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Generalist species drive microbial dispersion and
evolution
Sira Sriswasdi 1,2, Ching-chia Yang 1 & Wataru Iwasaki 1,3,4

Microbes form fundamental bases of every Earth ecosystem. As their key survival strategies,

some microbes adapt to broad ranges of environments, while others specialize to certain

habitats. While ecological roles and properties of such “generalists” and “specialists” had

been examined in individual ecosystems, general principles that govern their distribution

patterns and evolutionary processes have not been characterized. Here, we thoroughly

identified microbial generalists and specialists across 61 environments via meta-analysis of

community sequencing data sets and reconstructed their evolutionary histories across

diverse microbial groups. This revealed that generalist lineages possess 19-fold higher

speciation rates and significant persistence advantage over specialists. Yet, we also

detected three-fold more frequent generalist-to-specialist transformations than the reverse

transformations. These results support a model of microbial evolution in which generalists

play key roles in introducing new species and maintaining taxonomic diversity.
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M icrobes exist almost everywhere on Earth, forming
fundamental bases of every ecosystem1. The large
population size and small size of microbes enable them

to move across and colonize diverse environments2–5. In response
to constant movements and competitions against invading
species, by becoming generalists (i.e., those that are able to adapt
to diverse habitats) or specialists (i.e., those that adapted to
specific habitats), microbes improve their survivability6,7.
Previous works have shown that these generalist and specialist
microbes differently impact the dynamics of microbial commu-
nity structures8,9. However, the mechanisms behind the evolution
and dispersion of these microbes are not well understood,
especially given that the evolution of specialization in macro-
organisms has been investigated in many phylogenetic
groups10,11. Furthermore, while recent advances in high-
throughput sequencing have enabled in-depth analyses of
individual microbial ecosystems12, little is known about the
general, global principles that govern the dynamics of microbial
communities and gene pools13,14.

In this study, we performed a large-scale meta-analysis
of community sequencing data sets that sheds light on the
distribution and evolutionary history of generalist and specialist
microbes. Generalist microbes were found to have significantly
higher speciation rates and persistence advantages over
their specialist counterparts. Rapid generalist-to-specialist trans-
formation rates and a positive correlation between the presence of
generalists and increased habitat diversity of their close specialist
relatives suggest that descendants of generalist lineages
evolve into new specialist species across diverse environments.
Collectively, our findings highlight key evolutionary and
ecological roles of generalist species.

Results
Meta-analysis of community sequencing data sets. To
characterize generalist and specialist microbes on a global scale,
and to elucidate their impacts on microbial community and
dispersion, we applied a maximum likelihood binary-state model

approach15,16 to 16S ribosomal RNA (rRNA) sequence data sets
from 61 environments, ranging from host-associated environ-
ments such as human respiratory tract, human gut, and insects to
marine, soil, freshwater, and bioreactor (Supplementary Data 1).
Community sequencing data were collected using MetaMe-
taDB17, a database for meta-analysis of metagenomic and 16S
rRNA sequence data sets, which identified ~2.7 million 16S rRNA
fragments. “Singleton” fragments that had no similar sequence
(≥98% sequence identity) were discarded, as they may result from
erroneous sequencing or prediction. The remaining fragments
were mapped to non-redundant full-length 16S rRNA sequences
in the SILVA database18 (Methods; Fig. 1a; Supplementary
Table 1), whereas fragments that could not be mapped were
removed from further analyses. When a 16S rRNA fragment
could be mapped to multiple full-length sequences with high
confidence, that fragment was assigned to the candidate with
the most fragment hits in accordance with the Occam’s razor
principle. Then, each full-length sequence was assigned
to environments that were supported by at least 10 mapped
fragments (Fig. 1b; Supplementary Data 2). Read counts of the
predicted 16S rRNA fragments were also combined together to
estimate the abundance of each mapped full-length sequence
(Methods).

