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Single-nucleotide variants that underlie phenotypic variation can affect chromatin occupancy

of transcription factors (TFs). To delineate determinants of in vivo TF binding and chromatin

accessibility, we introduce an approach that compares ChIP-seq and DNase-seq data sets

from genetically divergent murine erythroid cell lines. The impact of discriminatory single-

nucleotide variants on TF ChIP signal enables definition at single base resolution of in vivo

binding characteristics of nuclear factors GATA1, TAL1, and CTCF. We further develop a

facile complementary approach to more deeply test the requirements of critical nucleotide

positions for TF binding by combining CRISPR-Cas9-mediated mutagenesis with ChIP and

targeted deep sequencing. Finally, we extend our analytical pipeline to identify nearby con-

textual DNA elements that modulate chromatin binding by these three TFs, and to define

sequences that impact kb-scale chromatin accessibility. Combined, our approaches reveal

insights into the genetic basis of TF occupancy and their interplay with chromatin features.
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Genetic variation can modulate both rare and common
disease susceptibility. Most genome-wide association
study (GWAS) loci fall within non-coding regions of

DNA and are particularly enriched in regions characterized by
high chromatin accessibility and transcription factor (TF)
occupancy1–3. Given the central role of TFs in regulating
chromatin accessibility4 and transcription5, understanding the
impact of genetic variation on TF binding may provide insights
into the non-coding genetic components of development and
disease.

In vitro binding assays and structural studies have been
instrumental in identifying the DNA sequences that a TF can
bind. In vivo, however, TFs typically occupy only a small pro-
portion of their consensus binding sites. Hence, the presence of a
TF consensus binding site has limited value in predicting actual
TF occupancy6,7. In vivo TF binding is influenced by numerous
features, including chromatin accessibility, histone modifications,
and nearby chromatin occupancy of other TFs8–10. Given the
marked heterogeneity in these attributes between different TF
binding sites, it is perhaps unsurprising that methods, such as
chromatin immunoprecipitation-sequencing (ChIP-seq) motif
enrichment analysis, that compare binding between different
genomic locations lack the sensitivity to identify contextual reg-
ulators of TF binding. Yet an understanding of these contextual
regulatory elements is critical to interpreting the impact of non-
coding genetic variants on TF occupancy.

Exploiting natural genetic variation in TF ChIP-seq data sets
provides a means to pinpoint nucleotides critical for direct TF
binding as well as to identify contextual regulators that function
outside the core binding motifs. It allows direct comparisons
between different alleles or individuals that have similar if not
identical contextual cis attributes and trans-acting environments
and yet contain a small number of discriminatory genetic poly-
morphisms. For example, comparative ChIP-seq and DNase-seq
between different strains of mice has identified sequence variants
in cofactor motifs that affect PU.1 and C/EBPɑ binding11,12.
Others have identified allelic imbalance in TF binding by gath-
ering ChIP-seq or DNase-seq data in hybrid mouse strains13 or in
human lymphoblastoid cell lines14,15 and patient tissues16 that
are replete with sequence variants.

A rich source of natural genetic variation can be found among
the extensively characterized ENCODE cell lines1. Especially
useful are lines from distinct genetic backgrounds but repre-
senting the same cell types with highly similar transcription
profiles. For example, the murine G1E-ER4 and murine ery-
throleukemia (MEL) erythroid cell lines are derived from differ-
ent genetic backgrounds but are both similar to primary murine
erythroblasts; each of these lines has multiple available RNA-seq,
DNase-seq, and ChIP-seq data sets. While the majority of
ENCODE cell lines lack whole-genome sequencing (WGS), we
found that input ChIP-seq data can be exploited to sensitively and
accurately identify sites of natural genetic variation. We subse-
quently use this variation as a tool to better understand the
in vivo binding determinants of the major erythroid TFs GATA1
and TAL1, and the chromatin architectural protein CTCF. Spe-
cifically, our approach defines sequence motifs that these TFs
contact within chromatin, and identifies nearby contextual DNA
elements and their associated proteins that positively or nega-
tively impact TF chromatin occupancy. We then complement this
approach by generating a spectrum of mutations in select regions
followed by ChIP and massively parallel sequencing. Moreover,
we identify genetic variants that alter chromatin accessibility as a
result of TF binding site disruption. Collectively, we describe a
practical approach to mine data sets for both natural genetic
variation and TF binding profiles in order to define how TFs bind
and regulate chromatin.

Results
Exploiting ChIP-seq data to uncover genetic variation. G1E-
ER4 and MEL are cell lines commonly used for studying ery-
throid differentiation. These cells can be induced to differentiate,
upon which broadly similar sets of genes are induced or repressed
when compared to primary murine erythroblasts17,18 (Spear-
man's r = 0.56–0.72, Supplementary Fig. 1a, b, c). Rich genome-
wide data sets on chromatin features are available for G1E-ER4,
MEL, and primary erythroblasts through ENCODE19. A com-
parison between these cell types revealed strong positive corre-
lations in ChIP-seq peak binding intensities of two major
hematopoietic TFs GATA1 and TAL1, as well as in DNase I
accessibility, reflecting similar regulatory landscapes (Fig. 1a).
CTCF, a ubiquitously expressed factor with roles in chromatin
architecture, also exhibited highly correlated peak binding
intensities among red cell types (Fig. 1a). Cross-comparisons of
CTCF-binding profiles between tissues showed remarkably cor-
related binding patterns, likely reflecting the tissue-invariant
fraction of CTCF-binding sites. Notably, erythroid tissues are
more correlated in CTCF-binding profiles to each other than to
other tissues (Fig. 1b), consistent with patterns comprising both
tissue-restricted and tissue-invariant CTCF occupied sites.

Despite their phenotypic similarity, each of the three sources of
erythroid cells originated from a different inbred mouse
strain20,21 leading to the expectation that they harbor discrimi-
natory genetic variants that might impact chromatin character-
istics. Since the cell lines lack WGS data, we mined ChIP-seq
unprecipitated “input” data sets available from ENCODE
(Supplementary Data 1) to identify such variants relative to the
C57BL/6J reference genome build22 (Supplementary Fig. 2a). For
primary erythroblasts, since relatively few ChIP-seq data sets are
accompanied by sequencing of “input” material, we additionally
used the background reads from the immunoprecipitated
material (excluding GATA1/TAL1/CTCF ChIP data) for variant
identification. We adapted the GATK HaplotypeCaller tool22 for
variant identification, applying stringent criteria (detailed in
Methods) for assigning mutation zygosity. We benchmarked the
sensitivity and accuracy of this approach by first using ENCODE
input ChIP-seq data to call genetic variants in the GM12878
human lymphoblastoid cell line relative to the Hg19 genome
assembly, and then by comparing called variants to the recently
sequenced GM12878 genome23. Homozygous genetic variation
was identified with nearly 100% precision (% of identified
variants that are true variants) and >50% recall (% of true
variants identified) (Fig. 1c). Since variant identification for the
GM12878 cell line benefits from an unusually large number of
input ChIP-seq files available from ENCODE (57 files resulting in
1.4 billion unique reads), we examined whether fewer input data
sets would permit variant identification. We found that randomly
downsampling the number of GM12878 reads to the numbers
available for the murine erythroid cell lines still identified
homozygous genetic variation with nearly 100% precision and
~50% recall (Fig. 1c). We conclude that input ChIP-seq files
enable stringent variant identification comprising at least half of
existing genome-wide variation in ENCODE murine erythroid
cell lines.

