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Factor XII|A—expressing inflammatory monocytes
promote lung squamous cancer through fibrin
cross-linking
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Lung cancer is the leading cause of cancer-related deaths worldwide, and lung squamous
carcinomas (LUSC) represent about 30% of cases. Molecular aberrations in lung adeno-
carcinomas have allowed for effective targeted treatments, but corresponding therapeutic
advances in LUSC have not materialized. However, immune checkpoint inhibitors in sub-
populations of LUSC patients have led to exciting responses. Using computational analyses of
The Cancer Genome Atlas, we identified a subset of LUSC tumors characterized by dense
infiltration of inflammatory monocytes (IMs) and poor survival. With novel, immuno-
competent metastasis models, we demonstrated that tumor cell derived CCL2-mediated
recruitment of IMs is necessary and sufficient for LUSC metastasis. Pharmacologic inhibition
of IM recruitment had substantial anti-metastatic effects. Notably, we show that IMs highly
express Factor XIIIA, which promotes fibrin cross-linking to create a scaffold for LUSC cell
invasion and metastases. Consistently, human LUSC samples containing extensive cross-
linked fibrin in the microenvironment correlated with poor survival.
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or decades lung cancer has been the leading cause of cancer-

related deaths in the U.S. and worldwide!. Because non-

small cell lung cancer (NSCLC) has a dismal (~15%) 5-year
survival rate?, novel therapies are desperately needed. The recent
discovery of select molecular aberrations (e.g. EGFR mutations
and ALK translocations) in lung adenocarcinomas (LUAD) has
led to the development of highly effective targeted therapies in
these subsets of lung cancer®. On the contrary, such advances in
the treatment of lung squamous carcinomas (LUSC), which
account for about 30% of lung cancer cases, have not materi-
alized. However, the therapeutic blockade of immune checkpoints
in LUSC patients has demonstrated exciting responses®. In fact,
several phase IIT clinical trials recently led to FDA approval of
anti-PD1 antibodies in the first- and second-line treatment of
LUSC*®, suggesting that LUSC may be suitable for additional
examination of immune-oncology approaches.

Molecular profiling analyses based on The Cancer Genome
Atlas (TCGA) data have revealed that LUSC tumors are highly
idiosgncratic and not likely driven by solitary actionable path-
ways’. Using microarray analyses of LUSC tumors, our group
previously defined four gene expression subtypes: Classical, Basal,
Primitive, and Secretory®. These subtypes feature distinct biolo-
gical processes based on patterns of gene expression. Amongst
these subtypes, the Secretory subtype was defined by an immune-
response signature rich in genes associated with complement
activation, immune cell recruitment, and inflammation®. Building
upon these observations, we computationally analyzed the LUSC
TCGA dataset and identified a new and previously unappreciated
subset of LUSC patients that is highly associated with inflam-
matory monocyte (IM) infiltration and very poor survival.

Tumors recruit IMs (CCR2H€PCD147CD16"°% in humans;
CCR2MighLy6CHigh in mice) through secretion of the CCL2
chemokine. IMs differentiate into either tumor-associated mac-
rophages (TAMs) or dendritic cells (DCs), and IM-derived TAMs
have been intenselz investigated for their roles in promoting
cancer progression”’ !!. For example, IM-derived TAMs can
promote metastasis through production of VEGFa!"!2. VEGFa
has well-recognized roles in distant metastasis formation, in part
because it transiently increases vascular permeability to facilitate
cancer cell extravasation!?, TAM secretion of epidermal growth
factor (EGF) and IL-6 promote increased migration and “stem-
ness”, respectively, of neighboring cancer cells through their
paracrine effects in the tumor microenvironment (TME)13-14,
TAM secretion of IL-10 has pleiotropic roles in immunosup-
pression through cross-talk with DCs and CD8 + T-cells'>!®. In
agreement with these findings, TAM infiltration into tumors is
often associated with poor clinical outcomes in many cancer
types'®. Recently, in opposition to the roles of IMs in cancer,
residential monocytes (RMs) (Cx3CR1Hi8hCD14%CD167 in
humans; CX3CR1M82CD11bLy6CL" in mice) were found to
have inhibitory roles in metastasis formation, largely through
scavenging of intravascular cancer cells and recruitment of anti-
tumor natural killer T-cells'”. The divergent roles between IMs
and RMs are largely unexplored!®,

Surprisingly, however, little is known about the mechanistic
contributions IMs have in metastasis. In fact, IMs are often
regarded as inactive precursors in the TME. Additionally, the
direct clinical role of IMs in disease progression is largely
unknown, particularly in LUSC. Our results have identified a
previously unappreciated driver of LUSC metastasis characterized
by CCL2-mediated recruitment of IMs and FXIIIA-mediated
fibrin cross-linking in the TME, which provides a scaffold for
tumor cell invasion. This novel mechanism is reflected in clinical
samples where fibrin cross-linking is correlated with poor survi-
val. Thus, IMs in LUSC tumors represent an important context-
specific vulnerability of this difficult-to-treat disease.
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Results

Secretory subtype of LUSC is immune-rich and has poor sur-
vival. Using the LUSC TCGA cohort, we evaluated the survival
differences of the intrinsic mRNA subtypes of LUSC®. Expanding
on results from earlier studies”®!? (Supplementary Fig. 1), we
noticed that compared with Classical and Basal subtypes, the
Primitive and Secretory subtypes had worse survival; however this
was not statistically significant (Fig. 1a, b). Although the subtypes
are balanced for clinical stage, hierarchical clustering of RNA-seq
data revealed a marked divergence in differentially expressed
genes, particularly between the Classical and Secretory subtypes
(Fig. 1c, Supplementary Data 1). This corresponded with the
Secretory subtype having worse overall survival than Classical
(Fig. 1d), most notably among stage II patients (Supplementary
Fig. 2a-d). To investigate this divergence, we generated hazard
ratios (HR) of survival for the upper portion of the heat map of
Fig. 1c (containing over-expressed genes in the Secretory sub-
type). Of 403 statistically significant “survival genes,” we found
that Cluster of Differentiation 14 (CD14) was amongst the most
significant (Supplementary Data 2). CD14 is a cell surface
receptor that is most abundantly expressed on “classical” IMs?’,
defined as CCR2M€"CD14+ CD16- cells in humans and
CCR2M8CD11b+ Ly6CHigh cells in mice?!.

We used Ingenuity Pathway Analysis (IPA) to investigate
possible relationships between the “survival genes” and found that
leukocyte migration, wound healing, and complement activation
emerged as potential tumor-promoting mechanisms within the
microenvironment (Fig. le, Supplementary Data 3 and 4). Gene
ontology (GO) analyses showed that the Secretory subtype is
highly enriched for immune-response biological processes, while
Classical is characterized by genes of the reduction-oxidation
responses (Fig. 1f, Supplementary Data 4). This is consistent with
the Classical subtype being highly associated with the KEAP1/
NRE2 pathway’, a tightly coupled antioxidant program, which is
also enriched in KRAS/Lkbl LUADs that lack immune-response
features?2. Gene Set Enrichment Analysis (GSEA) revealed that
top signatures in the Secretory subtype were strongly associated
with monocytes and T-cell infiltration (Fig. 1g, Supplementary
Data 5). Intriguingly, several markers of IMs, often regarded as
precursors of TAMs?®, were leading predictors of LUSC progres-
sion, whereas standard macrophage markers displayed more
modest survival associations (Fig. 1h).

