Fig. 2
From: Exercise induces new cardiomyocyte generation in the adult mammalian heart

Number of mononucleate diploid 15N-labeled cardiomyocytes increases with exercise. a Serial sections (0.5–1 μm thickness) were processed to determine the ploidy status and number of nuclei of each 15N-labeled cardiomyocyte (large white arrow). Periodic acid Schiff staining (PAS) was performed on serial adjacent sections in both directions from the MIMS chip to define the number of nuclei contained in the cell and fluorescent in situ hybridization (Y-chromosome) was performed to identify ploidy status. A representative image series is shown from a mononucleate (PAS staining far left/right, scale bar = 10 μm) diploid (2 N, second from left, scale bar = 5 μm) 15N-labeled (MIMS second from right, scale bar = 10 μm) cardiomyocyte. 14N and 31P images are shown for subcellular resolution (center, scale bar = 10 μm). b Representative image of a 15N-labeled cardiomyocyte nuclei undergoing binucleation. Scale bar = 10 μm for mass image 14N and 15N/14N (left, center). Scale bar = 4 μm for mass image 15N/14N (right). c Bar graph showing the frequency of mononucleate/diploid vs. polyploid and/or multinucleate 15N-thymidine-labeled cardiomyocytes from each group (graph) and contingency table showing absolute numbers and percentage calculations of 15N-positive and all identified cardiomyocytes (sedentary: exercised = 0.25%:1.15%, n = 4 mice per group, *p = 0.01, Fisher’s exact test, OR = 4.695, CI 1.44–15.53). d Mononucleate 15N-thymidine labeled cardiomyocytes were significantly smaller than their binucleate counterparts in the same hearts (n = 3 mice per group, one-way ANOVA with Tukey’s correction for multiple comparisons (significance level p < 0.05). Error bars represent ± s.e.m