Applying these methods to the three murine erythroid cell
models identified 1.7–2.6 million homozygous variants (relative
to the reference mm9 genome) from input ChIP-seq data alone.
Additionally, the G1E-ER4 and MEL cell lines are derived from
mouse strains that have been sequenced by the Sanger Institute
Mouse Genomes Project24. Merging the variant calls from input
ChIP-seq data and those made by the Sanger Institute confirms
that we can use input ChIP-seq files alone to detect 41–47% of
total genetic variation. Of note, 4–6% of variants present in the
erythroid cell lines are not found in their parent mouse strains
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Fig. 1 Control ChIP-seq data reveals extensive genetic variation between functionally equivalent ENCODE cell lines. a Pearson's correlation coefficient
(PCC) of TF binding and DNase hypersensitivity profiles between pairs of erythroid cell lines (E= erythroblast, G=G1E-ER4, M=MEL) at commonly called
peaks. PCC± 95% CI. b PCC of CTCF binding between indicated tissues and erythroid tissues (G1E, G1E-ER4, MEL). Mean± SEM, number of comparisons
listed in figure. c Precision and recall of using input ChIP-seq data in GM12878 cells to identify homozygous variants relative to the hg19 reference genome.
Vertical lines denote the number of input ChIP-seq reads available for the murine erythroid cell lines. d Number of discriminatory SNP (discSNP) variants
between each pair of erythroid cell lines. e Median percent signal loss (relative to stronger binding signal) at TF peaks or DNase hypersensitivity (DHS)
peaks between erythroid cell lines, separated by the number of discSNPs located within the TF/DHS peak. TF binding loss % with 0 discSNPs reflects
the background level of variation in TF peak intensities between cell lines despite identical underlying DNA sequences. DNase percentages are normalized
to the 0 discSNP data point within peaks of identical length. *Wilcoxon's p< 0.05 for comparison to peaks lacking discSNPs. Vertical bars represent 95%
confidence intervals by bootstrapping. f Schematic of the overall analysis approach that uses genetic variants to probe determinants of TF binding and
chromatin accessibility
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(Supplementary Fig. 2b), suggesting that they arose during
culture. In total, these data reveal that each pair of cell line
genomes is discriminated by 3.9–5.5 million single-nucleotide
polymorphisms (SNPs) (discSNPs) (Fig. 1d). Together, identifica-
tion of SNPs directly from ChIP-seq data and from WGS data
(when available) serve as complementary approaches that make

discriminatory variant analysis possible even in cell lines lacking
WGS data.

Importantly, we found a nearly monotonic increase in relative
loss (read count intensity in weaker allele relative to stronger
allele) of TF binding (GATA1, TAL1, or CTCF) or chromatin
accessibility as the number of discSNPs located within the peak
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increases (Fig. 1e). These findings suggest that a subset of
discSNPs alters chromatin features between these murine
erythroid cell lines. We thus sought to exploit these discSNPs
in a comparative analysis of existing ChIP-seq and DNase-seq
data in order to identify genetic determinants of TF occupancy
and chromatin accessibility in erythroid cells (Fig. 1f).

Genetic variants alter GATA1 binding and gene expression.
Upon intersecting the ~15 million discSNPs in erythroid cells
with GATA1 chromatin occupancy data in these cells, we found
38,594 discSNPs that fall within regions identified as GATA1
peaks in at least one erythroid cell line (Fig. 2a). We hypothesized
that isolated genetic variants (no other variants within 1 kb)
within GATA1 peaks may either directly or indirectly interfere
with GATA1 chromatin occupancy. Indeed, we uncover single-
nucleotide discSNPs associated with dramatic changes in GATA1
binding that reside within or immediately adjacent to the GATA
motif (Fig. 2b). GATA1 ChIP-quantitative PCR (ChIP-qPCR) in
differentiated G1E-ER4 and MEL cells confirms complete loss of
GATA1 binding at several sites containing a single isolated
discSNP (Supplementary Fig. 3a). In some instances, these var-
iants are associated with large corresponding changes in proximal
gene transcription (Supplementary Fig. 3b).

For four discSNPs falling within GATA1 motifs, we tested
whether they were causal in altering GATA1 binding. To this end,
we cloned 200 bp regions encompassing the discSNPs into a
retroviral vector that randomly inserts the cloned element along
with a barcode into the G1E-ER4 genome. GATA1 ChIP-qPCR at
these ectopic sites recapitulated the allele-specific differences in
binding seen at endogenous loci (Fig. 2c). However, the effect size
of the SNP on binding was smaller at the ectopic sites, possibly
due to a tendency of retrovirus to integrate into open chromatin,
whereas the endogenous sites devoid of GATA1 binding can lose
chromatin accessibility (see below).

In order to validate causality of a disruptive SNP on
transcription we initially attempted homologous recombination
(HR)-driven CRISPR-Cas9-driven point mutagenesis. However,
the efficiency of this process in MEL cells was too low, prompting
us to instead generate via CRISPR-Cas9 small deletions at a test
location harboring a discSNP and measure the effect on GATA1
binding and local gene transcription. The Bola1 gene transcrip-
tion start site (TSS) is 700 bp downstream of a GATA1 peak that
contains a single G1E-ER4 discSNP predicted to disrupt a
GATA1 motif. This genetic change is associated with significantly
reduced GATA1 binding (q = 0.024) and Bola1 transcription
(q = 0.005) in G1E-ER4 cells (Supplementary Fig. 3c). We found
that multiple MEL clones containing bi-allelic deletions (4–22 bp)
of the discSNP region (Supplementary Fig. 3d) exhibit minimal
GATA1 binding and diminished transcription (Fig. 2d, e).
Together, these findings support that discSNPs within GATA1
motifs can directly impact GATA1 chromatin occupancy and
nearby gene transcription. Moreover, a small deletion adjacent to

but not overlapping the GATA1 motif, as is the case for clone 2,
can have equally detrimental effects as deletions of the GATA1
motif itself, highlighting the importance of sequence context in
chromatin occupancy (see below).