Inflammatory monocytes associate with Secretory LUSC
tumors. Splitting CD14 into expression quartiles confirmed a
marked separation of the survival curves at the median expression
level (Fig. 2a). In fact, CD14 had remarkable prognostic relevance
among stage II patients following surgery (Supplementary
Fig. 2e), implying its importance in disease recurrence. We found
that tumors with above median CD14 expression predominantly
enriched for the Basal and Secretory subtypes (Fig. 2b). Con-
sistent with their importance in recruiting IMs and promoting
metastasis' %4, several chemokines (notably CCL2, the classic
CCR2 ligand) significantly predicted poor survival and strongly
correlated with CD14 expression (Fig. 2¢c, d). We found an
impressive dynamic range of expression for CD14 and these
chemokines by subtype, with the Basal and Secretory subtypes
consistently having the highest levels (Fig. 2e, f). Recently, CD14
expression in bladder cancer cells was identified as a mechanism
of tumor progression’”. To determine whether LUSC CDI14
expression arose from tumor cells and/or tumor-infiltrating leu-
kocytes, we performed immunohistochemistry (IHC) on a LUSC
tissue microarray (TMA) previously characterized by subtype
(Supplementary Data 6)%. Intense membranous CD14 staining
was predominately found on tumor-infiltrating leukocytes, and
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Fig. 1 Lung squamous carcinoma is associated with inflammatory monocytes. a Kaplan-Meier plots of overall survival in lung squamous carcinoma (LUSC)
patients (n=380) from The Cancer Genome Atlas (TCGA) categorized by mRNA subtype. b Overall survival comparing each mRNA subtype with all
others. ¢ Hierarchical clustering of (n=4291) genes expressed in 348 patients from the LUSC TCGA RNA-seq dataset. d Overall survival comparing
Classical versus Secretory subtypes. e Network visualization of Ingenuity Pathway Analysis (IPA) of all differentially expressed genes in the upper portion
of the heat map (shown in panel ¢) that are statistically significant (p < 0.05) in terms of patient survival (in the comparison high (> median) vs. low (<
median) gene expression), termed “survival genes”. (Gray: least significant, Red: most significant) f. Gene ontology analysis to investigate the biological
processes most linked with genes differentially expressed, moving between the Classical and Secretory subtypes (see the Supplementary Methods for
details). Individual bars represent most statistically significant GO terms in either the Classical (red bars) or Secretory (green bars) subtype. g Gene Set
Enrichment Analyses (GSEA) of the LUSC TCGA dataset. The GSEA is performed going from Secretory to Classical; the GSEA ‘mountain plots’ show only
the two most divergent subtypes. Gene set names were shortened to fit this figure. h Table showing 9 genes from the upper portion of the heat map that
are associated with reduced overall survival and are markers of monocytes and macrophages. Genes with log-rank p<0.001 are highlighted in red

rarely on cancer cells (Supplementary Fig. 3). Consistent with
RNA-seq data, CD14 protein expression correlated with subtype,
and the Secretory subtype displayed the highest levels, followed
by Basal (Supplementary Fig. 3). To better characterize the
number and location of CCR2HE"CD14+ IMs in these LUSC
subtypes, we performed multiplex IHC for CCR2, CD14, and
pan-cytokeratin (CK) (Fig. 2g). Across all subtypes, we found that
dual positive (CD14+4/CCR2+) cells were almost three times
more abundant in the stromal (pan-CK negative) regions than in
the cancer cell islet (pan-CK positive) regions (Fig. 2g, h). Con-
sistent with mRNA expression levels, there were more dual
positive cells in the Basal and Secretory subtypes in both stromal
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and cancer cell islet regions (Fig. 2i). To determine what pro-
portion of CD14+/CCR2+ cells represent differentiated M2
macrophages, we performed multiplex IHC for CD14/CCR2/
CD206 on 99 lung tumors. This technique revealed that 85% of
the immune infiltrates stained exclusively for CD14 and CCR2,
suggesting that only a small subset of CD14+/CCR2+ cells
represent CD206-+ TAMs (P < 10~%, Supplementary Fig. 4).

Inflammatory monocytes correspond with poor survival and
CD14. Although CD14 is most highly expressed on IMs amongst
leukocytes?®2°, it is possible that the poor survival associated with
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Fig. 2 Inflammatory monocytes associate with survival in LUSC. a Kaplan-Meier plots of overall survival in lung squamous carcinoma (LUSC) patients split
by median (left, p < 0.0001) and quartile (right, p = 0.0006) expression levels of CD14. P-values are obtained with the log-rank test; FDR were calculated
according to Benjamini and Hochberg. b Proportion of patients by mRNA subtype that have CD14 expression levels above (red) or below (black) the
median CD14 expression level. Binomial tests for proportions were performed. (Black asterisks: significant enrichment below the median, red asterisks:
Significant enrichment above the median). ¢ Kaplan-Meier plots of overall survival in LUSC by expression levels of CCL2 (p = 0.001), CCL3 (p =0.018)
and CSF1 (p=0.015) expression. d Pearson’s correlations of CCL2, CCL3, and CSF1 chemokines versus CD14 (gene expression). e Dynamic range of
mRNA expression of CD14 and CCL2 for each LUSC mRNA subtype. P-values were obtained with analysis of variance. The purple shading for CD14
expression represents samples in the ‘IM-rich subset’ (above the median CD14 expression level). f Dynamic range of mRNA expression of CCL3 and CSF1
by LUSC mRNA subtype. g Representative multiplex IHC for CD14 (green), CCR2 (red) and pan-cytokeratin (light blue) in a LUSC tumor sample, and
enumeration of CD14+/CCR2+ cells in CK+ and CK- regions. #1-3 represent CK- regions, #4 represents a CK + region. Scale bar 100 pm. h
Representative dual CD14+/CCR2+ cells (white arrows) in CK- (#1-3) and CK+ (#4) regions. Note: CK + region shown in white channel to more easily
appreciate green and red. Scale bar 25 pm. i Enumeration of CD144-/CCR2+ cells in CK- and CK+ regions by mRNA subtype. Classical (n =14), Basal (n =
9), Primitive (n = 6) and Secretory (n =12). p-values were obtained with Student’s t-test in comparison to the Classical subtype. * P<0.05, ** P<0.01, ***
P<0.0001

