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Silicon-oriented regio- and enantioselective
rhodium-catalyzed hydroformylation
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Hui Lv 1,3, Lung-Wa Chung 2 & Xumu Zhang1,2

Hydroformylation of 1,2-disubstituted alkenes usually occurs at the α position of the directing

heteroatom such as oxygen atom and nitrogen atom. By contrast, to achieve hydro-

formylation on the β position of the heteroatom is a tough task. Herein, we report the

asymmetric rhodium-catalyzed hydroformylation of 1,2-disubstituted alkenylsilanes with

excellent regioselectivity at the β position (relative to the silicon heteroatom) and enan-

tioselectivity. In a synthetic sense, we achieve the asymmetric hydroformylation on the β
position of the oxygen atom indirectly by using the silicon group as a surrogate for the

hydroxyl. Density functional theory (DFT) calculations are carried out to examine energetics

of the whole reaction path for Rh/YanPhos-catalyzed asymmetric hydroformylation and

understand its regioselectivity and enantioselectivity. Our computational study suggests that

the silicon group can activate the substrate and is critical for the regioselectivity.
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Owing to the high atom economy, asymmetric hydro-
formylation (AHF) of alkenes provides an efficient way
for the synthesis of enantiomerically pure aldehydes,

which are versatile chiral intermediates for pharmaceuticals,
agrochemicals, and other fine chemicals1–5. In the past decades,
intensive research efforts have been made in this area, and a range
of chiral phosphorus ligand systems have been developed for
AHF reactions, including BINAPHOS6–8, bis(diazaphospholane)
(BDP)9–12, Chiraphite13, Ph-BPE14, YanPhos15–19, and other
phosphorus ligands20–30. Many simple terminal alkenes have
been converted into chiral aldehydes with practical levels of regio-
and enantioselectivity by AHF. However, for 1,2-disubstituted
alkenes, the control of regioselectivity is a preeminent challenge
because of the less steric difference between two substituent
groups than in monosubstituted or 1,1-disubstituted alkenes. To
date, only very limited examples have been reported in AHF of
1,2-disubstituted alkenes. To address this issue, Tan et al.
designed the scaffolding catalysis for allyl amines and alcohols20,
Reek et al. used the supramolecular catalysis in AHF of unac-
tivated disubstituted olefins27, and in terms of the substrate

design, Landis et al. successfully achieved AHF of 1,2-dis-
ubstituted alkenes comprising (Z)-enol esters and enamides with
Rh-BDP catalysts11. Due to electron-withdrawing groups, high
regioselectivities were given (up to >99:1) for AHF of (Z)-enol
esters and enamides. The results suggest that the electronic and
steric differentiation of the substituent groups is a key factor for
the regioselectivity of this transformation. In these examples, CO
was mainly incorporated at the α position of the oxygen atom or
nitrogen atom (Fig. 1a)9–11,31–34. By contrast, to achieve the AHF
on the β position of the heteroatom (O or N) is a tough task.
Herein, we attempted to use the silicon group as a surrogate for
the hydroxyl (via Fleming-Tamao oxidation35) in a synthetic
sense, and the β aldehyde product is more favorable due to the
steric hindrance of the silicon group (Fig. 1b)36,37, which achieves
the AHF on the β position of the oxygen atom indirectly. Based
on these ideas, a series of 1,2-disubstituted alkenylsilanes were
designed and Z-alkenes were chosen instead of E-alkenes because
of higher regio- and enantioselectivities and faster rates7,11.

Organosilicon compounds are essential synthetic reagents and
intermediates in modern organic synthesis, and the Si atom itself
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is a key element in many functional materials and bioactive
molecules. Particularly, chiral β-aldehydesilanes are valuable
intermediates, which can be readily converted to other versatile
building blocks occurring in a variety of small molecule phar-
maceuticals and natural products, such as drugs A (angiotensin-
converting enzyme inhibitor), B (HIV protease inhibitor)38, fas-
idotril39, candoxatril40, venlafaxine41, tropicamide42, and natural
products scopolamine43,44 and anisodamine45 (Fig. 1c).

Herein, we report a rhodium-catalyzed regioselective and ste-
reospecific hydroformylation of 1,2-disubstituted alkenylsilanes:
CO can be mainly incorporated at the β position (up to >99/1
regioselectivity), respectively, and the corresponding β-
aldehydesilanes are obtained with excellent enantioselectivity
(up to 97% enantiomeric excesses (ee)). The products can be
useful synthetic platforms based on the various transformations
of the aldehyde group and silicon group (transformations of the
silicon include Fleming-Tamao oxidation35, Hiyama coupling46,
Brook and retro-Brook rearrangements47,48).

