Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Digital hypertension – what we need for the high-quality management of hypertension in the new era

Abstract

Digital technologies are playing an increasing role in hypertension management. Digital hypertension is a new field that integrates advancing technologies into hypertension management. This research area encompasses various aspects of digital transformation technologies, including the development of novel blood pressure (BP) measurement devices—whether cuffless or cuff-based sensors—the transmission of large-scale time-series BP data, cloud-based computing and analysis of BP indices, presentation of the results, and feedback systems for both patients and physicians. A key component of this approach is novel blood pressure (BP) monitoring devices. This article summarizes the latest information and discussions about “held at the 2024 Japan Society of Hypertension scientific meeting. Novel BP monitoring includes cuffless devices that estimate BP, but cuffless devices require achieving accuracy without the need for calibration using conventional cuff-based devices. New BP monitoring devices can provide information on novel biomarkers beyond BP and may improve risk assessment and outcomes. Integration of BP data with omics and clinical information should enable personalized hypertension management. Key data gaps relating to novel BP monitoring devices are accuracy/validation in different settings/populations, association between BP metrics and hard clinical outcomes, and measurement/interpretation of BP variability data. Human- and health system-related factors also need to be addressed or overcome before these devices can be successfully integrated into routine clinical practice. If these things can be achieved, new BP monitoring technologies could transform hypertension management and play a pivotal role in the future of remote healthcare.

This article summarizes the latest information and discussions about digital hypertension from the Digital Hypertension symposium that took place during the 2024 Japan Society of Hypertension scientific meeting

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension the task force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023;41:1874–2071.

    Article  CAS  PubMed  Google Scholar 

  2. McEvoy JW, McCarthy CP, Bruno RM, Brouwers S, Canavan MD, Ceconi C, et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur Heart J. 2024;45:3912–4018.

    Article  PubMed  Google Scholar 

  3. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  4. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:1269–324.

    Article  CAS  PubMed  Google Scholar 

  5. Kanegae H, Fujishiro K, Fukatani K, Ito T, Kario K. Precise risk-prediction model including arterial stiffness for new-onset atrial fibrillation using machine learning techniques. J Clin Hypertens. 2024;26:806–15.

    Article  CAS  Google Scholar 

  6. Kario K. Management of hypertension in the digital era: small wearable monitoring devices for remote blood pressure monitoring. Hypertension. 2020;76:640–50.

    Article  CAS  PubMed  Google Scholar 

  7. Kario K. Digital hypertension towards to the anticipation medicine. Hypertens Res. 2023;46:2503–12.

    Article  PubMed  Google Scholar 

  8. Kario K, Harada N, Okura A. Digital therapeutics in hypertension: evidence and perspectives. Hypertension. 2022;79:2148–58.

    Article  CAS  PubMed  Google Scholar 

  9. Kario K, Williams B, Tomitani N, McManus RJ, Schutte AE, Avolio A, et al. Innovations in blood pressure measurement and reporting technology: International Society of Hypertension position paper endorsed by the World Hypertension League, European Society of Hypertension, Asian Pacific Society of Hypertension, and Latin American Society of Hypertension. J Hypertens. 2024;42:1874–88.

    Article  CAS  PubMed  Google Scholar 

  10. Katsuya T, Hisaki F, Aga M, Hirayama Y, Takagi Y, Ichikihara Y, et al. Digital therapeutic for hypertension improves physician-patient communication and clinical inertia: a survey of physicians who implemented CureApp HT in clinical practice. Hypertens Res. 2024; https://doi.org/10.1038/s41440-024-01899-x.

  11. Khan NA, Stergiou GS, Omboni S, Kario K, Renna N, Chapman N, et al. Virtual management of hypertension: lessons from the COVID-19 pandemic-International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J Hypertens. 2022;40:1435–48.

    Article  CAS  PubMed  Google Scholar 

  12. Kishi T, Usui H, Nagayoshi S. A prospective pilot trial of the health data monitoring system without educational content for patients with hypertension. Hypertens Res. 2024;47:529–32.