GATA1 has been previously shown to mediate widespread
gene regulation during terminal erythroid differentiation17,25,26.
We thus tested whether discSNPs that alter GATA1 binding
impact nearby gene transcription on a genome-wide scale. In
GATA1 peaks containing at least one discSNP, there is a positive
correlation between changes in GATA1 binding and in nearby
gene transcription; this correlation becomes stronger as the false
discovery rate (FDR) threshold for differential binding
(Benjamini–Hochberg corrected, using DiffBind27) is increased
(at FDR 1e−4, Pearson's correlation coefficient = 0.43, p = 8e−14)
(Fig. 2f, g). GATA1 binding and transcriptional changes become
less correlated with increasing GATA1 peak-to-TSS distances,
suggesting that GATA1 binding is more likely to regulate
transcription of the nearest gene at shorter distances (Fig. 2h).
These associations might underestimate the impact of discSNPs
on transcription since proximity is an imperfect means of pairing
regulatory elements with their target genes. Together, these data
suggest that discSNPs can causally underlie changes in GATA1
chromatin occupancy and transcriptional regulation.

In vivo GATA1 binding determinants assessed at single base
resolution. We examined the genome-wide impact of discSNPs
on GATA1 binding as an unbiased means to define in vivo
genetic determinants of GATA1 chromatin occupancy. We used
the MEME suite28 and CIS-BP motif database29 to identify
discSNP pairs that fall within a TF motif and are predicted to
disrupt binding to that motif (detailed in Methods). We found
that 67% of all discSNPs in GATA1 peaks disrupt a TF motif,
with the majority being non-GATA motifs (Fig. 2a). GATA1 is
the primary GATA factor in differentiated erythroid cells30 and it
binds to sequences described in the CIS-BP database as GATA1/
2/4/6 motifs that we collectively treat as the GATA family motif
(WGATAR) (Supplementary Fig. 4a, b). We use the 1844
discSNPs disrupting a GATA motif and measure their impact on
GATA1 chromatin occupancy. Our analysis compares normal-
ized GATA1 signal intensity in the allele with a disrupted motif
relative to the allele with an intact motif (% of GATA1 binding)
and uses non-parametric statistical methods and permutation-
based corrections for multiple hypothesis testing to identify
nucleotides that significantly contribute to GATA1 binding
(detailed in Methods). Indeed, we found that disruption of any
nucleotide in the WGATAR consensus sequence results in a
statistically significant loss of GATA1 binding (Fig. 3a). Impor-
tantly, although the relative expression levels of signature ery-
throid genes18 suggest that primary erythroblasts are slightly
more differentiated than G1E-ER4 and MEL (Supplementary
Fig. 1b, c), the effects of a mutated GATA motif on GATA1
binding are consistent regardless of which pair of erythroid cell

Fig. 2 Isolated genetic variants within GATA1 peaks co-occur with dramatic changes in GATA1 binding and nearby transcription. a Summary of discSNP
pairs in GATA1 peaks (200 bp, n = 35,166). b GATA1 ChIP-seq intensity tracks (input and library-size-normalized, identical y-axis scales) reveal dramatic
changes in GATA1 binding associated with single-nucleotide variants adjacent to (chr3: 66,455,298 - 66,457,298) or within (chr19: 46,129,935 -
46,131,935) a GATA1 motif (no other discSNPs within 1 kb). Dotted vertical line indicates discSNP position. c GATA1 ChIP-qPCR at native (N) loci in either
G1E-ER4 or MEL cells where one cell line contains an intact (I) GATA1 motif and the other cell line has a disrupted (D) motif. A 200-bp region centered on
these intact/disrupted motifs was barcoded and cloned into ectopic (E) locations in G1E-ER4 cells and GATA1 ChIP-qPCR was performed at these sites.
Mean± SEM, n= 3. d GATA1 ChIP-qPCR and e RT-qPCR in 5 MEL clones edited at a control locus (WT) or at the Bola1-proximal GATA1 peak. For d–e,
mean± SEM, n= 3. f For discSNPs found in TSS-proximal GATA1 peaks, Pearson's correlation coefficients between delta GATA1 binding and delta
transcription at a range of FDR cutoffs for differential binding. g Scatterplot of delta GATA1 binding vs. delta transcription at an FDR cutoff of 1e−4, PCC=
0.43. h Pearson's correlation coefficients between delta GATA1 binding and delta transcription at a range of cutoffs for distance between the GATA1 peak
and nearby TSS. For f–h, error bars are 95% confidence intervals, *p= 0.03, **p< 0.001 (Fisher’s Z-transform)
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lines is compared (Supplementary Fig. 4c). These data indicate
that differential GATA1 binding associated with genetic variation
does not reflect differences in trans factor environment.

Evidence from PCR-mediated site selection, electrophoretic
mobility shift assay, and ChIP-seq experiments suggests that the
central GATA nucleotides are required for in vitro GATA1
binding31,32 and are found with near 100% frequency in the
in vivo occupied GATA1 binding motif7,33. We found, however,
that these core motif nucleotides contribute unequally to GATA1
binding in vivo despite near 100% occurrence at GATA1-bound
sites. Additionally, while in vitro SELEX experiments suggest that
the G is more essential to binding than the first A, we found that
disruption of the G results in a milder effect on in vivo GATA1
binding (29% ChIP signal loss) than disruption of the A (49%
ChIP signal loss, Wilcoxon's p = 0.004). These data suggest that
in vivo TF chromatin interactions are not identical to in vitro TF
DNA oligonucleotide interactions and are modulated by factor or
chromatin context. Additionally, we identify nucleotide

substitutions that strongly impair GATA1 binding in a manner
dependent on the type of substitution (Fig. 3a). Together, these
results provide a framework for understanding the quantitative
impact of any substitution within the GATA1 motif on in vivo
GATA1 chromatin occupancy.

In order to directly test the causality of select discSNPs on
GATA1 DNA binding, we attempted to carry out HR-directed
CRISPR-Cas9-mediated mutagenesis but found this process to be
of very low efficiency in our erythroid cell lines. Instead, to
experimentally test endogenous GATA1 binding preferences, we
developed an approach that combines CRISPR-Cas9, conven-
tional GATA1 ChIP, and targeted deep sequencing to interrogate
GATA1 binding determinants in a high-throughput and high-
resolution manner. As before, we targeted the Bola1-proximal
GATA1 peak in MEL cells using a guide RNA (gRNA) designed
to cleave within the GATA consensus motif. Deep sequencing of
genomic DNA from edited MEL cells reveals a diverse range of
deletions averaging 26 bp long; 50% of these completely delete the
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WGATAR sequence and 41% partially delete this sequence
(Supplementary Fig. 4d, e). We performed GATA1 ChIP on these
cells followed by targeted deep sequencing of both ChIP input
and IP material, and found a large number of deletions that are
depleted in the IP library relative to their starting abundance
(Fig. 3b). GATA1 binding is substantially reduced by both full
and partial deletions of the GATA1 motif (Fig. 3c). Surprisingly,
GATA1 binding is similarly diminished by deletions adjacent to
but not containing the GATA1 motif, implicating nearby non-
WGATAR sequences in regulating GATA1 binding (see below).
We next used a 2-bp sliding window to analyze the effects of 1-bp
and 2-bp long deletions within the GATA1 WGATAR motif. We
found similar nucleotide sensitivities (Fig. 3d) as determined by
genome-wide discSNPs (Fig. 3a), suggesting that discSNPs within
the GATA1 motif reveal causal nucleotide determinants of in vivo
GATA1 chromatin occupancy. Together, these discSNP-mediated
and CRISPR-Cas9-mediated approaches enable definition of
in vivo GATA1 DNA-binding determinants at base pair level
resolution.