To improve the robustness of environment assignment and to
alleviate redundancies in the 61 environment annotations in the
original database, we grouped environments that contain similar
profiles of the assigned full-length 16S rRNA sequences (Fig. 1c).
Specifically, we defined an environmental similarity score
between two environments as the geometric mean of the
proportions of the assigned 16S rRNA sequences in one
environment that had close relatives (≥98% sequence identity)
in the other (Methods). To facilitate inference of congruent
habitat associations and life styles, we selected the 98% threshold
that is more stringent than the more commonly used threshold
of 97% for defining microbial species19,20. Agglomerative
hierarchical clustering guided by this score revealed 11 major
environment clusters that remained quite consistent upon
changing the sequence identity threshold for calculating the
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Fig. 1 Clustering similar environments based on 16S rRNA sequence profiles. a Predicted 16S rRNA fragments from community sequencing data sets were
mapped to full-length 16S rRNA sequences from SILVA database at 98% identity threshold. Redundant full-length sequences were then clustered at 98%
identity threshold. b Full-length 16S rRNA sequences were assigned to environments based on mapped fragments. c Environments were clustered based on
the similarity in their full-length 16S rRNA sequence profiles (Methods). Eleven non-singleton clusters were identified
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similarity score and when the 16S rRNA fragments were directly
analyzed instead of the full-length sequences (Supplementary
Fig. 1). Each of the 11 environment clusters contained related
environments (e.g., soil and rhizosphere in one cluster and
human lung, nasal pharyngeal, and oral in another cluster) with
similar species abundance distributions (Supplementary Fig. 2).
These findings reflect the observations that microbes are not
neutrally distributed on such a broad scale of environment
definition21.

Distribution of generalist and specialist microbes. Next,
generalist and specialist species were identified from the
species–environment association pattern. Comparison of the
distribution of the number of environment clusters associated
with each species to the expectation derived from 100,000
permutations (Methods) showed significant enrichment of
species that belong to exactly one cluster and of species that
belong to five or more clusters (Fig. 2a, permutation test p-values
< 1e−5). This led us to classify 9464 species that belong to one
cluster as specialists and 759 species that belong to five or more
clusters as generalists (Supplementary Data 3). Another dis-
tinctive discovery concerns the rate of new habitat acquisition, as
approximated by the ratios between numbers of species that
belong to N + 1 clusters and number of species that belong to N
clusters. This rate monotonically decreases with increasing
number of environments in the expected distribution (Fig. 2b),
i.e., the null hypothesis of random association between species
and environments predicts that it is progressively unlikely for
generalist species to acquire additional habitat. However, the
trend is reversed in the observed distribution (Fig. 2b, Spearman
rank correlation= 0.7667 with permutation test p-value= 0.012
for N> 1), pointing to increased capability of generalist species to
acquire more habitats. Analysis of genomes and predicted pro-
teomes downloaded from NCBI’s reference genome database
revealed that generalists tend to possess larger genomes and
proteomes (sign test p-values for the log ratios of generalist-to-
specialist genome and proteome sizes= 1.94e−11 and 2.13e−4,
respectively, Methods). This is in good agreement with the
expectation that generalists require larger gene and protein
repertoires to survive in multiple environment conditions. On the
other hand, we did not find other genomic characteristics that
significantly differ between generalists and specialists (e.g., for
genomic G + C content, the sign test p-value is 0.4582).

From a taxonomic perspective, it is notable that distributions of
numbers of habitat per species differ sharply at such broad scale
as major bacterial phyla (Supplementary Table 2). In particular,
Proteobacteria and Bacteroidetes show contrasting trends by
having significantly more generalists and specialists, respectively.
This pattern coincides with the fact that most members of
Proteobacteria possess complete flagellar system (16.48 out of 21
core flagellar genes22 on average, Methods), while few members
of Bacteroidetes do (1.69 out of 21 core flagellar genes on
average). Such widespread flagellar motility among Proteobac-
teria, in conjunction with their metabolic versatility23, may
contribute to their high number of habitats. Nonetheless,
enrichments of generalists or specialists across microbial phyla
are likely to be driven by a number of different molecular bases.
At lower taxonomic levels, groups that were most significantly
biased toward generalists were genus Mycobacterium and family
Streptococcaceae, both of which were known to contain free-
living, widespread species as well as obligate pathogens24. On the
other hand, groups most biased toward specialists consisted
primarily of obligate anaerobes such as the class Clostridia, family
Lachnospiraceae, genus Christensenella, and genus Prevotella25,26.