high CD14 expression is related to other CD14-expressing Given the recent advances in immunogenomic profiling to
immune infiltrates, such as TAMs, DCs, myeloid-derived sup- uncover immune infiltrates in tumors with high fidelity>”?%, we
pressor cells (MDSCs) or neutrophils®?»?®. We sought to deter- applied a modified ‘Tmmunome’ signature across all LUSC TCGA
mine whether we could re-classify mRNA subtypes according to  tumors based on a median CDI14 expression level threshold
the levels of CD14 expression, the degree to which leukocyte cell ~ (Supplementary Data 7). Classical tumors were predominately
types correlate with CD14 expression, and how tightly these cell represented in the low ( < median) CD14 expression cohort, while
type densities correspond with poor survival. Secretory tumors were predominantly in the high (= median)
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Fig. 3 IMs have the strongest correlation with CD14 and LUSC survival. a At top, the mRNA subtype of each sample is displayed (Classical: red, Basal: blue,
Primitive: black, Secretory: green); CD14 expression levels sorting from left (lowest) to right (highest) for the corresponding samples are displayed below.
Heat maps of the CD14 + populations that are associated with a statistically significant survival in LUSC are arranged by the most (IMs) to the least
(MDSCs) statistically significant. CD14 is a marker both of IMs and MDSCs but is not shown in their heat maps, to avoid data redundancy. Note for
the heat map figure legend: gray represents ‘'null normalized values’ (NNV). b Scatter plot of overall survival results and CD14 scores for the 9 CD14 +
immune cell types. Survival is represented with hazard ratio (HR) + 95% confidence intervals. Values above 1 indicate worse survival based on cell type
density. The CD14 score is the rank of the ratio between the average cell type density score of samples with high (> median) vs. low (< median) CD14
levels. € Log-rank p-values of overall survival for the 9 CD14 4 immune cell types (high vs. low cell density score). The red bars show statistically significant
cases, while black bars are used when the statistical significance threshold of 0.05 is not reached

CD14 expression cohort (Fig. 3a, top). Basal tumors more often
segregated to the high cohort, and Primitive tumors significantly
re-classified in the low cohort (Fig. 3a, top).

Next, we assessed 9 immune cell types for their correlation with
CD14 expression and their individual contribution to overall
survival (Fig. 3a, Supplementary Fig. 5). In both analyses,
IMs had the strongest relationship with CD14 expression and
poor overall survival (Fig. 3b, ¢). Intriguingly, activated DCs
(aDCs) and M2 macrophages, both derivatives of IMs, had the
second and third strongest relationships with poor survival,
respectively (Fig. 3b, c). These findings imply that IMs have both
direct and indirect roles in LUSC progression via differentiation
into aDCs or M2 macrophages. Furthermore, when assessing for
all adaptive and innate immune cell densities, we observed that
IMs have strong correlations not only with aDCs and M2
macrophages but also with regulatory T-cells (Tregs) and
immune checkpoints (Supplementary Fig. 6), strongly implicating
the presence of an immune suppressive environment. We thus
define this high CD14 expressing cohort as the TM-rich subset’ of
LUSC.

| (2018)9:1988

TNFa-dependent NFkB activation leads to CCL2-driven IM
recruitment. Given our findings that IMs may promote LUSC
metastasis, we sought to functionally characterize IMs in an
immune-competent tumor model. To date, the field has lacked an
immune-competent mouse model of LUSC that faithfully
metastasizes. To address this limitation, we began by character-
izing the metastatic properties of the murine LUSC cell line
(KLN205) derived from bronchial carcinogen exposure’® by
performing orthotopic injections in syngeneic DBA2 mice. The
resulting tumors were poorly differentiated, exhibited central
necrosis, and displayed classic IHC patterns of human LUSC
(Supplementary Fig. 7a, b). Following several rounds of an in vivo
passage selection technique®®*!, we developed sub-clones (LN2-2
and LN4K1) with distinct metastatic properties. Both sub-clones
had significantly increased number and frequency of lymph node
metastases; however, the LN4K1 sub-clone developed more dis-
tant metastases, while LN2-2-injected mice rapidly died from
malignant pleural effusions (Supplementary Fig. 7c-g). Although
KLN205 and LN4K1 had similar intrinsic growth rates in vitro,
LN4K1 tumors grew significantly faster in vivo (Supplementary
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Fig. 4 TNFa activation of NFkB promotes CCL2-mediated IM recruitment. a Microarray expression data (left) comparing murine bronchial epithelial cells
(MBECs), parental KLN205 and the LN4K1 sub-clone. Top upstream pathways (right) from Ingenuity Pathway Analysis (IPA) are shown for the
differentially regulated genes shown in brackets. b An upstream network visualization from IPA of all over-expressed genes (all nodes) in the upper portion
of the heat map shown in Fig. Tc with significant log-rank (survival analysis) p-value (< 0.05). TNFa and NFkB (blue nodes) were amongst the top
upstream regulators known to have direct roles (black lines) in promoting CCL2, CCL3 and CSF1 chemokines (the degree of redness corresponds with
increasing statistical significance). ¢ Relative expression of TNFa. d CCL2, CCL3 and CSF1 by gPCR. Data are averages * s.e.m. P-values were obtained with
Student's t-test in comparison with KLN205. e Relative levels of CCL2 as measured by ELISA from secreted media of cells growing in vitro or, f, from
plasma of tumor-bearing mice. Data are averages * s.e.m. g Relative mRNA expression of CCL2 and p65 in LN4K1 cells following treatment with control or
p65 siRNA with or without exogenous TNFa (100 ng/mL). h Relative expression of CCL2 mRNA (top) and phospho-p65 and p65 protein (bottom)
following treatment with DMSO or an IKKf inhibitor (Compound A, 5pM) for 5 h. i Relative IM counts in the bone marrow, blood, spleen from healthy
DBA2 mice versus those with LN4K1 tumors. j Relative IM, TAM and TReg counts from the lungs of healthy versus LN4K1-bearing mice. IMs were also
assessed in age-matched DBA2 mice following HBSS ‘Mock’ injection. P-values obtained with one-sided Student's t-test, n =5 mice/group for f, i, and j. * P
<0.05, ** P<0.01, *** P<0.001
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Fig. 8a, b), suggesting important differences in the TME. While
no changes were observed in angiogenesis, LN4K1 tumors had
increased proliferative indices (Supplementary Fig. 8¢, d). Simi-
larly, human Secretory tumors exhibited increased proliferative
indices relative to Classical tumors, while no significant

differences in angiogenesis were found among the four subtypes
of LUSC (Supplementary Fig. 8e, f).