Nearby contextual sequences regulate GATA1 binding. We
next turned our focus to the 24,039 discSNPs located in GATA1
peaks that alter a non-GATA motif as a means for identifying
potential genetic and protein regulators of GATA1 chromatin
occupancy. While both in vitro34,35 and in vivo36–38 studies have
identified proteins likely to interact with GATA1 in transcrip-
tional regulation, little is known about how these proteins impact
GATA1 chromatin occupancy on a genome-wide scale. Notably,
GATA1 chromatin binding can be collaboratively regulated by
both DNA-binding proteins such as KLF139 and by non-DNA-
binding proteins such as FOG140–42 and LDB143, although only
FOG1 has been described to impact GATA1 binding on a
genome-wide scale. Of note, it has not been established whether
DNA binding by other TFs that can physically interact with
GATA1, such as TAL1 or NFE2, impacts GATA1 binding in a
similarly collaborative fashion. In fact, analysis of discSNPs dis-
rupting non-GATA TF motifs reveals multiple DNA sequences
(NFE2, NFE2L2, E2F1) with significant (q< 0.1) positive con-
tributions to GATA1 binding (Fig. 4a). Additional motifs,
including those associated with proteins previously shown to
interact with GATA1, have less significant median effects on
GATA1 binding. DiscSNPs that disrupt the KLF1 motif, for
example, have in some cases dramatic effects on GATA1 binding
but in the majority of cases relatively little effect, likely due to the
low genome-wide co-localization of KLF1 and GATA144 and the
impact of contextual constraints such as motif spacing and
orientation. Strikingly, we found that the disruptive effect of a
discSNPs within a GATA motif deteriorates as the number of
adjacent TF binding sites (non-GATA motifs that promote
GATA1 binding) increases (Fig. 4b). We also found that discSNPs
disrupting either a GATA motif or a proximal contextual motif
have markedly stronger effects in ablating GATA1 binding as the
predicted binding affinity (based on MEME score) of the dis-
rupted motif increases (Supplementary Fig. 5a). These data
directly implicate proximal contextual motifs as a mechanism to
buffer in vivo GATA1 binding against motif mutations that
would severely impact binding in vitro.

Despite extensive in vitro and in vivo studies that identified
motifs for GATA1 and other TFs, prediction of genome-wide
binding of these factors has been limited by a lack of
consideration of genomic context. While predictions have been
substantially improved by the integration of chromatin features
such as accessibility8,16 or histone marks9, these data are not
always available, and it remains unclear how to accurately predict
TF binding to a genomic region from DNA sequence alone. To

this end, we hypothesized that nearby genetic sequences that
regulate GATA1 binding may better predict whether GATA1
binds to its canonical motif. We trained a logistic regression
model for the genome-wide prediction of GATA1 binding that
incorporates as features both the GATA motif match score and
match scores for each contextual motif found within 100 bp of the
GATA motif. A model that considers not only GATA motif
matching but nearby motif matches to seven other TFs (HIVEP1,
KLF1, NFE2, NFE2L2, TAL1, composite GATA-TAL1, TCF12)
significantly outperforms (p = 9e−13) both a model that only
considers GATA and a control model that considers GATA along
with randomly shuffled versions of these seven motifs (Fig. 4c).
At an FDR of 0.3, this results in an increase from 34 to 57% of
true GATA1 peaks that are correctly identified when considering
potential binding of nearby contextual factors (Supplementary
Fig. 5b). We were limited in making this comparison between
prediction models at FDR values <0.25 since the GATA motif-
only model has a sensitivity of 0% at these values. These data
illustrate the need to consider nearby contextual regulatory
sequences when evaluating TF binding.

We limited our analysis to DNA motifs whose corresponding
TFs are expressed in erythroid cells (Supplementary Fig. 5c).
However, we found that a number of these motifs correspond to
families of TFs where family members bind highly similar
sequences (Supplementary Fig. 5d), and thus the TF protein
binding these sequences cannot be unambiguously assigned. To
better understand the proteins that regulate GATA1 binding, we
exploited existing erythroid ChIP-seq data for TAL1, ELF1, and
TCF12 to test whether binding by these proteins reflects the
impact of discSNPs on their corresponding DNA motifs.
DiscSNPs that disrupt motifs for TAL1 and ELF1 in GATA1
peaks are associated with concomitant loss of TAL1 and ELF1
protein at these locations, while disruption of TCF12 motifs have
relatively little effect on TCF12 occupancy (Fig. 4d). This
implicates TAL1 and ELF1 but not TCF12 as candidate factors
that promote GATA1 binding on a genome-wide scale, while the
effects seen by TCF12 likely instead result from E2A, an obligate
heterodimer of TAL145 that binds a highly similar TF motif to
TCF12 (Supplementary Fig. 5d).

TF motif spacing has been previously shown to provide strict
constraints on collaborative binding46 and enhancer func-
tion47,48. For example, GATA1 has been shown to frequently
bind adjacent GATA and E-box motifs spaced 8–10 bp apart43,49,
and reporter assays find this particular spacing to be critical for
the activity50. Thus, we examined the effect of distance between
non-GATA motifs that affect GATA1 occupancy that are altered
by discSNPs and the nearest GATA motif. While for some motifs
the data were too sparse for this analysis, we uncovered motifs
that regulate GATA1 binding predominantly at short distances
(<30 bp, TCF12, THRA), or long distances (30–50 bp, SP3, E2F1)
(Fig. 4e, f). Surprisingly, several motifs, including the E-box
commonly bound by TAL1, regulate GATA1 binding at a wide
range of distances (0–50 bp) that have not have been predicted by
either motif enrichment analysis or enhancer reporter assays.
Similarly, analysis of discSNP effects on TAL1 ChIP-seq signal in
G1E-ER4 vs. primary erythroblasts shows that GATA1 motif
mutations impact TAL1 binding at distances as great as 75 bp
(Fig. 4g), supporting previously unappreciated long-range
collaborative binding between the master erythroid factors
GATA1 and TAL1. These data demonstrate that natural genetic
variation is a sensitive method for uncovering contextual rules
that govern in vivo TF chromatin occupancy.

