Fig. 2 | Nature Communications

Fig. 2

From: Neurons along the auditory pathway exhibit a hierarchical organization of prediction error

Fig. 2

Prediction error in representative examples of neuronal responses in anaesthetized rat. a Examples of lemniscal neuronal responses in each recorded auditory station (columns). The first row contains schematics of the lemniscal subdivisions (green) within each nuclei. The second row shows the frequency-response area (representation of neuronal sensitivity to different frequency-intensity combinations) of representative lemniscal neurons from each nucleus. Ten grey dots within each frequency-response area represent the ten tones (fi) selected to build the experimental sequences (see Methods). The third row displays the measured responses of the particular neuron to each fi tone (baseline-corrected spike counts, averaged within 0–180 ms after tone onset) for all conditions tested. Note that measured conditions tend to overlap in the subcortical stations (ICL and MGBL), and only start differentiating from each other once auditory information reaches the cortex (ACL). The fourth row contains sample peri-stimulus histograms comparing the neuronal responses to each condition tested for an indicated fi tone. A thick horizontal line represents stimulus duration. A small inset within the upper right corner of each panel features the isolated spike (mean ± SEM) of that single neuron. b Examples of non-lemniscal neuronal responses in each recorded auditory nuclei, organized as in a. The first row highlights non-lemniscal divisions in purple. In the second row, note frequency-response areas tend to be more broadly tuned, as compared to lemniscal neurons. In the third row, responses to deviant conditions tend to relatively increase and distance themselves from their corresponding controls as information ascends in the auditory pathway. Also note that responses to last standards are feeble or even completely missing across all non-lemniscal stations (ICNL, MGBNL and ACNL). In the last row, the strong influence of the experimental condition over the neuronal response to the same tone can be clearly appreciated in the three nuclei

Back to article page