Evolutionary characteristics of generalists and specialists. To
investigate whether being a generalist or specialist affects the
evolutionary characteristics of a species, we defined being a
generalist and specialist as distinct evolutionary states according
to the Binary-State Speciation and Extinction (BiSSE) model15

(Fig. 3a). The generalist and specialist species were mapped
(≥98% sequence identity) to the archaeal-bacterial phylogenetic
tree obtained from the SILVA Living Tree Project (LTP)27,28.
Then, the subtree consisting of 1255 mapped leaf nodes
(710 generalists and 545 specialists, Supplementary Data 4)
was linearized using a divide-and-conquer approach (Methods,
Supplementary Fig. 3). Finally, the evolutionary rate parameters
of the BiSSE model (i.e., speciation, extinction, and state-
transition rates for both states) were estimated with a
maximum likelihood method16. As the algorithm for solving the
BiSSE model heavily relies on given phylogeny, we repeated the
rate estimation under various linearized phylogenetic trees
obtained by either altering branch lengths or randomly removing
leaves and confirmed that the estimated rates are robust
(Supplementary Fig. 3). This revealed that generalists possess
19-fold higher speciation rates than specialists do (Fig. 3b;
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Supplementary Fig. 3). Because a microbe’s proteome can be
substantially affected by environmental conditions29, the elevated
speciation rates could be due to generalists’ exposure to diverse
environments each requiring a distinct gene set for survival and
each exerting different evolutionary pressures. Specialists, by
similar arguments, may exhibit reduced speciation rates due to
their limited ability to spread into new habitats30.

Despite our findings that being a generalist confers evolu-
tionary advantages, with significant and positive expansion rates
(Fig. 3b, the difference between speciation and extinction rates),
the number of detected specialists still far outnumbers that of
generalists (e.g., here and ref. 31). This is likely due to rapid
transformation of generalists into specialists, which is three-fold
more frequent than the reverse transitions (Fig. 3c; Supplemen-
tary Fig. 3). The imbalance in transition rates might result from
the evolutionary pressures that drive descendants of a generalist
lineage to become more efficient in their new habitats, as well as
to lose extraneous genes from their genomes32,33—essentially
turning them into specialist species. As a consequence of such
reductive evolution, most of the older species already became
specialists and present-day generalists consist of significantly
younger species (Mann–Whitney U-test p-value for the lengths of
phylogenetic branches directly leading to generalist and specialist
species= 9.87e−52). These findings suggest that being a generalist
is a relatively transient evolutionary state and most species will
eventually turn into specialists.

Robustness of estimated evolutionary characteristics. To
evaluate the robustness of our findings, we first re-performed all
analyses using a less stringent sequence identity threshold of 95%.
No major change in the results was observed (Supplementary
Fig. 1 for the clustering of environments, and Supplementary
Fig. 4 for the estimation of evolutionary rates). At both 98
and 95% sequence identity thresholds, generalists consistently
exhibited more than 10-fold higher speciation rates than
specialists did. The net expansion rates (the difference between
speciation and extinction rates) were positive for generalists
and negative for specialists. The generalist-to-specialist transfor-
mation rates were significantly higher (three-fold or more) than
the reverse transitions. This indicated that these findings are not
sensitive to the definition of microbial species and that similar
findings may be found at broader taxonomic classification levels.
Next, we investigated two possible scenarios that could affect the
classification of generalists and specialists (Supplementary Fig. 5a,
b). In the first scenario, a rare species may be detected in only one
environment simply because it is rare and erroneously classified
as a specialist. In the second scenario, species that are present
in multiple environments but are abundant in only one envir-
onment may be classified as a generalist even though it resembles
a specialist. That is, classified specialists with the lowest
abundances and classified generalists whose abundance profiles
have the lowest Shannon entropy indices are expected to be the
most susceptible to misclassification. However, minor impacts of
the removal of these species on the estimated evolutionary
characteristics (Supplementary Fig. 5c) suggested that the classi-
fication of generalists and specialists based on the numbers of
environment clusters was robust to misclassification.

We further examined an alternative method for classifying
generalists and specialists that is based on comparing the numbers
of environment clusters in which a species was found against the
expectation given that species’ occurrence pattern, thereby
reducing the impact of species abundance on classification
(Methods, Supplementary Fig. 6a). To compare to our original
classification, the thresholds on the difference between the
observed and expected numbers of environment clusters were
selected so that both methods produce the same numbers of
classified generalists and specialists (Supplementary Fig. 6b).
Although the overlaps were modest (740 out of 1603 mapped
leaves at the mapped-phylogenetic-leaf level), estimation of the
evolutionary characteristics revealed that all key findings—namely,
10-fold higher speciation rates for generalists than specialists,
positive net expansion rates for generalists and negative for
specialists, and significantly higher generalist-to-specialist transi-
tion rates than the reverse transition—remained consistent across
the two classification schemes (Supplementary Fig. 6c).

