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Causes of model dry and warm bias over central
U.S. and impact on climate projections
Yanluan Lin 1, Wenhao Dong 1, Minghua Zhang2,3, Yuanyu Xie1, Wei Xue1,4, Jianbin Huang1 & Yong Luo1

Climate models show a conspicuous summer warm and dry bias over the central United

States. Using results from 19 climate models in the Coupled Model Intercomparison Project

Phase 5 (CMIP5), we report a persistent dependence of warm bias on dry bias with the

precipitation deficit leading the warm bias over this region. The precipitation deficit is

associated with the widespread failure of models in capturing strong rainfall events in

summer over the central U.S. A robust linear relationship between the projected warming and

the present-day warm bias enables us to empirically correct future temperature projections.

By the end of the 21st century under the RCP8.5 scenario, the corrections substantially

narrow the intermodel spread of the projections and reduce the projected temperature by

2.5 K, resulting mainly from the removal of the warm bias. Instead of a sharp decrease, after

this correction the projected precipitation is nearly neutral for all scenarios.
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Well-planned adaptation and mitigation policies require
reliable information on how future climate changes.
However, despite decades of efforts to improve model

performances, systematic biases still exist over highly populated
regions on continental scales in the majority of climate models1–6.
Compelling evidences have been presented that future climate
change is obscured by these modeling uncertainties2, 6 which is
likely to remain so for years to come when results of climate
models are directly used. Identifying the origins of these sys-
tematic biases and determining their potential impacts on future
climate changes are thus immensely important and crucial for
adaptation guidance and policy making. This topic is currently
the subject of intense research in the climate community. For
example, in the most recent round of Coupled Model Inter-
comparison Project Phase 6 (CMIP6), understanding and redu-
cing model systematic biases is one of the three major tasks of the
community effort7.

Among the model biases, one of the most conspicuous is the
warm and dry bias over the central U.S. (CUS) in the summer
(June–August) that has persisted in many generations of regional
and global climate models1, 3, 4. It is believed that the land (soil
moisture)–atmosphere feedback is crucial in causing the model
deficiencies1, 8, 9. In the water-limited CUS region10, 11, soil
moisture deficit can directly impact the partitioning of diurnal
radiative energy between latent and sensible heat fluxes through
local evapotranspiration4. Consequently, it influences the for-
mation of shallow cumulus through planetary boundary layer
interaction3. Soil moisture deficit and the resultant under-
estimated shallow cumulus can lead to an excess of surface
temperature and, meanwhile, reduce the formation of

precipitation. Though these feedbacks have been extensively
discussed, the origins of the model biases are still unclear. More
importantly, a warming and drying future is projected over the
CUS by current models12, which has been widely recognized to
have significant socioeconomic and agriculture impacts13. Given
the large warm and dry bias over this region, our confidence in
the model projections is overshadowed by potential uncertainties.
How the warm and dry bias impact future climate projections
remains unknown and needs to be evaluated. Here we identify
that the warm and dry bias over the CUS in GCMs is likely
triggered by the precipitation deficit arising from the model’s
failure in capturing the large precipitation events, followed by
land–atmosphere feedbacks. We make use of the robust linear
relationship between the projected warming and the present-day
warm bias to correct the future projections of temperature. The
future projected precipitation is empirically corrected on the basis
of the dependence of warm bias on dry bias. Results show that
current GCMs are likely overestimating future warming and
drying over the CUS.

Results
Correspondence of warm bias and dry bias. The CUS surface
climate biases in models have been documented in several pre-
vious studies1. In the historical simulations from 19 models
participating in Phase 5 of the Coupled Model Intercomparison
Project (CMIP5)14, the multi-model mean (MMM) biases of
summertime temperature and precipitation over the CUS during
the reference period 1979–2005 are up to 3° warmer (Fig. 1a), in
which 14 out of 19 of the models agree on the sign of the warm
bias, and up to 43% drier (Fig. 1b), in which 17 out of 19 of the
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Fig. 1 Geographical biases of temperature and precipitation in CMIP5 models. a Multi-model mean of temperature biases and b precipitation biases in
summer during 1979–2005 from 19 CMIP5 historical simulations. Regions where at least two thirds of the models (i.e., 13 out of 19 CMIP5 models) agree
on the sign of the difference are marked with black circles. The blue rectangle (31–52° N, 262–271° E) indicates the central U.S.
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models agree on the sign of the dry bias. The MMM warm and
dry biases are present throughout the year, but they peak in the
summer (Supplementary Table 1).