    Article  PubMed  Google Scholar 

  13. Kokubo A, Kuwabara M, Tomitani N, Yamashita S, Shiga T, Kario K. Development of beat-by-beat blood pressure monitoring device and nocturnal sec-surge detection algorithm. Hypertens Res. 2024;47:1576–87.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nomura A, Tanigawa T, Kario K, Igarashi A. Cost-effectiveness of digital therapeutics for essential hypertension. Hypertens Res. 2022;45:1538–48.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stergiou GS, Avolio AP, Palatini P, Kyriakoulis KG, Schutte AE, Mieke S, et al. European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2023;41:2074–87.

    Article  CAS  PubMed  Google Scholar 

  16. Nomura A. Digital health, digital medicine, and digital therapeutics in cardiology: current evidence and future perspective in Japan. Hypertens Res. 2023;46:2126–34.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nomura A. Digital therapeutics in Japan: present and future directions. J Cardiol. 2024. https://doi.org/10.1016/j.jjcc.2024.11.005.

  18. Kario K, Hoshide S, Mogi M. Digital Hypertension 2023: concept, hypothesis, and new technology. Hypertens Res. 2022;45:1529–30.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kario K, Hoshide S, Mogi M. Five special focuses of Hypertension Research: digital hypertension, home blood pressure-centered approach, renal denervation, Asians, for guidelines. Hypertens Res. 2023;46:2557–60.

    Article  PubMed  Google Scholar 

  20. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol. 2022;19:643–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tomitani N, Hoshide S, Kario K. Effective out-of-office BP monitoring to detect masked hypertension: perspectives for wearable BP monitoring. Hypertens Res. 2023;46:523–5.

    Article  PubMed  Google Scholar 

  22. Jeemon P, Séverin T, Amodeo C, Balabanova D, Campbell NRC, Gaita D, et al. World Heart Federation roadmap for hypertension - a 2021 update. Glob Heart. 2021;16:63.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kuwabara M, Hamasaki H, Tomitani N, Shiga T, Kario K. Novel triggered nocturnal blood pressure monitoring for sleep apnea syndrome: distribution and reproducibility of hypoxia-triggered nocturnal blood pressure measurements. J Clin Hypertens. 2017;19:30–37.

    Article  CAS  Google Scholar 

  24. Wang L, Xian H, Guo J, Li W, Wang J, Chen Q, et al. A novel blood pressure monitoring technique by smart HUAWEI WATCH: a validation study according to the ANSI/AAMI/ISO 81060-2:2018 guidelines. Front Cardiovasc Med. 2022;9:923655.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kario K, Tomitani N, Iwashita C, Shiga T, Kanegae H. Simultaneous self-monitoring comparison of a supine algorithm-equipped wrist nocturnal home blood pressure monitoring device with an upper arm device. J Clin Hypertens. 2021;23:793–801.

    Article  CAS  Google Scholar 

  26. Kario K, Tomitani N, Morimoto T, Kanegae H, Lacy P, Williams B. Relationship between blood pressure repeatedly measured by a wrist-cuff oscillometric wearable blood pressure monitoring device and left ventricular mass index in working hypertensive patients. Hypertens Res. 2022;45:87–96.

    Article  PubMed  Google Scholar 

  27. Asayama K, Fujiwara T, Hoshide S, Ohkubo T, Kario K, Stergiou GS, et al. Nocturnal blood pressure measured by home devices: evidence and perspective for clinical application. J Hypertens. 2019;37:905–16.

    Article  CAS  PubMed  Google Scholar 

  28. Kario K. Nocturnal hypertension: new technology and evidence. Hypertension. 2018;71:997–1009.

    Article  CAS  PubMed  Google Scholar 

  29. Stergiou GS, Nasothimiou EG, Destounis A, Poulidakis E, Evagelou I, Tzamouranis D. Assessment of the diurnal blood pressure profile and detection of non-dippers based on home or ambulatory monitoring. Am J Hypertens. 2012;25:974–8.

    Article  PubMed  Google Scholar 

  30. Kario K, Nishizawa M, Kato M, Ishii H, Uchiyama K, Nagai M, et al. Nighttime home blood pressure lowering effect of esaxerenone in patients with uncontrolled nocturnal hypertension: the EARLY-NH study. Hypertens Res. 2023;46:1782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kario K, Tomitani N, Haimoto K, Narita K, Komi R, Koba S, et al. Concept, study design, and baseline nighttime blood pressure control status of the WISDOM-Night Study using a wrist-type oscillometric home blood pressure monitoring device. Hypertens Res. 2024; https://doi.org/10.1038/s41440-024-01930-1.