Discussion
The evolutionary characteristics of generalists and specialists
suggest a model of microbial dispersion driven by the ability of
generalist species to expand across ecosystems (Fig. 4a–f). Once a
generalist species emerges (Fig. 4b), its descendants then spread
into new environments (Fig. 4c), experience distinct evolutionary
pressure, and evolve into new species (Fig. 4d). Eventually, these
species specialize to their new habitats (Fig. 4e). Each round of
such generalist–specialist evolutionary cycle would introduce a
larger number of new specialist species across diverse environ-
ments that can shift the microbial community structure (Fig. 4f).
In fact, we found that when a microbial clade contains high
frequency of generalist species, it also tends to contain specialist
species that belong to diverse environments (Fig. 4g, Spearman
correlation between the frequency of generalist and normalized
entropy of habitat diversity of specialists= 0.4281 with
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permutation test p-value= 0.015). It should be noted that our
model is in good agreement with the theory of adaptive radia-
tion34,35 in that it highlights both the early burst of speciations in
the ancestral generalist lineage and the transition to low specia-
tion rates and high extinction rates in specialist descendants.
Furthermore, the generalist–specialist evolutionary cycle implies
that microbial diversity is maintained more through continual
replenishments of specialists from generalist lineages than
through continued persistence of specialist lineages35.

Interestingly, past studies of generalist and specialist macro-
organisms turned up inconsistent conclusions regarding the
evolutionary consequences of specialization10,11. Depending on
the phylogenetic groups being studied, generalists could be shown
to possess higher or lower speciation rates than specialists do. In
one case, a change in analysis methodology even reversed the
original finding that generalists evolve from specialists11,36. While
small numbers of analyzed species or strong biases toward
generalists or specialists could be a reason behind the
discrepancy37, our data set does not fall into these scenarios.
Another key complication in these studies lies in how they define
generalists and specialists, since a species can be considered a
specialist in one aspect while being a generalist in another10.
Differences in the population dynamics and reproductive systems
between micro- and macroorganisms could also lead to divergent
evolutionary outcomes of generalization and specialization. For
example, for sexually reproduced macroorganisms, high
dispersibility of generalists may end up suppressing their
speciation rates by increasing gene flow and reducing the like-
lihood of reproductive isolation38. Finally, it is notable that at
least one evolutionary consequence of specialization is clear
across micro- and macroorganisms. With smaller habitat ranges
and greater reliance on specific resources, specialist species have
higher chances to become extinct10,38.

In summary, integrative analysis of microbial habitat profile
and evolutionary history permitted identification of generalist
and specialist microbes across the tree of life and characterization

of their evolutionary impacts. Our results complement other
studies of microbial dispersion and evolution of specialization by
presenting a general model of how microbial species flow across
environments and highlighting generalist species as key players in
this process. Furthermore, our approach exemplifies the notion
that current microbial community structures are shaped by not
only contemporary factors but also historical and evolutionary
events39. We anticipate that the generalist-driven evolutionary
cycle may represent a fundamental force that underlies the
highly dynamic microbial gene pools14 and the high mobility of
antibiotic resistance and viral genes40.

Methods
Microbial community sequencing data sets. Microbial community sequencing
data sets were downloaded from the DDBJ Sequence Read Archive (DRA)17 in
March 2014 (Supplementary Data 1). Reads were processed step-by-step as
described below. First, TrimmingReads.pl script of NGS QC Toolkit41 was used to
trim low-quality reads with Phred-equivalent quality scores of below 20. Cutadapt
version 1.142 was then used to remove adapter sequences. Ambiguous reads and
homopolymers consisting of five or more base pairs (bp) were removed using
AmbiguityFiltering.pl and HomopolymerTrimming.pl scripts of NGS QC Toolkit,
respectively. CD-HIT-45443 was used to remove possible artificial duplicates at a
99% threshold. At each step, short sequences (<200 bp) were removed. Finally,
16S rRNA sequences were predicted using SortMeRNA version 1.844 with the
non-redundant SILVA database18 as reference. UCHIME45 was used to remove
possible chimera sequences. In total, our processed data set contained 2,737,833
predicted 16S rRNA sequence fragments with an average length of 362 bp. The list
of processed 16S rRNA sequences can be found on MetaMetaDB’s server46 at
http://mmdb.aori.u-tokyo.ac.jp/archive.html.