A scatter plot of temperature bias and precipitation bias clearly
demonstrates a close connection between the two among the
models (Fig. 2a), which can be well fitted by a linear function:

Tbias ¼ 3:28 �Pbiasð Þ � 0:66:

The two biases are strongly related (r2= 0.65; P< 1 × 10−4),
with larger dry bias corresponding to larger warm bias. Such a
significant correlation indicates that the model biases and the
intermodel differences may share the same underlying physical
cause. The MMM area-averaged warm bias is 1.8± 0.9 (± one s.
d.; K) while the MMM dry bias is −0.8± 0.4 (mm d−1) (or −23±
11%) for the reference period from 1979 to 2005. Individual
model performance differs greatly with the ranges of temperature
and precipitation biases spreading over 8 K and 2 mm d−1,
respectively. For instance, one model simulates an area-
averaged warm bias up to 6.6 K and one model simulates an
area-averaged dry bias up to −1.8 mm d−1 or 51% (Supplementary
Table 1).

Precipitation deficit leads warm bias. Examination of the sea-
sonal evolution of the temperature and precipitation biases in
different CMIP5 models indicates precipitation bias preceding
that of temperature. This can be illustrated by selecting two
groups of models—the good and bad, based on their perfor-
mances in historical simulations. The good group includes
models with warm and dry bias much less than the MMM bias
(on average, −0.3 K for temperature and −0.1 mm d−1 for pre-
cipitation), whereas the bad group includes models with biases
larger than the MMM biases (on average, 4.8 K and −1.4 mm d−1,
approximately two times larger than the MMM biases). The

classification is indicated by the circles in Fig. 2a, and each group
has five models. In the good model composite, the peaks of
precipitation deficit and the warm bias occur almost simulta-
neously from July to August (Fig. 2b). By contrast, in the bad
group, the peak of precipitation deficit leads the warm bias by
about 1 month. The precipitation bias reaches its maximum
during June to July, while the temperature bias peaks from July to
August (Fig. 2c).

This time lag is consistent with the cooling effects of
precipitation on temperatures, which can be illustrated by using
observations of surface temperature and precipitation at the SGP
site of the Atmospheric Radiation Measurement (ARM)15

Program. We categorize the daily rainfall into three intensities
and examined the associated changes of surface temperature in
the subsequent 5 days (see “Methods”). Following a heavy
precipitation event, temperature drops quickly and substantially
and then recovers gradually (Supplementary Fig. 1a). The
stronger the rainfall, the larger the magnitude of the temperature
decrease, and the longer duration of the cooling effect. This
suggests that surface temperature following a rain event will be
misrepresented if the model could not simulate the precipitation
accurately, especially for strong rainfall events. Consequently, the
warm bias can stem from a precipitation deficit. After the
precipitation events, temperature ultimately recovers, primarily
related to the increased net downward radiation (Supplementary
Fig. 1b) associated with reduced clouds.

But what is the origin of the precipitation deficit in the models?
Summertime precipitation over the CUS, characterized by a
dominant nocturnal peak, is mostly produced by mesoscale
convective systems1, 16–18. These systems are typically triggered
over the Rocky Mountains on the preceding afternoon18, 19 and
they propagate eastward to tap the moisture source transported
from the Gulf of Mexico by the nocturnal lower-level jet20. Some
of them organize into squall lines. Notoriously, current GCMs
cannot accurately simulate these convective systems due to the
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fact that the convective parameterizations in the current
generation of climate models have not been intended to work
well for these systems21. As a result, these models are largely
incapable of simulating the strong precipitation events in the
CUS, not to mention the right nocturnal timing17, 19. This is
evident in Fig. 3, in which we compare the intensity frequency
distribution of model daily precipitation at the grid point closest
to the SGP site during 1996–2005 with ARM observations. Note
that the ARM precipitation has been area-averaged with a similar
spatial coverage as a model grid box. The models severely
underestimate the rainfall intensity and the occurrence frequency
of heavy rainfall events (here defined as daily precipitation
≥10 mm). Heavy rainfall events contribute to 85% of the total
precipitation in ARM observation, while the percentage simulated
by the models is only 37%± 15%. Consistent with the previously
discussed results of the good and bad models, the good group has
relatively larger probability of heavy rainfall occurrence (55%±
10%) than the bad group (31%± 18%).