  32. Sasaki N, Nagai M, Mizuno H, Kuwabara M, Hoshide S, Kario K. Associations between characteristics of obstructive sleep apnea and nocturnal blood pressure surge. Hypertension. 2018;72:1133–40.

    Article  CAS  PubMed  Google Scholar 

  33. Kario K. New insight of morning blood pressure surge into the triggers of cardiovascular disease-synergistic resonance of blood pressure variability. Am J Hypertens. 2016;29:14–16.

    Article  PubMed  Google Scholar 

  34. Kario K, Tomitani N, Kanegae H, Yasui N, Nishizawa M, Fujiwara T, et al. Development of a new ICT-based multisensor blood pressure monitoring system for use in hemodynamic biomarker-initiated anticipation medicine for cardiovascular disease: the National IMPACT Program Project. Prog Cardiovasc Dis. 2017;60:435–49.

    Article  PubMed  Google Scholar 

  35. Kario K, Tomitani N, Nishizawa M, Harada N, Kanegae H, Hoshide S. Concept, study design, and baseline blood pressure control status of the nationwide prospective HI-JAMP study using multisensor ABPM. Hypertens Res. 2023;46:357–67.

    Article  PubMed  Google Scholar 

  36. Tomitani N, Hoshide S, Kanegae H, Kario K. Daytime actisensitivity predicts nocturnal dipping patterns and morning surge in blood pressure: the Home-Activity ICT-based Japan Ambulatory Blood Pressure Monitoring Prospective study. J Hypertens. 2024;42:2164–72.

    Article  CAS  PubMed  Google Scholar 

  37. Kario K. Essential manual of perfect 24-hour blood pressure management from morning to nocturnal hypertension. 2nd edn. London: Wiley; 2022.

  38. Kario K, Nomura A, Harada N, Okura A, Nakagawa K, Tanigawa T, et al. Efficacy of a digital therapeutics system in the management of essential hypertension: the HERB-DH1 pivotal trial. Eur Heart J. 2021;42:4111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kario K, Harada N, Okura A. The first software as medical device of evidence-based hypertension digital therapeutics for clinical practice. Hypertens Res. 2022;45:1899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kario K, Tomitani N, Harada N, Okura A, Hisaki F, Tanigawa T, et al. Home blood pressure-lowering effect of digital therapeutics in hypertension: impact of body weight and salt intake. Hypertens Res. 2023;46:1181–7.

    Article  PubMed  Google Scholar 

  41. Hisaki F, Aga M, Tomitani N, Okawara Y, Harada N, Kario K. Daily self-reported behavioural efficacy records on hypertension digital therapeutics as digital metrics associated with the reduction in morning home blood pressure: post-hoc analysis of HERB-DH1 trial. Hypertens Res. 2024;47:120–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kario K, Tomitani N, Harada N, Fujiwara T, Hoshide S. Time-space network hypertension in the digital era - update from Jichi Medical University Hypertension Study. Circ J. 2025. https://doi.org/10.1253/circj.CJ-24-0926.

  43. Mukkamala R, Stergiou GS, Avolio AP. Cuffless blood pressure measurement. Annu Rev Biomed Eng. 2022;24:203–30.

    Article  CAS  PubMed  Google Scholar 

  44. Bikia V, Fong T, Climie RE, Bruno RM, Hametner B, Mayer C, et al. Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research. Eur Heart J Digit Health. 2021;2:676–90.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Panula T, Sirkia JP, Wong D, Kaisti M. Advances in non-invasive blood pressure measurement techniques. IEEE Rev Biomed Eng. 2023;16:424–38.

    Article  PubMed  Google Scholar 

  46. Osawa Y, Dohi T. Extraction and evaluation of discriminative indexes of the wearing condition for high-precision blood pressure pulse wave measurement. Micromachines. 2022;13:679.

  47. U.S. Food and Drug Administration. 510(k) Premarket Notification. Available at: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-notification-510k. Accessed 6 Jan 2025.