To explore the molecular mechanisms underlying the meta-
static properties of LN4K1, we compared the expression profiles
of 3 cell lines: murine bronchial epithelial cells (MBEC) isolated
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from healthy adult DBA2 mice, KLN205, and LN4KI1.
Several patterns emerged, the most significant of which were
signatures of TNFa, IFNy, and NF«B signaling activation
(Fig. 4a, Supplementary Data 8). Intriguingly, this result matched
an IPA screening of the TCGA “survival genes”, which also
revealed that TNFa (P<1073%) and NFkB (P<10~!)
were highly significant and interconnected upstream drivers of
the IM chemokines (Fig. 4b, Supplementary Data 9). Higher
TNFa expression determined poorer overall survival and was
significantly observed in the Secretory LUSC subtype.
TNFa expression also corresponded with the pattern of IM
chemokines (Fig. 2e, f, Supplementary Fig. 9). Using an analysis
comparing our lung squamous carcinoma model and TCGA
LUSC RNA-seq data based on the approach used by Xu et al.>?,
we observed that i) the two main biological processes (with the
most genes and lowest p-values) among genes up-regulated in
Secretory as well as in LN4K1 are ‘signal transduction’ (P = 2.6 x
107, 23 genes) and ‘inflammatory response’ (P = 4.2 x 1074, 11
genes); and ii) shared inflammation-related genes included CCL2
and TNFa (Supplementary Fig. 10, Supplementary Data 10).
Notably, the inflammatory response was also one of the key GO
hits for the broader set of genes that are more highly expressed in
Secretory (Supplementary Data 4). These results suggest that
inflammation-related genes may be triggered, at least partially, by
a cell-intrinsic manner in LUSC.

Consistent with these findings, compared with KLN205,
LN4K1 had markedly elevated TNFa and CCL2 expression levels
and modest increases in CSF1 (Fig. 4c, d). Compared with
KLN205 and a metastatic LUAD line (344SQ), LN4K1 secreted
abundant levels of CCL2 in vitro (Fig. 4e), which was confirmed
in the plasma of tumor-bearing mice (Fig. 4f). Our group
previously showed that TNFa-mediated activation of the
canonical NFkB pathway directly promotes CCL2 expression™.
Indeed, silencing p65 significantly decreased basal and exogenous
TNFa-mediated stimulation of CCL2 in LN4K1 cells (Fig. 4g).
Moreover, compared with KLN205, LN4K1 displayed increased
activation of NFkB, and pharmacological inhibition of IKKp
using Compound A (Cmpd A)** significantly reduced the levels
of phospho-p65 and CCL2 (Fig. 4h).

Next, to characterize the immunologic changes elicited by the
LN4K1 model, we performed flow cytometry on different
immune populations of mice injected with this cell line versus
healthy, non-tumor bearing mice. The LN4K1 model promoted
substantial increases in IM generation in the bone marrow (BM),
leading to a significant increase in IMs in the blood and a non-
significant increase in the spleen (Fig. 4i). The lung TME was
characterized by significant increases in IMs, TAMs, and Tregs
(Fig. 4j), as well as neutrophils, natural killer cells, and
conventional CD4 and CDS8 cells and a non-significant increase
in DCs.

CCL2 is necessary and sufficient for enhanced LUSC metas-
tasis. Considering that metastasis accounts for approximately
90% of cancer-related deaths, there is a surprising paucity of
scientific knowledge concerning the specific mechanisms that
drive LUSC metastasis. Arguably one of the least understood
steps in the metastatic cascade occurs after cancer cells success-
fully intravasate into the circulation. It is now well recognized
that distant colonization is an extremely inefficient process, and
most cancer cells that reach distant tissues rapidly undergo
apoptosis>’.

Consistent with increased secretion of the CCL2 chemokine
(Fig. 4f), compared with the parental KLN205 cell line, LN4K1
was associated with marked increases in IM recruitment and
rapid development of distant metastases (Supplementary Fig. 11).
Given the robust immunologic response that LN4K1 invokes in
the lung TME, we addressed whether the CCL2-mediated
recruitment of IMs is necessary and sufficient for distant
metastasis development in LUSC using an experimental metas-
tasis model. Indeed, the stable overexpression of CCL2 in
KLN205 was sufficient to account for the enhanced metastatic
properties of LN4K1, while the silencing of CCL2 in LN4K1 with
two different shRNAs had the opposite effect, substantially
decreasing metastatic properties (Fig. 5a—c). Additionally, con-
sistent with the effects of CCL2 on metastasis and IM
recruitment, CCL2 overexpression in KLN205 led to significantly
shorter survival and increased IM infiltration in the lungs (Fig. 5d,
e). Conversely, silencing CCL2 in LN4K1 dramatically extended
survival, which corresponded with significantly decreased IM
infiltration (Fig. 5f, g). To assess how robust CCL2-mediated
recruitment of IMs is on LUSC progression, we developed an
additional model of LUSC metastasis. Using the parental
KAL cell line, which was derived from a kinase-dead IKKa
genetically-engineered mouse (GEM) model of LUSC’, we
performed two rounds of in vivo selection as described
for the LN4K1 model (Supplementary Fig. 7c). With this
approach, we developed the KAL-LN2E1 metastatic sub-clone,
which forms large, poorly differentiated orthotopic LUSC tumors
and rapidly develops lymph node and chest wall metastases
(Supplementary Fig. 12a, b). To corroborate our findings with the
LN4K1 model, we assessed whether IMs contribute to LUSC
metastases independent of their suppressive role on T-cells®”. We
generated stable KAL-LN2E1 lines expressing CCL2 shRNA
hairpins and orthotopically injected them into NSG mice
(Supplementary Fig. 12c). While no effect was observed on
primary tumor development (not shown), both groups
injected with shCCL2 KAL-LN2E1 lines showed decreased
numbers and incidence of distant metastases, consistent with
decreased IM recruitment in the primary tumor (Supplementary
Fig. 12d-f).

Fig. 5 CCL2-mediated IM recruitment is critical for LUSC metastasis. a Relative expression of CCL2 for KLN205 and sub-clones. b Quantification of
luciferase signal. ¢ Representative images obtained 10 days after cell injection of (i) KLN205-Scr ORF, (ii) KLN205-CCL2 OREF, (iii) LN4K1-Cntrl shR, (iv)
LN4K1-CCL2 shR#1 and (v) LN4K1-CCL2 shR#2. Data are averages * s.e.m. P-values were obtained with Student's t-test, n =10 mice/group. d Survival
plots of mice following tail vein injection of KLN205 cell lines. The black arrow indicates tissue harvest, n =10 mice/group. e Number of IMs per lung lobe,
n =12 lobes/group. f Survival plots of mice following tail vein injection of LN4K1 cell lines. The black arrow indicates tissue harvest, n =10 mice/group. g
Number of IMs per lung lobe, n =12 lobes/group. h Schematic (left) and quantification of luciferase signal (right) of mice treated with vehicle or PF-
04136309 to assess effects on established metastases. i FACS plots and (j) quantification of percent IMs in the blood and (k) right lung of LN4K1-bearing
mice. Data are averages * s.e.m. P-values were obtained with Student's t-test, n =5 mice/group. I, FACS analysis of percent immune infiltrates for TAMs
(gated on F480), DCs (gated on SiglecF-/CD11c), CD4, CD8, Tregs (gated on TCRb + ) and NK cells (gated on SiglecF-/B220-/TCRb-). m Schematic (left)
and quantification of luciferase signal (right) of mice treated at the time of cell injection to assess effects on preventing metastasis. Data are averages £ s.e.
m. P-values were obtained with Student's t-test, n =10 mice/group. n.s. = non-significant, * P<0.05, *** P < 0.001. For panel b, * FDR < 0.05, ** FDR < 0.01
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Development of a molecular strategy for targeting LUSC IMs.
We then assessed the therapeutic efficacy of targeting IMs in our
metastatic LUSC model. While anti-CCL2 antibodies have shown
initial promise in breast cancer!!, a rebound effect that accelerates
metastasis has been observed upon drug cessation and this
therapy is no longer being clinically developed®®. Furthermore,
other chemokines such as CSF1 and CCL3 can have redundant
properties in recruiting IMs and TAMs!'®?%, Thus, targeting IMs
requires a more effective strategy. Recent studies with a CCR2

