Fig. 5 | Nature Communications

Fig. 5

From: C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity

Fig. 5

The C9ORF72 mutation is associated with increased expression of GluA1 AMPAR subunits. a Relative mRNA expression of AMPAR subunits in all cultures examined at week 3 after differentiation (data represented as mean ± s.e.m., Con-1, N = 5; Con-2, N = 6; C9-1, N = 8; C9-1Δ, N = 4; C9-2, N = 7; C9-2Δ, N = 6; C9-3, N = 7; C9-3Δ, N = 6). Statistical comparisons; one-way ANOVA with uncorrected Fisher’s LSD. Significant p-values for GluA1 C9-1 vs. Con-1: 0.0039, C9-2 vs. Con-1: 0.0360, C9-3 vs. Con-1: 0.0503, C9-1 vs. Con-2: 0.0130, C9-2 vs. Con-2: 0.0163, C9-3 vs. Con-2: 0.0385. p-values for GluA3 C9-1 vs. Con-1: 0.0218, C9-3 vs. Con-1: 0.0017, C9-1 vs. Con-2: 0.0256, C9-3 vs. Con-2: 0.0024. b Representative immunoblot showing elevated levels of GluA1 in C9ORF72 mutant MNs. c Quantification of GluA1 protein level in C9ORF72 mutant MNs (data represented as mean ± s.e.m., Con-1, N = 3; Con-2, N = 5; C9-1, N = 6; C9-1Δ, N = 3; C9-2, N = 3; C9-2Δ, N = 3; C9-3, N = 6; C9-3Δ, N = 6). d Representative gel picture showing efficient GluA2 Q→R RNA editing in week 3 cultures across all the lines. Efficient GluA2 RNA editing results in RFLP amplicons of 116 and 66 bp, see also Supplementary Fig. 4B. Band at 81 bp would be observed if inefficient editing of the GluA2 subunit was present

Back to article page