  48. US Food and Drug Administration. FaceHeart Vitals Software Development Kit (FH vitals SOK) Indication for Use. 2023. https://www.accessdata.fda.gov/cdrh_docs/pdf22/K223622.pdf.

  49. Luo H, Yang D, Barszczyk A, Vempala N, Wei J, Wu SJ, et al. Smartphone-based blood pressure measurement using transdermal optical imaging technology. Circ Cardiovasc Imaging. 2019;12:e008857.

    Article  PubMed  Google Scholar 

  50. Kario K. Evidence and perspectives on the 24-hour management of hypertension: hemodynamic biomarker-initiated ‘anticipation medicine’ for zero cardiovascular event. Prog Cardiovasc Dis. 2016;59:262–81.

    Article  PubMed  Google Scholar 

  51. Ota Y, Kokubo A, Yamashita S, Kario K. Development of small and lightweight beat-by-beat blood pressure monitoring device based on tonometry. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:5455–8.

    PubMed  Google Scholar 

  52. Mukkamala R, Yavarimanesh M, Natarajan K, Hahn JO, Kyriakoulis KG, Avolio AP, et al. Evaluation of the accuracy of cuffless blood pressure measurement devices: challenges and proposals. Hypertension. 2021;78:1161–7.

    Article  CAS  PubMed  Google Scholar 

  53. Louka K, Cox J, Tan I, Avolio AP, O’Rourke MF, Butlin M. An investigation of the individualized, two-point calibration method for cuffless blood pressure estimation using pulse arrival time: an historical perspective using the Casio BP-100 digital watch. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:7493–6.

    PubMed  Google Scholar 

  54. Mukkamala R, Shroff SG, Landry C, Kyriakoulis KG, Avolio AP, Stergiou GS. The Microsoft Research Aurora project: important findings on cuffless blood pressure measurement. Hypertension. 2023;80:534–40.

    Article  CAS  PubMed  Google Scholar 

  55. Tan I, Gnanenthiran SR, Chan J, Kyriakoulis KG, Schlaich MP, Rodgers A, et al. Evaluation of the ability of a commercially available cuffless wearable device to track blood pressure changes. J Hypertens. 2023;41:1003–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joung J, Jung CW, Lee HC, Chae MJ, Kim HS, Park J, et al. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Sci Rep. 2023;13:8605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vybornova A, Polychronopoulou E, Wurzner-Ghajarzadeh A, Fallet S, Sola J, Wuerzner G. Blood pressure from the optical Aktiia Bracelet: a 1-month validation study using an extended ISO81060-2 protocol adapted for a cuffless wrist device. Blood Press Monit. 2021;26:305–11.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Noh SA, Kim HS, Kang SH, Yoon CH, Youn TJ, Chae IH. History and evolution of blood pressure measurement. Clin Hypertens. 2024;30:9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee H, Park S, Kwon H, Cho B, Park JH, Lee HY. Feasibility and effectiveness of a ring-type blood pressure measurement device compared with 24-hour ambulatory blood pressure monitoring device. Korean Circ J. 2024;54:93–104.

    Article  PubMed  Google Scholar 

  60. Nachman D, Gilan A, Goldstein N, Constantini K, Littman R, Eisenkraft A, et al. Twenty-four-hour ambulatory blood pressure measurement using a novel noninvasive, cuffless, wireless device. Am J Hypertens. 2021;34:1171–80.

    PubMed  Google Scholar 

  61. Sayer G, Piper G, Vorovich E, Raikhelkar J, Kim GH, Rodgers D, et al. Continuous monitoring of blood pressure using a wrist-worn cuffless device. Am J Hypertens. 2022;35:407–13.

    Article  PubMed  Google Scholar 

  62. Alpert BS. Can ‘FDA-cleared’ blood pressure devices be trusted? A call to action. Blood Press Monit. 2017;22:179–81.

    Article  PubMed  Google Scholar 

  63. Bianchini E, Mayer CC. Medical device regulation: should we care about it?. Artery Res. 2022;28:55–60.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Arblet Inc. Press release. https://www.arblet.com/news/tTHxzVRppGdJQQQLdsHU.

  65. Kim J, Chang SA, Park SW. First-in-human study for evaluating the accuracy of smart ring based cuffless blood pressure measurement. J Korean Med Sci. 2024;39:e18.