Besides the precipitation bias, other deficiencies reported in the
model over this area, such as underestimated shallow cumulus22,
misrepresentation of land soil properties and land–atmosphere
processes23, and possibly misrepresented anvil clouds24, could
also contribute to the warm bias. Once an initial dry bias is
formed, the buildup of the warm bias can occur through a series
of land–atmosphere feedback processes on different time scales: a
deficit in precipitation not only alters evaporative cooling due to
evapotranspiration1, 4, but also indirectly reduces attendant cloud
formation and infiltrated soil moisture3, 9, 10, 25, leading to
increased solar radiation4, and thus the amplification of surface
warming during the following days. The temperature, from an
energetic perspective, is predominantly constrained by the radiant
and turbulent fluxes. These fluxes are influenced by several
environmental factors on different time scales26, including soil
moisture, relative humidity, and cloud cover that could be
strongly impacted by the preceding nocturnal precipitation. To
quantify the impacts of different rainfall associated processes on

temperature, we utilize the comprehensive variables from ARM
best estimate (ARMBE) data archive for detailed analysis. We first
compare the diurnal changes in the surface temperature, cloud
fraction, and surface energy budget terms between precipitating
days and non-precipitating days (Table 1). As shown in the
diurnal evolution (Supplementary Fig. 2), the temperature
contrast between the different composites peaks during daytime
with the value to be 4.8 K (3.4 K if we take the daily average). This
indicates that although the reduced temperature in rainy days
may partly result from the direct rain evaporative cooling
including cold pool associated with the MCS passage, it mainly
results from the processes during the daytime. All the daytime
radiant and turbulent fluxes are smaller during the precipitating
days than those during the non-precipitating days. Clouds play a
crucial role in regulating the energy budget given its strong
interaction with both solar and infrared radiation. Shallow
cumulus, usually occurring during daytime with the growth of
the boundary layer and a gradually lifted cloud base under 3 km,
has a typical fraction of 10–12% over this area. It strongly impacts
the shortwave radiation. The cloud fraction of shallow cumulus is
larger than 15% during precipitating days while it is about 5%
during non-precipitating days (Fig. 4a, b). The total cloud
fraction is about two times larger in precipitating days compared
to non-precipitating days. This leads directly to a reduction in net
shortwave absorption of 107.2Wm−2 with 32.4Wm−2 smaller
net longwave emission. The net reduced radiative heating
(74.8Wm−2) is approximately balanced by the decreased latent
heat (37.9Wm−2) and sensible heat (36.1Wm−2) fluxes (the
residual ground heat flux term is usually small relative to other
components). We further divide precipitating days into three
categories by intensity (Supplementary Table 2). The average
differences of nocturnal precipitation amounts correlate well with
the correspondent daytime temperature changes with r= −0.92
(P< 0.05), indicating that the larger the nocturnal precipitation,
the larger daytime temperature drop. And consistent with Phillips
and Klein11, the net shortwave radiation decreases quasi-linearly
with increasing cloud fraction while a highly positive correlation
between the net surface longwave fluxes with cloud cover is
found. Sensible and latent heat fluxes vary inversely with cloud
fraction (Supplementary Table 2). Switching the averaging
periods does not change the conclusion. As a result, on a diurnal
time scale, the daytime temperature drop in rainy days is
predominately associated with the reduced solar radiation.

