.

    PubMed  CAS  Google Scholar 

  33. Usa K, Liu Y, Geurts A, Cheng Y, Lazar J, Baker M, et al. Elevation of fumarase attenuates hypertension and can result from a nonsynonymous sequence variation or increased expression depending on rat strain. Physiol Genomics. 2017;49:496–504.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Hou E, Sun N, Zhang F, Zhao C, Usa K, Liang M, et al. Malate and aspartate increase L-arginine and nitric oxide and attenuate hypertension. Cell Rep. 2017;19:1631–9.

    PubMed  CAS  Google Scholar 

  35. Dziedzic M, Józefczuk E, Guzik T, Siedlinski M. Interplay between plasma glycine and branched-chain amino acids contributes to the development of hypertension and coronary heart disease. Hypertension. 2024;81:1320–31.

    PubMed  CAS  Google Scholar 

  36. Lin C, Sun Z, Mei Z, Zeng H, Zhao M, Hu J, et al. The causal associations of circulating amino acids with blood pressure: a Mendelian randomization study. BMC Med. 2022;20:414.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Li X, Sun L, Zhang W, Li H, Wang S, Mu H, et al. Association of serum glycine levels with metabolic syndrome in an elderly Chinese population. Nutr Metab. 2018;15:89.

    CAS  Google Scholar 

  38. Ertuglu L, Mutchler A, Yu J, Kirabo A. Inflammation and oxidative stress in salt sensitive hypertension; the role of the NLRP3 inflammasome. Front Physiol. 2022;13:1096296.

    PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Zhang J, Wang L, Li W, Chen L, Li J, et al. Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes. J Pharmacol Sci. 2018;137:387–94.

    PubMed  CAS  Google Scholar 

  40. Diaz-Flores M, Cruz M, Duran-Reyes G, Munguia-Miranda C, Loza-Rodriguez H, Pulido-Casas E, et al. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure. Can J Physiol Pharmacol. 2013;91:855–60.

    PubMed  CAS  Google Scholar 

  41. Ruiz-Ramírez A, Ortiz-Balderas E, Cardozo-Saldaña G, Diaz-Diaz E, El-Hafidi M. Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. Clin Sci (Lond). 2014;126:19–29.

    PubMed  Google Scholar 

  42. Perez-Torres I, Ibarra B, Soria-Castro E, Torrico-Lavayen R, Pavon N, Diaz-Diaz E, et al. Effect of glycine on the cyclooxygenase pathway of the kidney arachidonic acid metabolism in a rat model of metabolic syndrome. Can J Physiol Pharmacol. 2011;89:899–910.

    PubMed  CAS  Google Scholar 

  43. Liang M, Knox F. Production and functional roles of nitric oxide in the proximal tubule. Am J Physiol Regul Integr Comp Physiol. 2000;278:R1117–24.

    PubMed  CAS  Google Scholar 

  44. Elijovich F, Laffer C, Sahinoz M, Pitzer A, Ferguson J, Kirabo A. The gut microbiome, inflammation, and salt-sensitive hypertension. Curr Hypertens Rep. 2020;22:79.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Mattson D, Lund H, Guo C, Rudemiller N, Geurts A, Jacob H. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am J Physiol Regul Integr Comp Physiol. 2013;304:R407–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. McMaster W, Kirabo A, Madhur M, Harrison D. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015;116:1022–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893–910.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Madhur M, Lob H, McCann L, Iwakura Y, Blinder Y, Guzik T, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55:500–7.

    PubMed  CAS  Google Scholar 

  49. Spittler A, Reissner C, Oehler R, Gornikiewicz A, Gruenberger T, Manhart N, et al. Immunomodulatory effects of glycine on LPS-treated monocytes: reduced TNF-alpha production and accelerated IL-10 expression. FASEB J. 1999;13:563–71.

    PubMed  CAS  Google Scholar 

  50. Stachlewitz R, Li X, Smith S, Bunzendahl H, Graves L, Thurman R. Glycine inhibits growth of T lymphocytes by an IL-2-independent mechanism. J Immunol. 2000;164:176–82.

    PubMed  CAS  Google Scholar 

  51. Aguayo-Cerón K, Sánchez-Muñoz F, Gutierrez-Rojas R, Acevedo-Villavicencio L, Flores-Zarate A, Huang F, et al. Glycine: the smallest anti-inflammatory micronutrient. Int J Mol Sci. 2023;24:11236.

    PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Jia H, Jin Y, Liu N, Chen J, Yang Y, et al. Glycine attenuates LPS-induced apoptosis and inflammatory cell infiltration in mouse liver. J Nutr. 2020;150:1116–25.

    PubMed  Google Scholar 

  53. Liu R, Liao X, Pan M, Tang J, Chen S, Zhang Y, et al. Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/HIF-1α signaling pathway. J Immunol. 2019;202:1704–14.

    PubMed  CAS  Google Scholar 

  54. Hasegawa S, Ichiyama T, Sonaka I, Ohsaki A, Okada S, Wakiguchi H, et al. Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin Exp Immunol. 2012;167:269–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Almanza-Perez J, Alarcon-Aguilar F, Blancas-Flores G, Campos-Sepulveda A, Roman-Ramos R, Garcia-Macedo R, et al. Glycine regulates inflammatory markers modifying the energetic balance through PPAR and UCP-2. Biomed Pharmacother. 2010;64:534–40.

    PubMed  CAS  Google Scholar 

  56. Nguyen P, Zhao D, Okamura T, Chang K, Wong N, Yang E. Atherosclerotic cardiovascular disease risk prediction models in China, Japan, and Korea: implications for east Asians? JACC Asia. 2025;5:333–49.

    PubMed  PubMed Central  Google Scholar 

  57. Kario K, Wang J. Toward “Zero” cardiovascular events in Asia: the HOPE Asia network. JACC Asia. 2021;1:121–4.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to Qingjian County People’s Hospital in Yulin, Shaanxi Province for their support and assistance during the plasma sample collection process. We were very grateful to the animal wardens (Ying Guo) for taking care of the rats before this experiment. We are grateful to Xiao-Fei Wang and Lin Han (Biomedical Experimental Center of Xi’an Jiaotong University) for their technical support. We thank Shanghai Tengyun Biotechnology Co., Ltd. for developing Hiplot Pro platform and providing technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers 82370726 and 82400684), Shaanxi Province Postdoctoral Science Foundation [grant number 2024BSHYDZZ003], Youth Project of the Basic Research Program of Shaanxi Provincial Natural Science Foundation (Grant number 2025JC-YBQN-1193) and the Fundamental Research Funds for the Central Universities (Grant number sxzy012025067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Chen, X., Liu, M. et al. Human plasma metabolomics reveals metabolic targets for intervention in salt-sensitive hypertension. Hypertens Res 48, 2567–2583 (2025). https://doi.org/10.1038/s41440-025-02280-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-025-02280-2

Keywords

Search

Quick links