a b

inhibitor (PF-04136309) have demonstrated effective blockade of
IM recruitment in pancreatic cancers'>°. To assess the effects of
PF-04136309 on established LUSC metastases, one week follow-
ing tail vein injection of luciferase-labeled LN4K1 cells, mice were
treated with vehicle or PF-04136309 and imaged one week later
(Fig. 5h). Significant reduction in lung metastasis was observed
with PF-04136309 treatment, consistent with significant reduc-
tions in both circulating and lung TME IMs (Fig. 5h-k, Supple-
mentary Fig. 13). However, there were no significant changes in
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TAMs, DCs, NKs, or Tregs (Fi§. 51). In accordance with a prior
study using CCR2 inhibition!?, 1 week of treatment did not
significantly affect CD206™8" or CD206°% TAM subsets (Sup-
plementary Fig. 14a). Additionally, we found no significant effects
on recruitment of gamma-delta T-cells (Supplementary Fig. 14b),
which express CCR2 and are involved in IFNy production.
These results strongly suggest that the therapeutic effects arose
from blocking IM recruitment into the TME. Additionally, CCR2
blockade with PF-04136309 significantly inhibited metastasis
development when treatment was initiated on the day of cancer
cell injection (Fig. 5m).

IMs cause FXIITA-mediated fibrin cross-linking and LUSC
progression. We next sought to investigate the molecular
mechanism by which IMs promote LUSC metastasis. Over the
past decade there has been rapid growth in our understanding of
how perivascular macrophages promote tumor growth and
metastasis'; however, the contribution of IMs prior to differ-
entiating into macrophages remains poorly understood. Given the
recent findings that RMs have opposing, anti-metastatic functions
when compared with IMs!”, we hypothesized that divergent
expression patterns of IMs and RMs may reveal important dif-
ferences in their biology. In a previously performed transcriptome
profile of IMs and RMs in the blood and spleen*!, we observed
that FI3al had the sharpest differential expression pattern
(expression in IMs > RMs) for both tissue compartments. F13al,
which encodes for factor XIII-A subunit (FXIIIA), cross-links
fibrin and other substrates and has critical roles in blood clot
stabilization and wound healing??. Compared with RMs, we
confirmed that IMs express markedly increased levels of F13al
mRNA (Fig. 6a). Importantﬁ{, comparing the expression levels of
Fl13al mRNA in CD206"8" and CD206"°" TAM subsets
revealed that TAMs express F13al levels that are similar to RMs
(Supplementary Fig. 15). We also found a strong level of positive
correlation of expression among FI13al, CD14, and our IM-rich
subset at the transcriptional level (Supplementary Fig. 16a).
Neither VEGFa nor the well-validated myeloid-derived sup-
pressor cell (MDSC) mediators Argl and NOS2 exhibited such a
correlation with CD14 or the IM-rich subset (Supplementary
Fig. 16a). Furthermore, compared to tumors with low CD14
expression, F13al expression levels in CD14 high tumors were
more than 2.5-fold higher (Supplementary Fig. 16b). In agree-
ment with the Secretory subtype frequently having high CD14
expression (Fig. 2b, Supplementary Fig. 16a), we found that this
subtype also associated with above median expression of F13al
(Supplementary Fig. 16¢). These findings implicate IMs as a rich
source of F13al in the tumor microenvironment of LUSC.

Immunofluorescent staining revealed that FXIIIA protein is
produced at higher levels in IMs than RMs (Fig. 6b), and FXIITIA
localizes with CDI11b near the cell surface (Fig. 6c). Using
confocal microscopy, we observed dense deposits of FXIIIA near
podosome-like structures in IMs (Fig. 6d, Supplementary Video).
Using IM and RM cell densities observed in the TME of our
LN4K1 model, we found that IMs induced fibrin cross-linking (y-
y formation) when added to FXIIIA-depleted (Peak 1) fibrin
(ogen), and this activity was fully inhibited with a FXIIIA
inhibitor, T101 (Fig. 6e). In contrast, only subtle cross-linking
was seen with even high RM densities (Fig. 6e).

Previously, others have shown that cancer cells can utilize
cross-linked fibrin to form invadopodia®. To test the contribu-
tion of FXIIIa activity to tumor cell function, we interrogated
LN4K1 cell invadopodia formation. We found that LN4K1 cells
could easily form invadopodia when grown in unfractionated
fibrinogen (which contains FXIIIA); however, this was signifi-
cantly attenuated when placed in FXIIIA-depleted fibrinogen
(Fig. 6f). We then hypothesized that IMs in the TME provide the
necessary FXIIIA(a) activity to cross-link fibrin and create a
scaffold for cancer cell invasion. Using a co-culture model of
GFP-labeled LN4K1 cells and freshly isolated IMs, we observed
that both the low and high densities of IMs could rescue
invadopodia formation in FXIITA-depleted fibrinogen to a degree
similar to that of unfractionated fibrinogen (Fig. 6g). T101
treatment completely abolished this effect, implicating FXIIIa
activity in this mechanism (Fig. 6g). Next, we determined whether
the increased cancer cell invadopodia formation induced by
FXIIIA-expressing IMs also corresponded with increased LUSC
invasion. Using trans-well invasion chambers, we observed a
significant reduction in the invasive capabilities of LN4K1 cells
when grown in FXIIIA-depleted fibrinogen compared with
unfractionated fibrinogen (Fig. 6h). Similar to the invadopodia
assays, this phenotype in FXIIIA-depleted fibrinogen was
significantly rescued in the presence of IMs and abolished in
the presence of T101 (Fig. 6h). Importantly, the effects of T101 on
invasion were not seen when performed in Matrigel (Supple-
mentary Fig. 17), suggesting the importance of the fibrin cross-
linking context. Finally, to assess the importance of FXIIIA
expression in IMs for promoting cancer cell invasion, we
performed the invadopodia assay using IMs from age-matched
wild-type or F13al knock-out mice. Consistent with our prior
findings, the presence of wild-type IMs led to substantial
increases in LN4K1 cells with invadopodia formation, while co-
culture with F13al~/~ IMs completely abolished this phenotype
(Fig. 6i).