During the following days after a rainfall event, however, the
inherent complexities in land–atmosphere interactions might
make these processes more complicated. For instance, soil
moisture is proved to have profound impacts on
land–atmosphere interaction due to its long memory8. It could
impact cloud formation in the aftermath of a precipitation event
even without any rainfall in the following several days. Gradual
drying of the soil after a rainfall event has been found to impact
the land–atmosphere feedback at lags between 4 and 8 days11. To
quantify impacts of rainfall on temperature in the following days,
we contrast the surface energy terms between two composites: a
wet precondition composite requiring five consecutive non-
precipitating days following a rainfall event and a dry precondi-
tion composite requiring five consecutive non-precipitating days
following prior five consecutive non-precipitating days. The prior
five consecutive non-precipitating days in dry precondition
composite are adopted here to minimize the influence of
preceding rainfall events (see “Methods”). This classification
makes the two composites independent of each other and thus
enables us to quantify the rainfall impact on temperature.
Compared with dry precondition, surface temperature after the
rainfall is about 2.8 K lower under wet precondition, which, from
the surface energy budget, is primarily associated with the
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enhanced latent heat fluxes (Supplementary Table 3). Larger
cloud fraction is noted under wet precondition, particularly,
shallow cumulus is more prevalent due to the strong coupling
with soil moisture (Fig. 4c). In contrast, shallow cumulus is rather
limited under dry precondition (Fig. 4d). This indicates that soil
properties and land surface processes after the rainfall infiltration
can indirectly regulate the subsequent low cloud formation. These
features are also evident in the evolution of other variables in the
surface energy budget (Supplementary Fig. 3). Low clouds
gradually decrease to a level (~5%) similar to that in the dry
composite 3 days after a rainfall event. This is likely due to the
subsequent gradual evaporative drying of the soil in the absence
of additional precipitation. One thing worth noting is that despite
the larger cloud fraction under wet precondition, there is more
downward solar radiation near the surface (Supplementary

Table 3). This lies in the seasonal variation of the solar insolation
at the top of the atmosphere. It decreases progressively from June
to September. And wet precondition composite has larger
proportion in June (28.6%) than dry precondition composite
(6.8%). In fact, the scaled surface downward shortwave radiation
increases gradually to that under dry precondition, consistent
with the evolution of cloud fraction (Supplementary Fig. 3e).
These results imply that except the immediate temperature drop on
rainy days, such an impact could last for several days in the aftermath
of a precipitation event due to the land–atmosphere interaction
mediated by soil moisture. Other properties, like the lower
atmosphere’s aerodynamic resistance and humidity saturation deficit,
could complicate the strength of land–atmosphere coupling11, 27.

The above analyses indicate that if a rainfall event, especially a
large episode, is missed in the model, the associated surface
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Table 1 Contrast of precipitation, temperature, cloud fraction, sensible heat, latent heat, and radiation terms between
precipitating days and non-precipitating days

P (mm d−1) T (°C) Cloud fraction (%) Latent heat
(Wm−2)

Sensible heat
(Wm−2)

SW (Wm−2) LW (Wm−2)

3 Types Total Upward & downward Net Upward & downward Net

Precipitating days (288) 22.08 25.43 9.99 (low) 62.96 −176.83 −74.57 396.07 317.72 405.46 −49.95
12.85 (mid) (downward) (downward)

−78.35 −455.41
39.64 (high) (upward) (upward)

Non-precipitating days (945) 0 30.22 6.46 (low) 29.68 −214.72 −110.69 535.88 424.88 406.36 −82.31
7.71 (mid) (downward) (downward)

−111 −488.67
15.14 (high) (upward) (upward)

Precipitating minus non-precipitating 22.08 −4.79 3.53 (low) 33.28 37.89 36.12 −139.81 −107.16 −0.9 32.36
5.14 (mid) (downward) (downward)

32.65 33.26
24.50 (high) (upward) (upward)

The precipitation is averaged between 0000 and 0600 local solar time (LST) while the other variables are averaged between 0600 and 1800 LST. The radiant and turbulent fluxes are positive
downward. The numbers in the parentheses indicated the sample size
Note: The total cloud fraction is not equal to the sum of three different types of cloud fraction due to the overlap
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temperature decrease would be misrepresented through complex
land–atmosphere interactions on different time scales. The initial
dry bias acts as the source of the eventual simulated warm bias,
which is amplified by other model deficiencies, such as under-
estimated shallow cumulus and misrepresented soil moisture
processes, among others. These results provide strong evidence
that one culprit of the systematic warm and dry biases in climate
models is likely a combination of the inability of climate models
in simulating the strong precipitation events caused by the
mesoscale convective systems with other potential model
deficiencies. The CUS happens to be located in a region where
these convective systems occur more frequently than in other
regions16, 17 and where the surface is moisture limited that allows
strong land–atmosphere feedbacks1, 10. The inherent limitation of
current models in capturing these convective systems and the two
ingredients of climate regime over the CUS—the mesoscale
systems and the strong land–atmosphere coupling—can conspire
to create the systematic model biases over the CUS.