Results
Investigation of chiral ligands. Our initial studies focused on the
AHF of (Z)-trimethyl(styryl)silane (1a) to give the desired chiral
aldehyde product 2a, with the expectations of achieving a highly
regioselective and enantioselective transformation. To our delight,
when (S,R)-(N-Bn)-YanPhos was employed, the reaction almost
exclusively took place in the β position (the ratio of 2a/3a is >99)
to produce 2a with 92% ee and 96% yield (Table 1, entry 1). As
summarized in Table 1, an evaluation of ligands revealed (S,R)-
(N-Bn)-YanPhos to be superior to all others tested (Table 1, entry
1 vs. entries 2–6). Rh catalysts based on other ligands, including
XuPhos, (S,S)-Ph-BPE, (Rc,Sp)-DuanPhos, and (R)-QuinoxP*,
exhibited high activity and excellent regioselectivity with low to

good ee values, and almost no isomerization product was detected
(Table 1, entries 2–5). (S)-BINAP, having axial chirality, was an
unsatisfactory ligand for this reaction (Table 1, entry 6).

Investigation of reaction conditions. In order to achieve good
regioselectivity and enantioselectivity and minimize the iso-
merization product 4a, which was produced via the olefin
insertion to the Rh-H bond followed by β-hydride elimination, we
sought to obtain optimal reaction conditions, as summarized in
Table 2. We found that different solvents have an influence on the
chemoselectivity, but a very small effect on the regioselectivity
and enantioselectivity (Table 2, entries 1 and 3–5). Interestingly,
when tetrahydrofuran was used, the olefin isomerization product
4a was obtained as the main product, which may be due to the
solvent coordination effect (Table 2, entry 2). Next, the influence
of the L1/Rh ratio was investigated. Lowering of the L1/Rh ratio
gave higher conversion, but the yield of the desired product 2a
dropped significantly (Table 2, entry 6). When the L1/Rh ratio
rose to 3, higher enantioselectivity (94% ee) with slightly lower
yield (90% yield) was achieved (Table 2, entry 7). Under this ratio
(L1/Rh= 3), the syngas pressure and reaction temperature were
screened. The results indicated that lower syngas pressure and
high temperature is beneficial to the conversion, which is con-
sistent with the conclusion we have obtained for the YanPhos/Rh
system (Table 2, entries 7–12)15–19. The complete conversion was
achieved in 20 h under 10 bar of CO/H2 at 70 °C, affording near
quantitative yield of the desired product 2a with 94% ee (Table 2,
entry 8). Lower pressure (CO/H2= 2/2 bar) was also tested, but
no significant improvement was observed (Table 2, entry 9 vs.
entry 8).

The study of isomerization reaction. To gain a deeper under-
standing of the relationship between syngas pressure and

Table 1 Evaluation of chiral ligands

Entry Ligand Conv. (%) Yield (%) 2a/3a ee (%)

2a+3a 4a

1 L1 98 96 2 >99 92
2 L2 >99 >99 0 >99 42
3 L3 99 99 0 >99 48
4 L4 >99 >99 0 >99 80
5 L5 94 94 0 >99 60
6 L6 44 29 15 >99 −9

Reaction conditions: 1a (0.5 mmol), Rh(acac)(CO)2 (0.5 mol%), ligand (1.0 mol%), CO (10 bar),
H2 (10 bar), toluene (2ml), 70 °C, 20 h. Conversions and yields were determined by 1H NMR
analysis. Enantiomeric excesses (ee) were determined by HPLC analysis using a chiral stationary
phase after NaBH4 reduction

Table 2 Optimization of the asymmetric hydroformylation
of 1a

Entry Solvent x T (°C) CO/
H2

(bar)

Conv.
(%)

Yield (%) ee
(%)

2a+3a 4a

1 Toluene 1.0 70 10/10 98 96 2 92
2 THF 1.0 70 10/10 >99 35 65 –
3 CH2Cl2 1.0 70 10/10 89 80 9 93
4 EtOAc 1.0 70 10/10 >99 95 5 91
5 DCE 1.0 70 10/10 >99 96 4 90
6a Toluene 0.6 70 10/10 >99 25 75 –
7 Toluene 1.5 70 10/10 98 90 8 94
8 Toluene 1.5 70 5/5 >99 99 1 94
9 Toluene 1.5 70 2/2 >99 99 1 94
10 Toluene 1.5 70 20/