Contextual motifs influence CTCF chromatin occupancy.
Analysis of genetic variation not only allows us to understand
how erythroid-specific factors bind chromatin but also how
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ubiquitously expressed TFs, such as CTCF, bind chromatin in a
tissue-specific manner. While CTCF binds many locations in all
cell types, a fraction of its binding sites is dynamic and lineage-
specific51–53, including in erythroid cells (Fig. 1b). We hypothe-
sized that analysis of discSNPs that disrupt either constitutive or
erythroid-specific CTCF-binding sites might identify determi-
nants of CTCF chromatin occupancy that are cell-type-invariant
or erythroid-specific. We found that genetic variants disrupting
CTCF motifs (1,459 discSNPs in 1,329 CTCF peaks) reveal both

the positions and types of substitutions that are most poorly
tolerated (Fig. 5a). The three regions most critical for binding
(“CCA,” “AG,” and “GGC”) are also the most conserved nucleo-
tides at high-occupancy CTCF-binding sites54 and contain the
two nucleotides (2C, 12C) that when methylated are associated
with decreased CTCF binding53. Notably, these data recapitulate
in vitro data that 12C−>T significantly diminishes binding54 and
additionally find several other mutations that are even more
deleterious to in vivo CTCF binding.
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We additionally identify several DNA sequences outside of the
CTCF core motif that may positively or negatively regulate CTCF
binding in erythroid cells (Fig. 5b). DiscSNPs in the CTCF motif
itself have the strongest effects on CTCF binding, while those that
disrupt other motifs, such as the CTCF-downstream motif
identified by Nakahashi et al.55, exhibit milder effects, potentially
due to constraints such as motif spacing. Notably, 4 of the 18
motifs that regulate CTCF binding correspond to the erythroid
transcriptional regulators NFE2, TAL1, KLF1, and GFI1b. We
hypothesized that these factors may be involved in directing
erythroid-specific CTCF binding during differentiation. Intersec-
tion of CTCF peak sets from 23 mouse tissues identified CTCF
peaks conserved in more than 60% of tissues (constitutive) and
those found in fewer than 20% of tissues (variable). Of the
variable peaks, we further identified those found specifically in
erythroid tissues and those induced upon erythroid cell matura-
tion (Supplementary Fig. 6a). Stratifying the effects of discSNP
mutations to the CTCF motif by these groups reveals markedly
stronger effects on CTCF binding at sites specific to differentiated
erythroid cells than at constitutive peaks (Fig. 5c). In addition,
erythroid-specific CTCF peaks are significantly enriched for both
NFE2 (may promote CTCF binding) and GFI1b motifs (may
reduce CTCF binding) relative to constitutive CTCF peaks
(Fig. 5d). Together, these data suggest that tissue-specific CTCF
sites are less robust to genetic variation and are sensitive to
mutations within either the CTCF motif or proximal tissue-
specific TF motifs.

Influence of DNA motifs on erythroid chromatin accessibility.
To identify genetic determinants of chromatin accessibility we
examined the impact of discSNPs on DNase hypersensitivity
(DHS) in undifferentiated and differentiated erythroid cells (G1E-
ER4± estradiol; MEL±DMSO (dimethyl sulfoxide)). In agree-
ment with previous reports56–59 we found that in spite of dra-
matic changes in gene expression during erythroid differentiation,
genome-wide chromatin accessibility within DNase1 peaks is
largely unchanged (Supplementary Fig. 7a), suggesting that gen-
ome accessibility is already mostly established in immature cells.
Nevertheless, as the TF milieu changes during maturation it is
possible that different factors are involved in the formation and
maintenance of accessible chromatin sites. For example, in
immature erythroid cells the major GATA binding protein
GATA2 might play a role in DHS site formation60. In terminally
differentiating cells, GATA1 replaces GATA230,61 and might
maintain chromatin accessibility or become dispensable for this
function (Fig. 6a).

We examined in an unbiased manner the impact of discSNPs
in all 726 TF motifs in the CIS-BP motif database29 on chromatin
in both differentiation states. We found that composite GATA-
TAL1 motifs have the strongest effects on chromatin accessibility
genome-wide in immature erythroid cells (Fig. 6b), consistent
with a requirement for GATA2 in DNase HS formation. In
differentiated cells, GATA elements are also the most influential
on DNase accessibility. However, it is impossible to distinguish
whether this reflects the failure to establish accessible sites prior
to maturation (the GATA2hi GATA1low state) or to maintain
accessibility in the mature (GATA1hi GATA2low) state. Less
pronounced effects were seen with DNA motifs bound by other
hematopoietic TFs, such as ETS binding sites (PU.1, EHF, ETV6,
ETS1), Krüppel factor binding sites (KLF12), and BCL11A
(Fig. 6b). It is important to bear in mind that motif identification
does not definitively reveal the actual trans-acting factor bound to it.

Since GATA1-regulated genes typically have promoters that
directly overlap DNase peaks, we exploited discSNPs within these
overlapping regions to identify genetic determinants of chromatin

accessibility at the promoters of GATA1-regulated genes. We
found that mutations to NFE2 motifs significantly reduce TSS-
proximal chromatin accessibility at genes whose transcription is
activated by GATA1 (Fig. 6c). This finding is consistent with
previous reports that NFE2 and GATA motifs are both required
to establish accessibility at the β-globin locus control region62,63.
Additionally, we found motifs that mediate either more (T
Brachyury homolog, MAFB) or less (HOXB1) accessible
chromatin at GATA1-repressed promoters (Fig. 6c). This finding
suggests that GATA1-mediated repression involves a balance
between factors that keep chromatin open, potentially to allow
access by repressor complexes, and factors that ultimately pro-
mote a closed chromatin state.

We next examined the genetic requirements for chromatin
accessibility specifically at GATA1, TAL1, and CTCF occupied
sites. We found that the DNA motifs corresponding to each of
these factors have significant roles in promoting open chromatin
at their peak locations in both the undifferentiated and
differentiated state (Fig. 6c). Additionally, for both GATA1 and
CTCF, discSNPs within the TF peak impact TF occupancy and
chromatin accessibility in a highly correlated fashion, and these
correlations become stronger at more stringent FDR thresholds
for differential TF binding (Supplementary Fig. 7b). Together,
these data strongly implicate GATA1/2, TAL1, and CTCF as the
relevant proteins that promote chromatin accessibility at their
respective binding sites. Notably, the KLF12 (highly related to
KLF1) motif (Supplementary Fig. 3a) also promotes open
chromatin at GATA1 peaks, suggesting that chromatin accessi-
bility at these locations may rely on collaborative TF binding
(Fig. 6c).

The finding that GATA motifs promote accessibility at GATA1
peaks even in the undifferentiated state suggests that GATA2 may
play a role in establishing open chromatin at these sites as
mentioned above (Fig. 6d). In order to evaluate whether GATA2
may be establishing chromatin accessibility at sites that are later
bound by GATA1 upon differentiation, we examined GATA2
binding in the undifferentiated state at these sites. In places where
a GATA motif discSNP is associated with decreased accessibility,
we found significant loss of GATA2 binding in the undiffer-
entiated state (Fig. 6d). More broadly, levels of GATA2 and
chromatin accessibility are correlated in the undifferentiated state
(r = 0.55) at sites that are ultimately bound by GATA1 upon
differentiation(Fig. 6e, Supplementary Fig. 7c). Higher GATA2
occupancy in the GATA2hi GATA1low undifferentiated state also
correlates with chromatin features in differentiated cells such as
accessibility (r = 0.50) and GATA1 occupancy (r = 0.48) (Fig. 6e,
Supplementary Fig. 7d). Together, these data suggest that GATA2
establishes an open chromatin state at places later bound by
GATA1 in differentiated erythroid cells. In sum, the analysis
outlined here allows identification of DNA elements and in some
cases the associated TF required for the establishment and/or
maintenance of accessible chromatin.