To assess FXIIIA activity within the LUSC TME and its
association with disease progression and metastasis, we developed

Fig. 6 Factor XIIIA in IMs promotes fibrin cross-linking and LUSC invasion. a Relative mRNA expression of F13al from sorted IMs and RMs, n=3 mice. b
Immunofluorescent (IF) imaging of IMs and RMs comparing FXIIIA (red) expression. ¢ Dual staining for FXIIIA (red) and CD11b (green) in IMs. Contents of
dotted white box are enlarged under each panel. d Confocal imaging of IMs for FXIIIA (red). White arrows point toward podosome-like structures. Scale
bar: 5 pm; nuclei were stained with Hoechst (panels b-d). e Fibrin cross-linking patterns by western blotting using a polyclonal anti-human fibrin(ogen)
antibody using freshly sorted IMs and RMs (Low = 25k cells, High =100k cells), with or without the FXIIIA-inhibitor, T101. f Percent invadopodia of
LN4K1 cells growing in either unfractionated (UF Fgn, left) or Peak 1 (FXIIIA-depleted) fibrinogen (right). White arrows show evidence of invadopodia.
Scale bar 50 pm. Data are averages + s.e.m. P-values obtained with Student's t-test. g Schematic of co-culture model (top). Representative images of
LN4K1-GFP cells growing in either UF Fgn or Peak 1 with or without low (100k) or high (300k) IMs. FDR = 0.0001 for all statistical comparisons shown.
Groups in e + g treated with the T101 were dosed at 50 pM. Scale bar 12.5 pm. Data are averages * s.e.m. P-values were obtained with Student's t-test. h
Invaded LN4K1-GFP cells per high power field (HPF) at 24 h following seeding into either UF Fgn or Peak 1 Fgn alone or co-cultured with IMs with or
without T101 (50 upM). FDR < 0.01 for all statistical comparisons shown. i Representative images (left) of LN4K1-GFP cells co-cultured with IMs from either
wild-type or F13aT~/~ mice. Number of invadopodia positive LN4K1-GFP cells (right) per HPF at 24 h when growing in UF Fgn or Peak 1 Fgn alone or co-
cultured with IMs from either wild-type or F13a7~/~ mice. Scale bar 12.5 pm. Data are averages + s.e.m. P-values were obtained with Student's t-test. FDR <
0.01 for all statistical comparisons shown. ** P<0.01, *** P<0.0001
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Fig. 7 FXIIIA and fibrin cross-linking is associated with LUSC progression. a Representative IHC images (left) of tumors from the LUSC tissue microarray
with low or high cross-linked fibrin (n = 96 patients). Kaplan-Meier plot of recurrent-free survival following surgical resection. P-values were obtained with
the log-rank test. b Kaplan-Meier plot of overall survival in LUSC patients split by median expression levels of F13al. P-values were obtained with the log-
rank test. ¢ Relative expression levels of F13al in THP1 monocytes stably expressing either F13 ORF or shRNAs against F13al. P-values were obtained with
Student's t-test. d Schematic (left) and quantification of distant micro-metastases (right) following infusions of THP1 monocytes. NSG mice were injected
via tail vein with LN4K1-OgNLuc cells on Day 1, followed by daily infusions of THP1 cells in the respective groups for Days 1-4. Mice were necropsied on
Day 7, lungs were dissociated and FACS analysis performed for EpCAM + cells to quantify micro-metastases per lobe. Data are averages + s.e.m. P-values
were obtained with Student’s t-test, n =3 mice/group. n.s. = non-significant, * P<0.05, *** P<0.001

an IHC protocol with a novel monoclonal antibody that
specifically detects the cross-linked fibrin neo-epitope (Supple-
mentary Fig. 18a). Using a TMA of 96 surgically-resected LUSC
tumors, we found that compared with low or intermediate
staining, high staining of intra-tumoral fibrin cross-linking was
associated with significantly worse recurrence-free survival
(Fig. 7a, Supplementary Fig. 18b). Consistent with this observa-
tion, LUSC tumors from the TCGA dataset expressing high F13al
had significantly worse survival (Fig. 7b). Finally, to assess
whether FXIIIA over-expressing monocytes are sufficient to
enhance LUSC metastasis in vivo, we stably over-expressed or
silenced FXIITA in a THP1 monocyte model (Fig. 7c). Genetically
modified THP1 monocytes were infused into NSG mice daily for
a total of 4 days following intravenous injection of LN4Kl1, and at
1 week the lungs were dissociated and micro-metastases were
enumerated using FACS for EpCAM. Compared with LN4K1
alone injected mice, the only group with significantly increased
metastases were the mice treated with THP1-F13 ORFs, while
neither F13 shRNA-expressing groups showed an increase in
metastases (Fig. 7d).

Taken together, we have uncovered a previously unappreciated
‘IM-rich subset’ of LUSC that is driven by a TNFa-NFkB-CCL2
axis of IM recruitment. These IMs express high levels of FXIIIA,
which facilitates LUSC cell invasion and disease progression by
promoting fibrin cross-linking (Fig. 8).

Discussion

PD1/PD-L1 immune checkpoint inhibitors, while effective in
several cancer types, provide only about 20% response rates in
unselected LUSC patients*>. Thus, there is an urgent need to
extensively characterize other immunologic mediators of LUSC
progression, which may unveil logical, non-overlapping combi-
nation approaches to treat this disease.
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Fig. 8 Schematic of the 'IM-rich subset’ of lung squamous carcinoma. TNFa
activation of the canonical NFkB leads to LUSC cell secretion of chemo-
attractant CCL2, which stimulates the bone marrow to release
inflammatory monocytes (IMs) into circulation. The IMs bring large
payloads of FXIIIA into the tumor microenvironment, leading to cross-
linked fibrin, LUSC invadopodia formation and progression

By integrating multi-step genomics analyses with novel mouse
models, we found that IMs are critical drivers of LUSC metastasis.
Our computational analyses aimed to (1) determine the specifi-
city of gene expression in patient subsets, (2) narrow down the
pool of genes that are involved according to biological and clinical
relevance, and (3) use information available in biological data-
bases about gene-gene interactions, experimentally characterized
gene sets, and gene biological functions to gain insight into LUSC.
This analysis clearly implicated CD14 and the IM-rich subset in
the poor survival of LUSC patients. Remarkably, the significance
of IMs on overall patient survival was greater than that of TAMs
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and aDCs. This finding was surprising given that IMs are tradi-
tionally thought of as inactive precursors that develop into
macrophages, DCs, and MDSCs in response to external cues.
TAMs have been studied in many syngeneic cancer models and
have been associated with the promotion of metastasis!®!844,
However, how IMs mechanistically contribute to the establish-
ment of metastasis remains poorly understood. Reasonable
hypotheses are that the CCL2-elicited IMs may play similar roles
to TAMs by providing both a pro-tumor, pro-metastatic micro-
environment through the secretion of growth factors as well as by
being highly immunosuppressive, thus preventing an anti-tumor
immune response. The surface flow markers used to identify IMs
in this and other studies may also identify monocytic myeloid-
derived suppressor cells (m-MDSCs), a subset of bone marrow
elicited myelo-monocytic cells that are closely related if not
identical to IMs; the field is still debating if there are subtle dif-
ferences in gene ex]pression or suppressive capabilities between
IMs and m-MDSCs' 1243845 ‘When studied functionally, tumor-
localized m-MDSCs are highly immunosuppressive, particularly
against cytotoxic T-cells, largely through their secretion of iNOS
and Arginase 1%°. Along these lines, a recent review discussing
MDSC nomenclature and characterization suggests that IMs can
be attributed to m-MDSCs*’. However, our results suggest that
IMs actively participate in the LUSC metastatic process and may
have unique functions in the TME independent of this immu-
nosuppressive phenotype. In support of this possibility, we found
no significant association between iNOS or Arginase 1 and our
‘IM-rich subset’ of LUSC tumors.