20
99 91 8 94

11 Toluene 1.5 60 5/5 93 82 11 96
12 Toluene 1.5 80 5/5 >99 85 15 91

Reaction conditions: 1a (0.5 mmol), Rh(acac)(CO)2 (0.5 mol%), toluene (2ml), 20 h.
Conversions and yields were determined by 1H NMR analysis. 2a/3a= >99:1. Enantiomeric
excesses (ee) were determined by HPLC analysis using a chiral stationary phase after NaBH4

reduction
a2a/3a= 18:1
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isomerization, the effects of syngas (CO/H2= 1:1), H2, and CO
partial pressure on the isomerization were investigated system-
atically (Supplementary Table 1). Firstly, 4a was used as the
substrate directly and very low conversion (only 1%) was detected
when the reactions were carried out in 20 h under 10 bar of
syngas (CO/H2= 1:1) at 70 °C (Supplementary Table 1, entry 1),
which indicates that it is almost impossible to transform 4a under
current catalytic system. We also stopped the reaction at about
50% conversion (2a was used as the substrate, CO/H2= 5:5 bar,
70 °C, 3.5 h), but only trace (<1%) 4a was detected (Supplemen-
tary Table 1, entry 2), which means that the isomerization is very
slow at low pressure. As shown in Fig. 2a, the ratio of 4a shows a
strong dependence on the total syngas pressure (CO/H2= 1:1).
To independently measure the effect of H2 partial pressure on the
isomerization, one set of experiments used 5 bar CO pressure
while varying H2 pressure from 5 to 15 bar. As shown in Fig. 2b,
the ratio of 4a was almost unchanged as the H2 pressure varied.
The independent measure of the effect of CO partial pressure was
also carried out, the H2 pressure was held at constant 5 bar, and
the CO partial pressure was varied from 5 to 25 bar. As shown in
Fig. 2c, raising the CO partial pressure could promote the iso-
merization, which is opposite to the results in previous papers49.
We attempt to explain the problem from the mechanism, and
proposed a proper path of the isomerization (Fig. 2d). Because of
the competition between CO and the PN part of YanPhos for the
rhodium center, A could convert to B, which is critical for the
isomerization. The coordination of CO to the rhodium species
makes the Rh center of B electron deficient, which leads the CO
on the equatorial position more weakly coordinated, while the
CO on the axial position could not achieve the CO insertion.
These properties of B may promote the β-hydride elimination to

form 4a50. With the CO partial pressure increasing, B could be
formed more easily, which leads to more isomerization.

Substrate scope. With the optimized conditions in hand, we
explored the substrate scope and generality of this asymmetric
transformation (Fig. 3). First, in order to investigate the influence
of substituents on the silicon atom, we changed trimethylsilyl (1a)
to dimethyl(phenyl)silyl (1b) and benzyldimethylsilyl (1c). We
found that when 1b was employed as the substrate, the desired
product 2b was obtained with excellent regioselectivity and
enantioselectivity albeit with 80% yield. While, 2c was achieved in
96% yield with 97% ee and slightly lower regioselectivity (β/α=
97:3). Because of the simple preparation, trimethylsilyl was cho-
sen as one substituent of the alkene, and a series of arylolefins
were synthesized and investigated. Many functional groups, such
as methyl (2d), methoxyl (2e), tertiary butyl (2f), phenyl (2g),
trifluoromethyl (2j), and halides (2h and 2i), are compatible with
this transformation. It was found that, with electron-rich aryl
alkenes, aldehyde products are formed in lower yields than that
with electron-neutral and electron-deficient aryl alkenes. On the
other hand, the regioselectivity and enantioselectivity are not
obviously affected by the electrical properties of the benzene ring.
Moreover, substrates with meta- or ortho- substitution on the
phenyl group were readily accommodated (2k–2m). The highly
electron-deficient substrate 1n was also well tolerated. Further-
more, good yields, regioselectivities, and enantioselectivities were
obtained with a range of substrates containing other aromatic
fragments, including napthalenes, furans, and thiophenes (2o–
2q). Then, more challenging substrates containing alkyl sub-
stituents were tested; to our delight, 2r and 2s were obtained with
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commendable results. And the compound 1t with larger steric
hindrance could also be readily used albeit with 1 mol% catalyst
loading. By prolonging the chain length of the substituent, almost
no effect on the reactivity was observed and excellent enantios-
electivity (95% ee) and good regioselectivity (β/α= 92:8)
remained (2u). It should be pointed out that silyl enol ethers were
not detected in the present system36,37.