Discussion
Non-coding genetic variants impact TF binding, transcriptional
regulation, phenotypic variation, and susceptibility to disease.
Despite advances in GWAS fine-mapping64, high-throughput
variant testing via reporter assays65, and gene editing, it remains a
major challenge to connect exact genetic alterations to particular
downstream phenotypes. In this study, we have established a
framework for exploiting natural genetic variation between
ENCODE cell lines to more precisely delineate the impact of
genetic variants on TF binding and chromatin accessibility.

A prerequisite for our study is the identification of sequence
variants in the genomes under investigation. Traditionally this
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has been accomplished by WGS. While a growing number of
genome sequences exist for mouse strains24 and human cell
lines66, WGS data are still lacking for many commonly used cell
lines. The wide availability of ChIP-seq input data sets provided a
readily available set of genomic sequences that could be mined to
enable accurate identification of ~45% of variants within two
murine erythroid cell lines and primary erythroid cells. We also
found that the high numbers of background reads in ChIP-seq IP
data sets yielded a rich resource for variant identification, pro-
vided that a wide range of IP types are used to avoid mis-
classification due to allelic imbalance. Other sources for genomic
sequences (DNase-seq, ATAC-seq, Hi-C, etc.) should be similarly
amenable to extraction of genetic variants for any given cell line.

We subsequently exploited DNA sequence variation between
erythroid cell lines as an unbiased screen for the genetic deter-
minants of TF binding and chromatin accessibility. Importantly,
we demonstrated that mutations to the GATA1 motif have
consistent effects on GATA1 binding regardless of which cell line
contains the mutation. While we cannot exclude that distinct
trans factor environments may subtly influence TF binding at a
given site, the primary determinants of TF binding and chro-
matin accessibility defined here are encoded in the underlying
DNA sequence. Natural variation that disrupts the canonical
WGATAR motif affected in vivo GATA1 binding in ways not
entirely expected from in vitro studies. For example, mutations of
the core nucleotides are less detrimental (e.g., 29% binding
reduction when G is mutated) to in vivo binding than expected,
likely due to buffering by nearby contextual TF factors. Further,
different substitutions at a given location are tolerated to varying
degrees, potentially due to the impact of the variant nucleotide on
local DNA shape67. Our analysis also discovered modulatory
sequence variants that leave the GATA motif intact but fall into
neighboring TF binding sites. Spacing of the sites relative to the
GATA element was important, and in some cases inferences
could be made as to the relevant trans-acting factor. Some motifs
modulate GATA1 binding at unexpectedly large distances of >50
bp, suggesting collaborative binding that may be direct (short-
range chromatin bending or a TF complex bridged by additional
contextual TF factors) or indirect (e.g., via promoting accessible
chromatin).

It is worth noting that studies aimed at examining collaborative
TF binding often rely on global depletion of a TF, which can
result in confounding secondary transcriptional effects. This
drawback is avoided by the mining of cis-element variation as
described here. Our results further support that in vivo TF
binding is influenced in a variety of ways in addition to direct
DNA contacts, which on the one hand might ensure robustness
by buffering against the effects of binding site mutations, and on
the other hand increase specificity through reliance on contextual
TFs. Moreover, the contribution of neighboring DNA motifs to
TF binding is consistent with previous findings that the binding
profiles for a given TF can be dynamic across distinct cell lineages
and differentiation states52–54. A striking example of such con-
textual effects is that motif alterations affect CTCF binding much
less at constitutively occupied sites (6% median loss) when
compared to sites at which binding is erythroid-specific (60%
median loss) or differentiation stage dependent (80% median
loss). These results highlight that even the chromatin occupancy
of a factor as widely expressed as CTCF can be modulated in a
highly context-dependent manner. It will be interesting to
determine the contextual factors that convey the robustness of
CTCF binding at constitutively occupied sites.

TFs can regulate chromatin occupancy of each other by
modulating chromatin accessibility4,68. We identify DNA motifs
corresponding to major erythroid TFs that promote chromatin
accessibility in erythroid cells. While these data suggest that many

TFs can impact chromatin accessibility, specific contexts, such as
promoters and binding peaks for particular TFs, may rely on
distinct subsets of these factors to establish and maintain acces-
sibility. In particular, clear connections emerge between the reg-
ulation of TF binding and chromatin accessibility. For example, a
KLF1-family DNA motif promotes both GATA1 chromatin
occupancy and chromatin accessibility at GATA1-bound sites.
Since the binding of GATA1 itself also promotes chromatin
accessibility at GATA1 peaks, the effect of the KLF1 motif on
accessibility may be direct, indirect (by promoting GATA1
binding), or a combination of the two. These data establish clear
relationships between TF binding and chromatin accessibility and
suggest that genetic variants can easily perturb both of these
intertwined processes.

In sum the work outlined here provides evidence that genetic
variation impacts in vivo TF binding and chromatin accessibility
in ways that are not entirely predictable from in vitro studies and
that depend highly on local chromatin context. Analyzing var-
iants in a context-sensitive manner, as we and others11–16 have
done, is critical to understanding and predicting the role of a
particular variant in molecular phenotypes and phenotypic var-
iation and disease. Our analysis framework is also readily adap-
table to additional tissue types and chromatin features as well as
to the analysis of new data sets from different mouse strains or
patient samples that exhibit genetic variation. These analy-
tic strategies may even be applicable in settings of somatic tumor
mutations to identify alterations in TF binding that may impact
cancer progression and metastasis. A limitation of our approach
is that it compares quantitative information from ChIP-seq and
DNase-seq experiments that may vary in design parameters
(laboratory setting, read length, read depth, antibody lot, etc.). It
is possible that applying our analytical approaches to experiments
controlled for these parameters will provide even greater sensi-
tivity at detecting contextual regulators of TF binding and
chromatin accessibility. A relevant consideration here is that in
our proof-of-concept experiments using a CRISPR-Cas9 guided
mutagenesis followed by deep sequencing we were able to further
define sequence requirements for GATA1 chromatin occupancy
under conditions in which all the above variables can be con-
trolled. We envision that this method can be extended to afford
higher resolution and used for fine mapping of any DNA-binding
protein or chromatin features such as accessibility and histone
modifications.

Using genetic variation to more precisely define the functional
components of TF binding sites as outlined here can enhance our
mechanistic understanding of variation in inter-individual tran-
scriptional output, molecular phenotypes, and common disease
risk.

Methods
Evaluating similarity between cell lines. To evaluate similarity in transcriptional
profiles, ENCODE tsv gene count files were obtained that corresponded to multiple
replicates of RNA-seq data in differentiated G1E-ER4, MEL, and primary ery-
throblasts. After removal of ERCC spike-ins and non-ENSMUSG genes, genes were
limited to those with minimum expected count of 35 in two replicates (reducing
gene count from 30,000 to 12,000). We then used voom-limma69 for differential
expression analysis between pairs of cell lines. This involved TMM normalization
using edgeR (v3.16.5, default parameters) followed by limma/voom (v3.30.8,
default parameters) for data fitting and determining differentially expressed genes.