    Article  PubMed  Google Scholar 

  66. Falter M, Scherrenberg M, Driesen K, Pieters Z, Kaihara T, Xu L, et al. Smartwatch-based blood pressure measurement demonstrates insufficient accuracy. Front Cardiovasc Med. 2022;9:958212.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Han M, Lee YR, Park T, Ihm SH, Pyun WB, Burkard T, et al. Feasibility and measurement stability of smartwatch-based cuffless blood pressure monitoring: a real-world prospective observational study. Hypertens Res. 2023;46:922–31.

    Article  PubMed  Google Scholar 

  68. Nachman D, Gepner Y, Goldstein N, Kabakov E, Ishay AB, Littman R, et al. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci Rep. 2020;10:16116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lunardi M, Muhammad F, Shahzad A, Nadeem A, Combe L, Simpkin AJ, et al. Performance of wearable watch-type home blood pressure measurement devices in a real-world clinical sample. Clin Res Cardiol. 2024;113:1393–404.

    CAS  PubMed  Google Scholar 

  70. Yang E, Schutte AE, Stergiou G, Wyss FS, Commodore-Mensah Y, Odili A, et al. Cuffless blood pressure measurement devices-international perspectives on accuracy and clinical use: a narrative review. JAMA Cardiol. 2025;10:624–31.

    Article  PubMed  Google Scholar 

  71. Sharman JE, Ordunez P, Brady T, Parati G, Stergiou G, Whelton PK, et al. The urgency to regulate validation of automated blood pressure measuring devices: a policy statement and call to action from the world hypertension league. J Hum Hypertens. 2023;37:155–9.

    Article  PubMed  Google Scholar 

  72. Whelton PK, Picone DS, Padwal R, Campbell NRC, Drawz P, Rakotz MK, et al. Global proliferation and clinical consequences of non-validated automated BP devices. J Hum Hypertens. 2023;37:115–9.

    Article  PubMed  Google Scholar 

  73. Picone DS, Campbell NRC, Schutte AE, Olsen MH, Ordunez P, Whelton PK, et al. Validation status of blood pressure measuring devices sold globally. JAMA. 2022;327:680–1.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Picone DS, Deshpande RA, Schultz MG, Fonseca R, Campbell NRC, Delles C, et al. Nonvalidated home blood pressure devices dominate the online marketplace in Australia: major implications for cardiovascular risk management. Hypertension. 2020;75:1593–9.

    Article  CAS  PubMed  Google Scholar 

  75. Kuwabara M, Harada K, Hishiki Y, Kario K. Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL. J Clin Hypertens. 2019;21:853–8.

    Article  Google Scholar 

  76. Tomitani N, Hoshide S, Kario K. Could wristwatch-type wearable oscillometric blood pressure monitoring be a third option for out-of-office blood pressure monitoring?. Hypertens Res. 2024;47:1078–80.

    Article  PubMed  Google Scholar 

  77. Zhang W, Zhou YN, Zhou Y, Wang JG. Validation of the watch-type HUAWEI WATCH D oscillometric wrist blood pressure monitor in adult Chinese. Blood Press Monit. 2022;27:353–6.

    Article  CAS  PubMed  Google Scholar 

  78. Kario K, Shimbo D, Tomitani N, Kanegae H, Schwartz JE, Williams B. The first study comparing a wearable watch-type blood pressure monitor with a conventional ambulatory blood pressure monitor on in-office and out-of-office settings. J Clin Hypertens. 2020;22:135–41.

    Article  Google Scholar 

  79. Pan H-Y, Lee,C-K, Liu, T-Y, Lee, G-W, Chen, C-W, Wang, T-D. The role of wearable home blood pressure monitoring in detecting out-of-office control status. Hypertens Res. 2024;47:1033–41.

  80. Yi L, Lv ZH, Hu SY, Liu YQ, Yan JB, Zhang H, et al. Validating the accuracy of a multifunctional smartwatch sphygmomanometer to monitor blood pressure. J Geriatr Cardiol. 2022;19:843–52.

    PubMed  PubMed Central  Google Scholar 

  81. Tomitani N, Kanegae H, Kario K. Self-monitoring of psychological stress-induced blood pressure in daily life using a wearable watch-type oscillometric device in working individuals with hypertension. Hypertens Res. 2022;45:1531–7.