To illustrate the critical role of the silane group, Z-alkenes
bearing an alkyl group were tested (Fig. 4). The poor
regioselectivity of 2v demonstrated that the hindered silicon
groups, which facilitate the rhodium addition to the β position in
the olefin insertion step, are very critical for the regiocontrol.
Moreover, when 1w was employed, almost no conversion was
given. The low reaction activity of 1v and 1w implies an activating
effect of the silicon groups in this transformation.

Mechanistic studies. On the basis of the previous computational
and experimental results on other Rh-catalyzed hydroformyla-
tion8,51–57, we also carried out DFT calculations (using (S,R)-(N-
Bn)-YanPhos and 1a) to examine energetics of the whole reaction
path for this Rh-catalyzed AHF and understand its regioselec-
tivity and enantioselectivity to gain more insightful under-
standing (Figs. 5 and 6). As shown in Fig. 5, the alkene insertion
step was computed to be the rate-determining step, which is in
agreement with the previous computational studies51–56 and no
observation of the H/D scrambling from the product (Fig. 7). In
addition, as to the rate-determining step, TSITMS-β1R was com-
puted to be lower in free energy than TSITMS-α1R by 3.1 kcal/mol
in solution (i.e., calculated β/α > 99:1, Fig. 6a and b), which is
consistent with the experimental result. On the other hand,
TSITMS-β1S is computed to be higher in free energy than TSITMS-
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β1R by 2.3 kcal/mol in solution (i.e., calculated 98% ee, Fig. 6a and
c), which is very close to the experimental result (94% ee). As
shown in Fig. 6d, when 1w was used as the substrate, this
transformation suffers from a higher barrier in the alkene inser-
tion step, which qualitatively explains poor reactivity. Both the
experimental results and computational results reveal that the
silane group plays a critical role in this reaction, especially in the
control of the regioselectivity and the activation of the substrate.

Applications of the transformation. To demonstrate the syn-
thetic utility of the current methodology, the reaction was con-
ducted with lower catalyst loading (S/C= 1000), affording the
desired aldehyde 2a in 93% yield with 92% ee and excellent
regioselectivity (Fig. 8a). Gram scale reaction of 1c could also
proceed smoothly, and high yield, excellent regio- and enantios-
electivity were remained (Fig. 8b). Furthermore, a creative syn-
thetic route for chiral tropic acid which can be readily converted
to tropicamide, hyoscyamine, scopolamine and anisodamine was
developed42,44. As shown in Fig. 8c, the AHF product 2c was
subjected to sequential oxidation of the aldehyde group and
Fleming-Tamao oxidation to afford the desired enantiomerically
enriched tropic acid 5 (94% ee).

Discussion
In conclusion, we develop an efficient approach for synthesizing
valuable chiral β-aldehydesilanes by catalytic AHF of Z-alke-
nylsilanes. Because of the hindered silicon groups, this transfor-
mation exhibits excellent regioselectivities (β/α up to >99), and
respectively, the corresponding β-aldehydesilanes are obtained
with excellent enatioselectivities (up to 97% ee) under mild
reaction conditions with low catalyst loading. By using the

transformations of aldehyde groups and silicon groups, the pro-
ducts can be useful synthetic intermediates for bioactive mole-
cules and natural products. Moreover, experiment results and
DFT calculations indicate that the silicon group are primary
factors of the regiocontrol and substrates’ reactivity in this
asymmetric transformation.

Methods
General procedure for the AHF of alkenylsilanes. In a glovebox filled with
nitrogen, to a 5 ml vial equipped with a magnetic bar was added ligand L1 (0.0075
mmol) and Rh(acac)(CO)2 (0.0025 mmol in 0.5 mL solvent). After stirring for 10
min, substrate (0.5 mmol) and additional solvent were charged to bring the total
volume of the reaction mixture to 2.0 mL. The vial was transferred into an auto-
clave and taken out of the glovebox. Carbon monoxide (5 bar) and hydrogen (5
bar) were charged in sequence. The reaction mixture was stirred at 70 °C (oil bath)
for 20 h. The reaction was cooled and the pressure was carefully released in a well-
ventilated hood. The conversion and β/α ratio were determined by 1H NMR
spectroscopy from the crude reaction mixture. Enantiomeric excesses (ee) were
determined by HPLC analysis using a chiral stationary phase after NaBH4

reduction.

Data availability. The authors declare that the data supporting the conclusions of
this study are available within the article and its Supplementary Information file or
from the corresponding author upon reasonable request.
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