Correction for projected temperature. How would the identified
systematic biases impact future projections of climate change in
CUS? We calculate the projected CUS-averaged temperature and
precipitation change over the 20 years at the end of 21st century
in all the three RCP scenarios relative to the 20 years at the end of
20th century in historical simulation (Supplementary Table 4).
The projected temperature and precipitation change vary greatly
among these models with an overall warming and drying. On
average, taking RCP8.5 scenario as an example, model projected
warming is nearly 6 K with a slight drying about 0.2 mm d−1 by
the end of 21st century, indicating a warmer and drier future over
the CUS12. An important question is how these biases may affect
the climate change projections. We start with the temperature
bias since the model temperature changes are relatively consistent
among the models. Given a model with a systematic warm bias,
future warming can be assumed to be the sum of one related to
the radiative forcing and the other induced by the bias itself. To
estimate the impact of model systematic warm bias on future
projections, we regress the projected temperature change with the
identified systematic biases. We note robust linear relationships
between temperature bias and its future projected change in all
three RCP scenarios (Fig. 5), with linear regression coefficient to
be 0.27, 0.31, 0.41 and r2= 0.54, 0.40, and 0.44 (P< 0.01). The
linear least-square fitting lines exclude model 9, which has known
limitations for too large climate sensitivity28 (but is included here
for completeness). This suggests that a model with a large his-
torical warm bias is likely to overestimate the projected warming.
Taking the linear regression as a proof of concept, the intercept at
a zero bias in Fig. 5 represents the best multi-model estimate of
the warming, and the slope describes a scaling factor of the extra
warming that would result from the systematic bias. The
increased slope with increased radiative forcing in Fig. 5
demonstrates that the systematic warm bias in the historical
simulations will be proportionally amplified with the magnitude
of the overall warming. The slope for the three RCPs (0.27, 0.31,
and 0.41) corresponds well with the best multi-model estimate of
warming (1.20, 2.43, and 5.16 K). The dependence of the slope
with temperature is about 4% per degree of warming (r2= 0.999,
P< 0.001). This is probably due to the climate feedbacks with
warming, such as land–atmosphere interaction, water vapor
feedback and cloud feedback3.

Based on the robust relationships between future warming and
the identified present-day warm bias, we are able to make use of
this linearity to empirically correct the potential uncertainties in
the projected warming (see “Methods” for details). As expected,
this procedure leads to decreased warming accompanied by

reduced inter-model spread simultaneously (Fig. 6a). The
temperature correction results in a mean reduction of warming
by 0.7 K and a reduced inter-model spread after the correction,
implying a convergence in their warming projections. The overall
improved model agreement indicates more confidence in the
future projections. In terms of the future projected temperature,
which is more relevant for the public, the model systematic bias
needs to be considered. Taking RCP8.5 scenario as an example,
after both corrections, the future MMM projected temperature
will be 28.0 °C instead of 30.5 °C (Fig. 6b). Without the
corrections, current GCMs are likely overestimating the future
projected temperature over the CUS due to the inherent
systematic bias associated with model physics. Overall, the
corrections not only substantially narrowed the intermodel
differences of the projected future climate, but also altered the
quantitative nature of future changes.

Discussion
As expected, the situation for precipitation change is more
complicated without a distinct dependence on precipitation bias
(correlations are not statistically significant for the three RCPs,
Supplementary Fig. 4) and warrants further investigation. How-
ever, if we assume the correspondence between precipitation bias
and temperature bias (as shown in Fig. 2a) still holds in the
future, we can adjust precipitation changes based on the tem-
perature correction we proposed. There is no reason to think of
this assumption as invalid. After the correction, models projected
a slight wetting instead of drying for all three RCP scenarios
(Supplementary Fig. 5a). The original MMM projection in
RCP8.5 is about 2.5 mm d−1, which is substantially drier than the
historical observation (3.48 mm d−1 averaged over the period
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Fig. 5 Relationship between temperature changes and temperature bias.
The relationships between temperature changes (2080–2099 relative to
1981–2000) and temperature bias for the three RCP scenarios. RCP2.6,
RCP4.5, and RCP8.5 are represented by blue, black, and red symbols. Dash
lines indicate the linear fit to each scenario excluding model 9. Numbers
with circle represent the correspondent models. The regression equations
for the three RCP scenarios are: δT ¼ 0:27Tbias þ 1:20 r2 ¼ 0:54; P<0:01

� �
,

δT ¼ 0:31Tbias þ 2:43 r2 ¼ 0:40; P<0:01
� �

, and δT ¼ 0:41Tbiasþ
5:16 r2 ¼ 0:44; P<0:01

� �
, for RCP2.6, RCP4.5, and RCP8.5 respectively
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1980–1999). After further considering the systematic dry bias, the
adjusted MMM is 3.51 mm d−1 (Supplementary Fig. 5b), indi-
cating a negligible increase of future summer precipitation over
the CUS. We believe that the adjusted projections are more
credible than the default projections considering the large
inherent model systematic bias over this region. This can have
important implications for appropriate decision makings and
adaptation guidance.