To evaluate similarity in TF binding, aligned ChIP-seq reads and the associated
peak calls were obtained from ENCODE. We used DiffBind27 (v3.6, parameters:
minOverlap 1, summits 100, bRemoveDuplicates = T) to generate input-
normalized and library-size-normalized binding intensities for each TF at the
intersection of called peaks. We then computed Pearson's correlations between
peak signal intensities. Pearson's correlation confidence intervals and differential
comparisons are given based on Fisher’s Z-transform. For Fig. 1e, differential TF
binding was defined as FDR (from DiffBind) < 0.05.

To evaluate similarity in DHS, aligned DNase-seq reads and the associated
hotspot peak calls were obtained from ENCODE. Peak signal intensities were
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obtained at these peaks, library size normalized, and correlated between cell types
using Pearson's correlation. For Fig. 1e, differential DNase peaks were defined as
FDR (Benjamini–Hochberg corrected t test p values)< 0.05. For this analysis, data
were grouped by hotspot size (since discSNP count/hotspot correlates with hotspot
length) and the % of peaks with differential DNase signal was determined relative
to peaks of that length containing no discSNPs.

These merged peak locations were later used as consensus locations for discSNP
analysis.

Calling genetic variation from input ChIP-seq data. Input ChIP-seq fastq files
were obtained from ENCODE for each cell line analyzed. We used Trim Galore!70

(v0.4.1, parameters: phred33, -quality 20) to remove adapters and low-quality reads
(ends < 20 bp; read length < 20 bp) and then bwa71 (v0.7.5a-r405, default para-
meters) to align these reads to the mm9 or hg19 genome builds. Picard (v1.121,
default parameters; Picard Tools available http://broadinstitute.github.io/picard/)
was applied to assign read groups and discard unmapped reads. We used multiple
functions from GATK22 (v3.3, parameters:—variant_index_type LINEAR
–variant_index_parameter 128000 –emitRefConfidence GVCF –T Haplotype
Caller –genotyping_mode DISCOVERY—stand_emit_conf 10 –stand_call_conf
30) to identify variant nucleotide positions and the number of reference/variant
reads found at these positions across all fastq files. We only considered variants
with a total read depth> 5 and considered both read depth and variant read
fraction in defining a homozygous variant nucleotide (Supplementary Table 1).

Following these assignments, DNA copy72 (v1.44.0, default parameters) was
used to identify blocks of the genome containing at least ten variant calls where at
least 90% of the calls share a zygosity of homozygous variant. Calls in these blocks
that could not be assigned an accurate zygosity based on the procedures above
(usually due to low read depth) were assigned the zygosity of their surrounding
block.

For all comparisons of variants between erythroid cell lines, we considered only
loci where one cell line contained a homozygous variant and a different cell line
was homozygous reference.

Benchmarking methods for calling genetic variation. Homozygous variants
were called for the GM12878 (NA12878) cell line as described above. These var-
iants were benchmarked against a set of gold standard homozygous variant calls
identified by the Genome in a Bottle (GIAB) Consortium’s whole-genome
sequencing of GM12878 cells23. Regions in the GIAB vcf file that fall within repeats
or containing multiple alternative alleles were excluded from the gold standard set.
This resulted in a gold standard set consisting of 1,099,780 SNPs and 136,109
indels. The homozygous reference gold standard calls are the 961,615 positions
called by GATK as variant in at least one ChIP-seq dataset but not listed as variant
in the GIAB vcf file. Evaluation of performance at lower starting read counts was
performed by random downsampling of the 59 fastq files available for GM12878
into sets of either 50, 40, 30, 20, 15, 10, 8, 6, or 4 fastq files that were used as the
input for our variant calling pipeline.

TF motif calling. Motif scanning was completed by using the MEME suite28 fimo
tool (v4.11.1, default parameters, uniform background) and CIS-BP motif data-
base29 plus five additional motifs (GATA1-double, joint TAL1-GATA1, TAL1
alone, CTCF upstream/downstream). Motif hits for all GATA family motifs
(Gata1/2/3/4/6) were merged as GATA1 motifs. The full set of motifs (726) was
used for analysis of DNase data, while only motifs corresponding to TFs expressed
in erythroid cells (175) were used for analysis of TF binding. For Fig. 5d, differ-
ential motif enrichment was performed using HOMER’s findMotifs tool73 (v4.9,
default parameters) using the same motif database as above.

DiscSNPs that fell within TF binding peaks or DNase sites were tested for
whether they disrupted a TF DNA motif as follows. A 40-bp window centered on
the discSNP was scanned for motifs in order to find all motifs that contained the
discSNP. The highest MEME score position for any given motif discSNP pair was
determined and the MEME score for this motif in that exact position was collected
for both alleles. For that discSNP pair, the highest MEME score was called the
Scoremax and the difference between MEME scores was called the DiffScore.

We used a random walk optimization approach to determine thresholds to call
a motif as a true predicted binding site (Scorethres) and to call a motif as disrupted
by a discSNP (DiffScorethres). Values for these thresholds were randomly initialized
and iteratively trained on all discSNPs that disrupt motifs for GATA1, TAL1, or
CTCF. The impact of disruptions to these motifs on ChIP-seq binding intensity for
their respective TF was optimized over 100 runs using 10× cross-validation. We
found nearly optimal performance for each TF with Scorethres = 7.5 and
DiffScorethres = 2.5. We subsequently applied these thresholds to all motif scanning.

Associating motif disruption with ChIP and DNase changes. DiscSNPs pre-
dicted to disrupt TF occupancy on a DNA motif were categorized by either TF
motif, position within the motif, or identity of the variant nucleotide. ChIP-seq TF
binding intensity was input-subtracted and library size normalized using Diff-
Bind27. DNase intensity was library-size-normalized and signal distributions were
quantile normalized. These normalized ChIP-seq and DNase-seq intensities were
compared between the alleles contained the intact vs. disrupted motifs to identify

the percent residual binding/accessibility intensity on the allele with motif dis-
ruption. Wilcoxon's tests were performed to determine if the percent residual
intensity differed from 100%. Bootstrapping methods were used to generate 95%
confidence intervals by randomly sampling with replacement for 1000 runs and
median effect values for runs in the 2.5% and 97.5% percentiles. Multiple
hypothesis testing between dependent tests was done by randomly permuting test
group labels and using the p value of the most significant (smallest p value) Wil-
coxon's test across 1000 runs to generate a null distribution, from which a q value
reflects how many of these null p values are smaller than the actual test p value in
question74. Identification of distance constraints on motif disruption (Fig. 4) was
done by subsetting data into 10-bp sliding bins from a distance of 0 to 100 bp,
overlapping by 5 bp. Multiple testing correction was done for these 20 bins for any
given factor using permutation-based methods as described above.