Mapping of 16S rRNA fragments to full-length sequences. To associate
predicted 16S rRNA sequence fragments to full-length sequences, a two-step
BLASTN was performed using BLAST+ version 2.2.26+47. First, an all-against-all
BLASTN of the predicted sequences was performed to cluster sequences with high
identity (identity ≥ 98%, coverage≥ 70%, and E-value ≤ 1e−5). This produced
132,927 clusters that contain multiple sequences with an average of 7–8 sequences
per cluster. Singleton clusters, which accounted for ~60% of the fragments in the
data set, were removed from consideration as they may represent erroneous
sequences or predictions. For each cluster, the sequence with the highest average
identity to the other members of the same cluster was chosen as the representative
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sequence. Second, the representative sequences were searched against the
non-redundant SILVA database to group sequences that correspond to different
parts of the same full-length 16S rRNA sequence (identity ≥ 98%, coverage ≥ 70%,
and E-value ≤ 1e−5). When a predicted sequence could be matched to multiple
full-length 16S rRNA sequences, we applied the Occum’s Razor principle and
assigned that predicted sequence to the full-length sequence that contained the
most BLASTN hits. Approximately 40% of the predicted fragment clusters were
mapped to some full-length sequences (Supplementary Table 2). To remove
redundant SILVA entries, we clustered the full-length sequences and merged their
mapped fragments (identity ≥ 98%, coverage ≥ 70%, and E-value ≤ 1e−5). Finally,
we assigned each full-length sequence cluster to environments that was supported
by at least 10 mapped fragments. This yielded a species–environment association
table consisting of 21,345 full-length sequence clusters (Supplementary Table 3).

16S rRNA abundance estimation. We estimated the abundance of species
associated with each non-redundant full-length 16S rRNA sequence across all
environments using the sequence read counts of predicted 16S rRNA fragments.
Due to the fact that our data set consists of a large number of sequencing
experiments submitted by different researchers and performed on different
platforms, we opted to estimate species abundance on a relative scale rather than an
absolute scale. Specifically, for each full-length sequence, its relative abundance in
an environment is defined as the fraction of the total 16S rRNA fragment read of
that environment that was mapped to that full-length sequence. This relative
abundance was used to sort classified specialists to identify rare species and for the
calculation of Shannon entropy for classified generalists. It should be noted that the
total 16S rRNA fragment read (i.e., the denominator of the fraction) includes
singleton fragments and fragments that could not be mapped to any SILVA entry
since they are also a part of the 16S rRNA content of that environment.

Then, to account for the fact that different environments have different
proportions of unmapped fragments and different numbers of detected species,
both of which would influence the range of estimated relative abundances, we
converted relative abundances into rank-based percentile scores. In each
environment, all member species were sorted by their relative abundances and
assigned “abundance percentile scores” based on their percentile ranks. This
enabled fair comparisons of species abundances across multiple environments
(Supplementary Fig. 2)

Environmental similarity score and clustering. Given two environments E1 and
E2 and a sequence identity threshold T (T= 98% for the main results), we defined a
similarity score between E1 and E2 as the geometric mean of (i) the proportion of
16S rRNA sequences in E1 that was similar to any sequence in E2 at the identity
threshold T and (ii) the proportion of 16S rRNA sequences in E2 that was similar
to any sequence in E1 at the identity threshold T (Fig. 1b). Hierarchical cluster-
ing of the 61 environments was then performed using the dissimilarity score, or
1—similarity score, and the Weighted Pair Group Method with Arithmetic Mean
(WPGMA) method. This identified 11 non-singleton environment clusters that
are quite consistent upon changing the sequence identity threshold or replacing
full-length sequences with predicted fragments (Fig. 1c; Supplementary Fig. 1).
For each pair of environments, we also calculated the Spearman rank correlation
between the abundance profiles of species that were detected in both environments.
We found that the species abundance profiles of environments within the same
cluster are significantly more positively correlated than those of environments from
different cluster (Supplementary Fig. 2, Mann–Whitney U-test p-value= 8.9e−4).