    Article  PubMed  Google Scholar 

  82. Asayama K, Ohkubo T, Hoshide S, Kario K, Ohya Y, Rakugi H, et al. From mercury sphygmomanometer to electric device on blood pressure measurement: correspondence of Minamata Convention on Mercury. Hypertens Res. 2016;39:179–82.

    Article  PubMed  Google Scholar 

  83. Asayama K, Ohkubo T, Imai Y. In-office and out-of-office blood pressure measurement. J Hum Hypertens. 2024;38:477–85.

    Article  PubMed  Google Scholar 

  84. Stergiou GS, Menti A, Asayama K, De La Sierra A, Wang J, Kinoshita H, et al. Accuracy of automated cuff blood pressure monitors in special populations: International Organization for Standardization (ISO) Task Group report and call for research. J Hypertens. 2023;41:811–8.

    Article  CAS  PubMed  Google Scholar 

  85. O’Brien E, Pickering T, Asmar R, Myers M, Parati G, Staessen J, et al. Working Group on Blood Pressure Monitoring of the European Society of Hypertension International Protocol for validation of blood pressure measuring devices in adults. Blood Press Monit. 2002;7:3–17.

    Article  PubMed  Google Scholar 

  86. O’Brien E, Atkins N, Stergiou G, Karpettas N, Parati G, Asmar R, et al. European Society of Hypertension International Protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press Monit. 2010;15:23–38.

    Article  PubMed  Google Scholar 

  87. Association for the Advancement of Medical Instrumentation, American National Standards Institute, International Organization for Standardization. AAMI/ANSI/ISO 81060-2:2013, Non-invasive Sphygmomanometers - Part 2: Clinical Investigation of Automated Measurement Type. 2013. http://my.aami.org/aamiresources/previewfiles/8106002_1306_preview.pdf. Accessed October 30.

  88. Stergiou GS, Alpert B, Mieke S, Asmar R, Atkins N, Eckert S, et al. A Universal Standard for the Validation of Blood Pressure Measuring Devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement. Hypertension. 2018;71:368–74.

    Article  CAS  PubMed  Google Scholar 

  89. International Organization for Standardization. ISO 81060-2:2018, Non-invasive Sphygmomanometers - Part 2: Clinical Investigation of Automated Measurement Type. 2018. https://www.iso.org/standard/73339.html. Accessed October 30.

  90. de Oliveira ESV, de Albuquerque NLS, Dordetto PR, Lamas JLT. Are previously validated blood pressure self-measurement devices accepted under the Universal Standard? A systematic review. J Hypertens. 2024; https://doi.org/10.1097/hjh.0000000000003859.

  91. Standards Committee of the IEEE Engineering in Medicine and Biology Society. IEEE Standard for Wearable, Cuffless Blood Pressure Measuring Devices - Amendment 1. 2019. https://ieeexplore.ieee.org/document/8859685. Accessed October 30.

  92. International Organization for Standardization. ISO 81060-3:2022, Non-invasive sphygmomanometers - Part 3: Clinical investigation of continuous automated measurement type. 2022 https://www.iso.org/standard/71161.html. Accessed October 30.

  93. US Food and Drug Administration. Recognized Consensus Standards: Medical Devices. IEEE Std 1708-2014 Standard for Wearable, Cuffless Blood Pressure Measuring Devices [Including: Amendment 1 (2019)]. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/detail.cfm?standard__identification_no=42370. Accessed October 30.

  94. U.S. Food and Drug Administration. Recognized Consensus Standards: Medical Devices. ISO 81060-3 First edition 2022-12 Non-invasive sphygmomanometers - Part 3: Clinical investigation of continuous automated measurement type. 2022. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/detail.cfm?standard__identification_no=44498. Accessed October 30.

  95. The Japanese Society of Hypertension. Guidelines for blood pressure control using digital technologies. Tokyo: The Japanese Society of Hypertension; 2025 (in Japanese).

  96. Minds Manual Developing Committee. Minds manual for guideline development 2020 Ver. 3.0. Tokyo: Council for Quality Health Care; 2021.