Utilizing immunogenomic approaches, we found that the ‘IM-
rich subset’ can be used to re-classify the four LUSC subtypes
using median CD14 expression as the threshold. To further
evaluate these findings, we developed a novel immune-competent
metastasis model of LUSC. This model is characterized by IMs
recruited by LUSC tumor cells through TNFa-mediated activa-
tion of NF«B signaling, which promotes the secretion of the
monocyte chemokine CCL2. Integrated network analyses of genes
linked to worse survival for LUSC also revealed enrichment for
activation of a TNFa-NFkB-CCL2 signaling axis. Although TNFa
within the TME is often derived from cellular constituents of the
TME itself’/, we observed marked elevations of TNFa in our
metastatic LN4K1 sub-clone developed through serial in vivo
passages. This finding suggested that metastatic LUSC sub-clones
may secrete elevated levels of TNFa, and at least during the initial
stages of metastasis, LUSC cells may play an autocrine role in the
heightened secretion of CCL2 with subsequent recruitment of
IMs. Because IMs and IM-derived TAMs also secrete copious
amounts of TNFa, our data imply a feed-forward loop whereby
LUSC tumors promote their own secretion of CCL2 followed by
the recruitment of TNFa-secreting IMs.

After determining that CCL2 is necessary and sufficient to
promote distant LUSC metastasis, we evaluated a therapeutic
strategy for targeting IMs. Specifically, we targeted the main
CCL2 cell surface receptor, CCR2, using a potent, clinic-ready
CCR2 inhibitor (PF-0436309)'33%. This strategy significantly
reduced both the blood and tumor levels of IMs, which inhibited
the seeding and initial growth of LN4K1 metastasis and prevented
the progression of established LUSC metastases. This approach
unambiguously shows the potential of targeting this immune cell
type for the treatment of LUSC patients.

Our study of an “IM-rich subset” of LUSC is reminiscent of the
paradigm that tumors resemble “wounds that do not heal”*$, The
main tenets of how tumor-induced “wounds” form are as follows:
(1) VEGFa promotes angiogenesis and increased vascular per-
meability, (2) this in turn leads to extravasation of fibrinogen and
several classes of lymphocytes, (3) activation of the coagulation
cascade occurs, (4) fibrin deposition takes place, and (5) an
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irregular collagen matrix forms. Although this process is analo-
gous to physiologic wound healing, tumor-induced “wounding” is
usually irreversible and leveraged by cancer cells to effectively
parasitize the host organ®®. Along these lines, we found that IMs
express high amounts of Factor XIIIA, which rapidly and potently
leads to fibrin cross-linking in the TME, and this evidence points
to a novel and important mechanism of LUSC progression.
Consistent with these findings, plasma levels of fibrin degradation
products (D-dimers) have been linked with higher stage lung
cancers and markedly worse prognosis®®>!. Moreover, plasma
FXIITA has been shown to promote cancer by inhibiting the
intravascular clearance of natural killer cells®2. Importantly, none
of these prior studies have suggested a role for cellular FXIIIA in
IMs for tumor progression. In agreement with observations that
FXIIIA has pleiotropic roles in mediating wound healing*?, our
findings point to a previously unappreciated mechanism by which
tumors represent “non-healing wounds”.

IM-derived FXIIIA-mediated fibrin cross-linking creates an
important scaffold for cancer cell invasion. Targeting this IM
population in an immunocompetent LUSC model had substantial
effects on blocking metastases. Moreover, dense intra-tumor
deposits of cross-linked fibrin in resected LUSC tumors were
associated with poor survival. Given the rapidly evolving land-
scape of precision immune-oncology, these findings identify IMs
as a novel context-specific vulnerability of LUSC and provide an
important insight into the mechanisms through which this
immune cell type determines a poor prognosis.

Methods

Cell lines and maintenance. All cell lines were maintained in 5% C0O2/95% air at
37 °C. KLN205 lung squamous cell carcinoma cells were obtained from the ATCC,
parental KAL cells were kindly provided by Dr. Yinling Hu (National Cancer
Institute, Frederick, MD) and 344SQ lung adenocarcinoma cells were kindly
provided by Dr. John Kurie (M.D. Anderson Cancer Center; Houston, TX). THP1
monocytes were kindly provided by Dr. Gianpietro Dotti (University of North
Carolina, NC). KLN205 cells and derived sub-clones (LN2-2 and LN4K1) were
maintained in MEM and 344SQ cells were maintained in RPMI 1640, both sup-
plemented with 10% fetal bovine serum (FBS) and 1% Penicillin Streptomycin.
KAL cells and their derivatives were maintained in DMEM supplemented with 10%
FBS. Mouse bronchial epithelial cells (MBECs) were isolated from three healthy
adult DBA2 mice. All cell lines were tested to confirm the absence of Mycoplasma,
and all in vitro experiments were conducted with 60-80% confluent cultures.

Establishment of sub-clone cell lines. Metastatic lesions were mechanically
minced in RPMI 1640 containing 0.125% collagenase III and 0.1% hyaluronidase
under laminar flow within a hood and using a sterile scalpel. Cells were then
pelleted, resuspended in 0.25% trypsin for 20 min at 37 °C with vortexing every
5-7 min, and placed in a T75 flask with complete MEM medium.

Lentivirus Packaging and Infection. Lentiviral particles for CCL2 overexpression
in KLN205 cells were purchased from GeneCopoeia: Scr ORF (pReceiver-Lv152
Negative Control Lentifect Purifed LV Particles) and CCL2 ORF (CCL2
(NM_011333.3) Lentifect Purified LV Particles). Lentiviral vectors for CCL2
knockdown in LN4K1 and KAL-LN2E1 cells were also purchased from GeneCo-
poeia: Cntrl shR (CSHCTR001-1-LVRU6H), CCL2 shR#1 (MSH030124-1-
LVRU6H), CCL2 shR#2 (MSH030124-2-LVRU6H), CCL2 shR#3 (MSH030124-3-
LVRU6H), and CCL2 shR#4 (MSH030124-4-LVRU6H). Lentiviral particles for
Factor 13 overexpression and silencing in THP1 cells were purchased from Gen-
eCopoeia: Factor 13 ORF (NM_028784.3), Factor 13 shR#1 (HSH005069-1-
LVRU6H) and Factor 13 shR#2 (HSH005069-2-LVRU6H). OgNLuc vector was a
kind gift from Dr. Antonio Amelio (Lineberger Comprehensive Cancer Center;
UNC Chapel Hill, NC). Lentivirus was produced by transfecting human embryonic
kidney cells (293 T) with lentiviral vector, packaging plasmid (psPAX2) and
envelope plasmid (pMD.2G). Media was changed the next day, and 2 days later
viral supernatant was collected and filtered to remove cellular debris. Cells were
infected with lentiviral particles overnight using Polybrene and were then selected
with growth medium containing 200 ug/mL hygromycin (for shR and ORF lenti-
viruses for each respective cell line) and 1 pg/mL puromycin (for OgNLuc
lentivirus).