Prediction of GATA1 binding sites. Genome-wide GATA1 motif hits were
determined by using the GATA1 position-specific weight matrix (PWM) and
MEME’s fimo tool28 (v4.11.1, default parameters, uniform background). From
these hits, a set of 27,272 positive GATA1 binding sites was constructed by filtering
for hits in called GATA1 peaks (ENCFF001YFS). A set of 27,272 mono-nucleotide
and di-nucleotide composition-matched negative GATA1 binding sites was con-
structed using MEME hits outside of GATA1 peaks for which normalized GATA1
IP read counts (ENCFF001MRW and ENCFF001MRR) are no more than the
input-normalized read counts (ENCFF001MSP and ENCFF001MSK) inside a 400
bp window centered on the motif match. Read counts were extracted in motif
match regions using BedTools multiBamCov75 (v2.240, default parameters) and
normalized using mapped read totals overall 400 bp windows produced by mul-
tiBamCov. Positive and negative motif hits inside peaks containing discSNPs
impacting a GATA1 motif were not used. MEME was then used to scan for
contextual DNA motif regulators of GATA1 binding (considered all motifs that
regulate GATA1 binding with Wilcoxon's p< 0.05, n = 25) within 100 bp of the
GATA1 motif hit for both the positive and negative sets.

We first identified the contextual motifs that improved GATA1 binding site
prediction in a logistic regression model that considers just the GATA1 MEME
score vs. one that also considers the MEME score of a nearby contextual motif
PWM. As a control, we evaluated the change in receiver operating characteristic
curve area under the curve relative to addition of a random column-wise shuffle of
the contextual motif PWM. We tested each motif against 100 random shuffles in
10 separate runs where the GATA1-positive binding set was compared to different
random draws of GATA1-negative binding sets. Those motifs that outperformed
their shuffles >90% of the time were then included in a logistic regression classifier
that considered the MEME scores of the GATA1 motif and of each contextual
motif. This regression model was evaluated relative to a model only containing the
GATA1 motif MEME score and a separate model that includes random shuffles of
the contextual motifs. All regression models were performed with 10× cross-
validation to avoid overfitting.

Sensitivity of peak calling was compared between the GATA1 PWM only model
and the model incorporating nearby contextual motifs by examining the true
positive rate at an FDR of 0.3 (GATA PWM only model did not perform well
enough to yield any threshold with an FDR of 0.1, so we relaxed the FDR to make a
valid comparison).

Cell culture. Culture of GATA1-containing erythroblast (G1E-ER4) cells has been
described21. GATA1 was activated by the addition of 100 nM estradiol for 24 h.
Culture of MEL cells has been described76. MEL cells were differentiated by the
addition of 2% DMSO for 48 h. For ectopic retroviral integration experiments, both
alleles of a TF binding site containing a discSNP were cloned into the MigR1
retroviral vector backbone. Retrovirus was packaged in 293T cells and used to
infect G1E-ER4 cells. Cells were sorted for high GFP signal and qPCR was used to
validate the copy number of the ectopic constructs as at least two alleles per cell.
qPCR was performed with Power SYBR Green (Invitrogen).

ChIP was performed as previously described40. GATA1 N6 antibody sc-265
(Santa Cruz) and rat serum immunoglobulin G I8015 (Sigma-Aldrich) were used at
10 μg/IP reaction. qPCR primers are listed in Supplementary Table 2 for both
endogenous sites and ectopic site qPCR barcodes.

For RNA qRT-PCR, we isolated RNA using TRizol (Life Technologies). Reverse
transcriptase reaction was performed using iScript (Bio-Rad). qPCR primers are
listed in Supplementary Table 2. Transcript quantifications are normalized to a
panel of reference genes (B-actin, Gapdh, Fog1, Gata2, Klf1, Pabpc1, Slc4a1, Spna1)
using median CT value in order to reduce clonal variability.

Targeted editing of the Bola1-proximal GATA1 peak was conducted in Cas9 +
MEL cells. The Cas9 expression vector was derived by inserting the Streptococcus
pyogenes Cas9 CDS (Addgene: #49535) into a lentiviral EFS-Cas9-P2A-Puro
expression vector. This Cas9 lentiviral vector was termed LentiV_Cas9_puro. The
MEL cells were lentiviral transduced with LentiV_Cas9_puro and selected with 5
μg/ml puromycin for 5 days. These MEL-Cas9 cells were then infected with a
Lenti-gRNA-GFP (LRG, Addgene: #65656) vector containing either the targeting
Bola1 gRNA or a control gRNA targeting a GATA1 peak in the AW011738 gene.
To generate clones containing bi-allelic deletions, GFP-positive cells were sorted
into 96-well plates and screened by genomic DNA PCR and Sanger Sequencing.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03082-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:782 |DOI: 10.1038/s41467-018-03082-6 |www.nature.com/naturecommunications 13

http://broadinstitute.github.io/picard/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


High-throughput screening of GATA1 binding required collecting GFP-positive
cells in bulk and performing GATA1 ChIP using this cell population.

Targeted GATA1 ChIP-seq at a Cas9-edited locus. Deep sequencing libraries of
the GATA-bound Bola1 promoter region were constructed using a previously
published strategy77. The Bola1 locus from ChIP input and GATA1 IP material was
PCR amplified such that the wild-type sequence would yield a 186 bp target
amplicon. The PCR product was end-repaired using T4 DNA polymerase (NEB),
DNA polymerase I, large (Klenow) fragment (NEB), and T4 polynucleotide kinase
(NEB). An A-overhang was then added to 3′ end using Klenow fragment (3′−5′
exo-) (NEB). Finally, the DNA fragment was ligated with custom barcodes, and
PCR-amplified with Illumina paired-end sequencing primers77. Library size was
determined (average ~470 bp) using the Agilent Bioanalyzer 2100, followed by
quantitation using real-time PCR using the KAPA Library Quant Kit for Illumina
(KAPA Biosystems catalog no. KK4835). Paired-end sequenced (2 × 150 bp) was
performed on the Illumina NextSeq 500 in the high output mode using Illumina
sequencing reagents according to the manufacturer’s instructions, and bcl2fastq2
v2.15.0.4 was used to convert the reads to fastq using default parameters. Read
pairs were merged into a single sequence using Flash78 (v1.2.11, parameters: -M
125 –m 4) and aligned to the wild-type sequence using Needle79 (v6.6.0, para-
meters: -gapopen = 10 -gapextend = 0.5 -awidth3 = 5000). Each sample had
between 68 and 76 million read pairs with >80% identity to the wild-type sequence
that either matched the wild-type sequence or had a single deletion. Read counts
for a particular deletion-containing allele were normalized by the wild-type allele
read counts for that replicate such that the wild-type allele enrichment ratio (IP
read count/Input read count) = 1. For Fig. 3d, enrichment ratios for 1-bp or 2-bp
deletions were aggregated into sliding windows and tested for enrichment <1 using
Wilcoxon's tests.

Data availability. The data sets generated during and/or analyzed during the
current study are available from the corresponding author upon reasonable request.
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