  97. Satoh M, Tatsumi Y, Nakayama S, Shinohara Y, Kawazoe M, Nozato Y, et al. Self-measurement of blood pressure at home using a cuff device for change in blood pressure levels: systematic review and meta-analysis. Hypertens Res. 2024. https://doi.org/10.1038/s41440-024-01981-4.

  98. Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, et al. Nighttime blood pressure measured by home blood pressure monitoring as an independent predictor of cardiovascular events in general practice. Hypertension. 2019;73:1240–8.

    Article  CAS  PubMed  Google Scholar 

  99. Kario K, Wang JG, Chia YC, Wang TD, Li Y, Siddique S, et al. The HOPE Asia network 2022 up-date consensus statement on morning hypertension management. J Clin Hypertens. 2022;24:1112–20.

    Article  Google Scholar 

  100. Kikuya M, Ohkubo T, Asayama K, Metoki H, Obara T, Saito S, et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: the Ohasama study. Hypertension. 2005;45:240–5.

    Article  CAS  PubMed  Google Scholar 

  101. Ohkubo T, Asayama K, Kikuya M, Metoki H, Hoshi H, Hashimoto J, et al. How many times should blood pressure be measured at home for better prediction of stroke risk? Ten-year follow-up results from the Ohasama study. J Hypertens. 2004;22:1099–104.

    Article  CAS  PubMed  Google Scholar 

  102. Ohkubo T, Imai Y, Tsuji I, Nagai K, Kato J, Kikuchi N, et al. Home blood pressure measurement has a stronger predictive power for mortality than does screening blood pressure measurement: a population-based observation in Ohasama, Japan. J Hypertens. 1998;16:971–5.

    Article  CAS  PubMed  Google Scholar 

  103. Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension. 1994;24:793–801.

    Article  CAS  PubMed  Google Scholar 

  104. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69:1045–52.

    Article  CAS  PubMed  Google Scholar 

  105. Katz ME, Mszar R, Grimshaw AA, Gunderson CG, Onuma OK, Lu Y, et al. Digital health interventions for hypertension management in US populations experiencing health disparities: a systematic review and meta-analysis. JAMA Netw Open. 2024;7:e2356070.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Siopis G, Moschonis G, Eweka E, Jung J, Kwasnicka D, Asare BY, et al. Effectiveness, reach, uptake, and feasibility of digital health interventions for adults with hypertension: a systematic review and meta-analysis of randomised controlled trials. Lancet Digit Health. 2023;5:e144–59.

    Article  CAS  PubMed  Google Scholar 

  107. Hu Y, Huerta J, Cordella N, Mishuris RG, Paschalidis IC. Personalized hypertension treatment recommendations by a data-driven model. BMC Med Inf Decis Mak. 2023;23:44.

    Article  Google Scholar 

Download references

Acknowledgements

Kei Asayama gratefully acknowledges Shingo Yamashita and Tsutomu Ichikawa (Omron Healthcare Co., Ltd) for proofreading the history and details of the clinical validation protocols for blood pressure measurement devices. Editorial assistance was provided by Nicola Ryan, independent medical writer, and Noriko Harada, English publication coordinator, funded by Jichi Medical University.

the JSH Working Group on new technology and BP monitoring systems for better management of hypertension

Kazuomi Kario1, Kei Asayama2,3,4, Hisatomi Arima5, Chisa Matsumoto6,7, Naoki Nakagawa8, Akihiro Nomura9,10,11, Michihiro Satoh12,13,14, Keisuke Shinohara15, Naoko Tomitani1, Koichi Yamamoto16, Satoshi Hoshide1

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Kazuomi Kario.

Ethics declarations

Conflict of interest

KK has received research grants from A&D Co., Ltd., Omron Healthcare Co., Ltd., Fukuda Denshi Co., Ltd., and CureApp, Inc. KA received a research grant from Omron Healthcare Co., Ltd. AN received joint research grants from CureApp, Inc. and Bionics Co., Ltd., and consulting fees from Sky Labs, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kario, K., Asayama, K., Arima, H. et al. Digital hypertension – what we need for the high-quality management of hypertension in the new era. Hypertens Res (2025). https://doi.org/10.1038/s41440-025-02307-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-025-02307-8

Keywords

Search

Quick links