To conclude, most climate models suffer from systematic
biases. This work aims to better understand the cause of the
warm/dry bias over the CUS during summertime, which is highly
coherent among the latest GCMs. Our investigation suggests that
the cause for the identified warm/dry bias is likely triggered by the
precipitation deficit arising from the model’s failure in capturing
the large precipitation events, followed by strong and complex
land–atmosphere interactions on different time scales. Other
model deficiencies, such as underestimated shallow cumulus and
misrepresented soil processes, may also initiate or reinforce the
warm and dry bias, but the deficiency in the large precipitation
events in models is at least one of the leading causes of the bias.

Methods
Linear fits. All scatter plots in this study are fitted using linear functions in a least-
square sense to assess the dependence of Y on X, i.e.,

Y ¼ αX þ β:

Where α indicates the linear regression coefficient and β indicates the corre-
sponding intercept.

Cooling effects. The cooling effect on temperature of individual rainfall event is
compared within a week under three different rainfall intensities, i.e., daily rainfall
larger than 10 mm, daily rainfall <10 mm but larger than 1 mm, and daily rainfall
less than 1 mm but larger than 0.1 mm, respectively. The decrease in temperature is
calculated with respect to the day prior to the rainfall event.

Wet-dry precondition composite. The wet precondition composite requires five
consecutive non-precipitating days following a rainfall event (with daily rainfall
≥1 mm). The dry precondition composite requires five consecutive non-
precipitating days following prior five consecutive non-precipitating days. The
latter five consecutive non-precipitating days in each composite are used to cal-
culate the composite average. Prior five consecutive non-precipitation days in dry
precondition are selected to minimize the influence of a preceding rainfall event in
consideration of the soil could impact the land–atmosphere feedback at lags
between 4 and 8 days after a rainfall event11.

Bias correction. The correction for the temperature change is straightforward.
Once we have the scaling factor, we simply subtract the correction term, i.e., model
historical bias times the scaling factor (the slope in Fig. 5), from the model original
projected warming for each model. Correction for precipitation here is based on
the correspondence of temperature bias and precipitation bias identified in Fig. 2a.

For each model, precipitation correction term is calculated from the linear equa-
tion: δðTbiasÞ ¼ �3:28δðPbiasÞ, where δ is the bias correction term for the future
scenario. And similarly, these correction terms are added to the model original
projected change of precipitation to get the corrected precipitation change.

Code availability. All the plots in this study are made using NCAR Command
Language (NCL; http://www.ncl.ucar.edu/). The data sets and scripts generated are
available from the corresponding author upon request.

Data availability. Monthly near-surface air temperature and precipitation data
from 19 models contributing to the CMIP514 have been used (see Table 1 for
details, http://pcmdi9.llnl.gov), including simulations of historical run (1850–2005)
and three Representative Concentration Pathway (RCP) scenarios (2006–2099).
Among them, 15 models also provide daily precipitation. All data have been lin-
early interpolated to a native 1°×1° latitude-longitude grid (~100-km spatial
resolution), and monthly means are computed over a box centered over the central
U.S. (see Fig. 1 for the location of the box). We use the Global Precipitation
Climatology Project (GPCP; http://precip.gsfc.nasa.gov/)29 and the recently com-
piled Climate Research Unit (CRU; http://www.cru.uea.ac.uk/data) Version 3.23
products30 during the period of 1979–2005 for the comparison with the historical
simulations. The ARM (https://www.arm.gov/sites/sgp)15 archive at SGP site (36°
36′ 18.0″ N, 97° 29′ 6.0 ″ W) provides vast variables at hourly frequencies. Vari-
ables, including cloud fraction, surface downward and upward radiant fluxes,
sensible and latent heat fluxes, precipitation, and surface meteorology such as
temperature, and relative humidity from ARMBE data sets during 1996–2010 have
been used in this study.
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