Fig. 3 | Nature Communications

Fig. 3

From: Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis

Fig. 3

Photocatalytic activity and the underlying mechanism Photocatalytic degradation of a RhB over blank SiO2 spheres, TiO2, SAB, TAB, and SABT composites with different TiO2 shell thickness under visible light irradiation (λ > 420 nm) for 0.5 h; photocatalytic reduction of b p-methoxy nitrobenzene to p-methoxy aniline over blank SiO2 spheres, TiO2, SAB, TAB, and SABT composites with different TiO2 shell thickness under visible light irradiation for 5 h; c recycling photocatalytic degradation of RhB over optimal SABT-0.15 composite under visible light irradiation (λ > 420 nm); d transient photocurrent densities of SiO2 spheres, SAB and SABT composites with different TiO2 shell thickness under visible light irradiation (λ > 420 nm); e scheme illustrating the photogenerated electron transport pathways between Au GSH clusters and TiO2 shell (the blue arrow represents the photoexcitation process of electron–hole pairs; the orange dash line means the recombination of electron-hole pairs; e and h in the blue cycles correspond to the photogenerated electron and hole, respectively); f cyclic voltammograms of SiO2 spheres, SAB and SABT composites with different TiO2 shell thickness; g bar plots showing the remaining RhB in reaction solutions after being kept in dark for 3 h to achieve the adsorption–desorption equilibrium over SiO2 spheres, SAB and SABT composites with different TiO2 shell thickness; h nitrogen adsorption–desorption isotherms of SiO2 spheres, SAB and SABT composites with different TiO2 shell thickness; i surface area of SiO2 spheres, SAB and SABT composites with different TiO2 shell thickness. Note that the error bars represent the photoactivity s.d. values calculated from triplicate experiments

Back to article page