Enrichment analysis of habitat specialists and generalists. To identify
generalists and specialists, we first computed the enrichment of the number of full-
length 16S rRNA sequence clusters (regarded as species from here on) that were
assigned to a particular number of environment clusters. We performed 100,000
random permutations of the species–environment association map, in such a way
that the cluster sizes are always preserved, to obtain the background distribution.
This revealed that there are enrichments of species that belong to a single cluster
and those that belong to five or more clusters (Fig. 2a). Therefore, we classified
species that belong to a single cluster as “specialists” and those that belong to five or
more clusters as “generalists”. In total, there were 759 generalist species and
9464 specialist species (Supplementary Table 4).

Archaeal-bacterial phylogenetic tree. The pre-constructed phylogenetic tree
of microbial small subunit (SSU) rRNA sequences was downloaded from SILVA’s
All-Species Living Tree project27,28 (LTP, release 123). The generalist and specialist
species identified above were mapped to this tree using BLASTN (identity ≥ 98%,
coverage ≥ 70%, and E-value ≤ 1e−5). Reciprocal best hits were assigned first; the
other hits were then assigned in the order from high- to low-sequence identity.
This let us label 710 leaves of the LTP tree as generalist and 545 leaves as specialists
(Supplementary Table 5).

To prepare for subsequent analyses of evolutionary characteristics of generalists
and specialists, we extracted a subtree of LTP tree consisting 1255 mapped leaves
and linearized it. As this tree was large and contained distantly related species, we
applied a divide-and-conquer strategy to facilitate the linearization. First, the tree
was split into partitions based on the distribution of generalists and specialists.

Then, individual partitions were linearized separately and joined back together
according to the topology of the LTP tree (Supplementary Fig. 3). The partition
algorithm was as follows: starting from the root of the tree and traversing down the
tree in breadth-first order, at each internal node, the proportions of generalist
species in its left and right child subtrees were calculated. If the two proportions
differ by more than 0.1, then the tree was split at this internal node. To prevent
erroneous partitioning due to the discreteness of proportion estimates, we stopped
splitting the tree if it would create a partition with less than six species and later
discarded small partitions that contained <10 species each. This resulted in 32
partitions covering 622 species (399 generalists and 223 specialists, the “Partition
ID” column of Supplementary Table 5).

For each partition, 16S rRNA sequences of all involved species were aligned to
the reference alignment of every non-redundant SSU rRNA sequence (SILVA
release 123, version 12/07/15) using SILVA Incremental Aligner (SINA) version
1.2.1148. The linearized phylogenetic tree was then reconstructed using the baseml
module of PAML version 4.849 with molecular clock option. The input tree
topology was fixed according to the LTP tree. Generalized time-reversible (GTR,
also known as REV in PAML) substitution model was used. Then, all linearized
trees were joined according to the topology of the LTP tree in such a way that all
ancestral branches (those not directly connected to the linearized trees) were set to
length α; the lengths of branches directly connected to the linearized trees were set
so that all root-to-leave distances are identical (Supplementary Fig. 3). Because the
root-to-leaf distances of the linearized trees range from 0.021 to 0.419, we tried
different values of the ancestral branch length α, ranging from 0.2 to 5.0, to
investigate its impact on subsequent analyses (Supplementary Fig. 3).

Binary-state speciation and extinction model analysis. To determine the
evolutionary characteristics of generalists and specialists, we utilized a binary-state
model that includes two different speciation, extinction, and state-transition rates
(Fig. 3a). The model was termed Binary-State Speciation and Extinction (BiSSE)15

and implemented in an R package16. For each input linearized phylogenetic tree,
diversitree was run twice: once to determine a starting point for the simulation, and
once more to obtain the maximum likelihood estimate for the rate parameters.
During the first round, the two states were constrained to have an identical spe-
ciation rate and an identical extinction rate. This was simply to improve upon the
starting point provided by the package’s starting.point.bisse function. The second
round was run with all rates allowed to be different. Afterward, 1000-step Markov
Chain Monte Carlo (MCMC) simulations were performed using the package’s
mcmc function to assess the stability of the final estimation. Furthermore,
because the implementation of BiSSE model in diversitree assumes that the
input phylogenetic tree contains all surviving species, which is not the case here,
we examined the impacts of such missing information as well. We generated
100 subsamples of the linearized phylogenetic tree at 0.8 sampling rate and
analyzed them with diversitree. This revealed that the estimated rates are quite
consistent (Supplementary Fig. 3).

Genome statistics. Genome and proteome sequences were extracted from NCBI’s
reference genome database in July 2016. The list of all bacterial genomes was
obtained from NCBI’s Reference Sequence collection50. To map between SILVA
entries and NCBI’s genome assembly accession numbers, we extracted species
name from SILVA database (Supplementary Table 4) and matched them to
organism names in NCBI’s assembly summary file (ftp.ncbi.nlm.nih.gov/genomes/
refseq/bacteria/assembly_summary.txt). Only exact matches were considered. We
also made sure to exclude uninformative terms such as “uncultured archaeon”
from consideration. When multiple genome assemblies of the same organism were
present, all assemblies were downloaded. Predicted gene and protein sequences
were also downloaded from NCBI when they were present. Ambiguous base calls
that were neither A, T, C, nor G were excluded from all calculations of genome
sizes and G + C content. Proteome size was calculated as the total number of
amino-acid residues of the predicted proteome (downloaded from NCBI). For
species with multiple genome assemblies, the average statistics were taken. To
control for phylogenetic effects when comparing genome statistics across generalist
and specialist species, we only considered pairs of generalist and specialist whose
16S rRNA sequences were at least 85% identical. Specifically, for each generalist, we
searched for specialists using an 85% identity threshold on 16S rRNA sequences. In
total, 818 such generalist–specialist pairs were found between 225 generalists and
113 specialists. For each pair, we calculated the ratios of genome size, proteome
size, and G + C contents between the generalist and the specialist. This revealed
that the genome and proteome sizes are significantly larger in generalists (sign test
p-values of the log of ratios= 1.94e−11 and 2.13e−4, respectively) whereas the
G + C content does not show any significant difference (sign test p-value of the
log of ratios= 0.4582).

Characteristics of the linearized phylogenetic tree. As a confirmation for the
modeling results, we examined the linearized phylogenetic tree directly. To evaluate
the age of currently existing generalist and specialist species, the lengths of
phylogenetic tree branches directly leading to these species were compared. This
revealed that generalists are significantly younger (Mann–Whitney U-test p-value
= 9.87e−52, three-fold difference in average branch lengths). Also, for each parti-
tion of the tree defined in the section “linearizing phylogenetic tree”, we calculated
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the proportion of generalist species and the habitat distribution of specialist species
along with its normalized entropy. This revealed that the proportion of generalist
positively and significantly correlates with the normalized entropy (Fig. 4g,
Spearman correlation= 0.4281 with permutation test p-value= 0.015). Permuta-
tion tests were carried out by randomly shuffling the original data 10,000 times. For
the calculation of specialist’s habitat profile and its normalized entropy, only
partitions containing multiple specialist species were considered (26 out of 32
partitions).

Detection of flagellar genes. The list of Proteobacteria and Bacteroidetes species
were extracted from SILVA non-redundant database (1248 Bacteroidetes and 4413
Proteobacteria). Their annotated proteomes were then downloaded from NCBI
(480 Bacteroidetes and 1634 Proteobacteria). When proteomes for multiple strains
of the same species are present, only the first entry as listed in NCBI’s bacterial
assembly summary (ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly
summary.txt, January 2017 version) was picked. The amino-acid sequences of 21
core flagellar proteins22 were extracted from Escherichia coli genome. BLASTP was
performed with the core proteins as query and each of the 2114 proteomes as
database. A flagellar protein is considered present in a proteome if there was at least
one BLASTP hit with E-value < 1e−5.

Alternative classification. Each species’ occurrence profile was randomly
permuted 10,000 times and the corresponding numbers of environment clusters
were calculated (Supplementary Fig. 6a). The difference between the observed and
expected numbers of environment clusters over all permutations was then used as
the criterion for classifying species as generalists (observed number is larger) or
specialists (expected number is larger). To compare this permutation-based
method to the number-of-clusters-based method described above, we set thresh-
olds on the difference between the observed and expected numbers of environment
clusters so that the same numbers of classified generalists and specialists were
obtained (Supplementary Fig. 6b). Then, evolutionary characteristics for the
generalists and specialists classified with this alternative method were estimated
(Supplementary Fig. 6c).

Data availability. Predicted 16S rRNA sequences have been deposited in
MetaMetaDB’s server46 at the University of Tokyo (http://mmdb.aori.u-tokyo.ac.
jp/archive.html). The authors declare that all other data supporting the findings of
this study are available in the manuscript and its supplementary files or are
available from the corresponding author upon request.
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