Animals, in vivo models and tissue processing. Adult DBA/2, NSG and FVBn
mice were purchased from Jackson Labs. Factor XIIIa knock-out and wild-type
C57Bl/6 mice were obtained from Dr. Alisa Wolberg. These animals were cared for
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according to guidelines set forth by the American Association for Accreditation of
Laboratory Animal Care and the U.S. Public Health Service policy on Human Care
and Use of Laboratory Animals. All mouse studies were approved and supervised
by the University of North Carolina at Chapel Hill Institutional Animal Care and
Use Committee. All animals used were between 6-10 weeks of age at the time of
injection. For all animal experiments, cells were trypsinized, washed and resus-
pended in Hanks balanced salt solution (HBSS; Gibco) prior to injection. Lung
squamous KLN205, LN4K1 and KAL-LN2EI cancer cells were injected either
subcutaneously over the posterior flank (KLN205 and LN4K1: 1 x 10° cells in 100
uL HBSS), intravenously (LN4K1: 1 x 10° or 3 x 10° cells in 100 uL. HBSS based on
experiment) or by an intra-pulmonary technique [KLN205 and LN4K1: 2.5 x 10*
cells and KAL-LN2E1: 5 x 10, in 100 uL 1:1 mixture of HBSS and BD Matrigel
(BD Biosciences)]. For the intra-pulmonary injections, mice were anesthetized with
ketamine (80 mg/kg) + xylazine (8 mg/kg) + acepromazine (1 mg/kg) and placed
in the right lateral recumbency. Following fur removal and sterile skin preparation,
an incision parallel to the rib cage between ribs 10-11 was made to visualize the
lung through the intact thoracic pleura. A 1 mL tuberculin syringe with a 30-g
needle was used to inject the cell suspension directly into the lung parenchyma at
the left lateral dorsal axillary line. After injection, the skin incision was closed using
surgery clips and the mice were turned on the left lateral recumbency and observed
until fully recovered. Caliper measurements of subcutaneous tumor growth were
taken twice weekly and tumor volume was calculated as L X W? where L is the
greatest cross-sectional length across the tumor and W is the length perpendicular
to L. Luciferase-labeled tumor progression was monitored once or twice weekly
using an IVIS Lumina optical imaging system and Nano-Glo Luciferase Assay
substrate (Promega) as per the manufacturer’s instructions. For CCR2 inhibitor
(PF-04136309, Pfizer) experiments, the drug was prepared fresh every 3-4 days and
administered at a dose of 200 mg/kg/mouse, twice daily by oral gavage. For
adoptive infusion of THP1 cells, NSG mice were purchased from Jackson Labs.
LN4K1 cells were infused (1 x 10° cells in 100 uL HBSS) on day 1, and THP1
monocytes expressing either Factor 13 ORF or Factor 13 shRNAs were infused
(1% 10° cells in 100 uL, HBSS) in their respective groups on days 1-4. On day 7,
mice were sacrificed and the lung lobes were dissociated mechanically and enzy-
matically into single cell suspensions. Micro-metastasis enumeration was per-
formed by staining cancer cells with anti-mouse EpCAM-APC antibody (ab95641)
and performing FACS analysis. In all experiments 3-10 mice per group were used.
Once mice in any group became moribund, they were all sacrificed, necropsied,
and tumors were harvested. Tumor weights, number and location of lymphatic and
distant metastases were recorded. Lungs were insufflated with 10% neutral buffered
formalin. Tissues used for immunohistochemistry analysis were fixed in 10%
neutral buffered formalin, and embedded in paraffin.

Collection of gene expression and survival data. Numerical and clinical data of
lung squamous cancer (LUSC) samples were downloaded from TCGA Data Portal
(https://tcga-data.nci.nih.gov/docs/publications/tcga/) and the Firehose Broad
GDAC (Genome Data Analysis Centers) data hub (https://gdac.broadinstitute.org/)
and checked for mutual consistency. For all the analyses based on RNA-Seq data,
the only samples used were those having numerical data available (on January
2014) as for messenger RNA (mRNA), human methylation (HuMet), copy number
variation (CNV) and micro-RNAs (miRNAs) (348 total), in order to exclude
samples not sufficiently characterized by TCGA. For maximizing the statistical
power of our subtype-based (see section “Assignment of tumor subtypes”) survival
analyses of LUSC patients (Fig. 1), we broadened this number to include all
samples (380 total) (i) for which clinical information had been published by TCGA,
(ii) with available mRNA sequencing (see section “Assignment of tumor subtypes”)
and (iii) having usable survival data (see the next section).

Survival data pre-processing. We extracted from the clinical annotation files of
LUSC samples (downloaded on January 2014) four types of survival data: (1) “Days
to death”, (2) “Days to last follow-up”, (3) “Days to last known alive”, and (4)
“Vital status”. The processing was the following: (i) disregarding patients (5 total)
having a negative value for their “Days to last follow-up” (since negative values are
incompatible with survival analyses and this data conflict could not be solved
differently); (ii) attributing a vital status of 1 to patients recorded as “dead” and of 0
to patients recorded as “alive”; (iii) using as “Survival days” for “dead” patients the
“Days to death”; (iv) using as “Survival days” for “alive” patients the maximum
between “Days to last follow-up” and “Days to last known alive”; (v) transforming
the survival days into years by using the conversion formula years = days/365. For
two patients that, at the time of this analysis, had a positive value of their “Days to
death” (i.e., a value different from NA (Not Available), which should be always
associated with “alive” patients), we solved the conflict looking at TCGA clinical
data (biotab type); after this check, the two patients were both deemed to be “alive”.

Assignment of tumor subtypes. Normalized RSEM (abbreviation for RNA-Seq
by Expectation Maximization) gene expression values of lung squamous cell car-
cinomas (1 = 491 tumors) were obtained from TCGA”>? (data available on March
2014). Cohort expression values were log2 transformed and median centered by

gene. Expression subtypes were predicted in this cohort utilizing a published lung
squamous cell carcinoma expression subtype predictor®, which is very consistent
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across distinct genomic platforms (Supplementary Fig. 1). Specifically, the tumor
expression data were reduced to genes in common with the predictor centroids.
Pearson correlations were calculated between each tumor and the predictor cen-
troids of the four squamous subtypes (Classical, Basal, Primitive, Secretory). For
every sample, the subtype assignment was defined as a tumor’s largest correlation
value (Supplementary Data 11).

Analysis of RNA-Seq data: definition of a spectrum of gene expression among
the subtypes. We adopted the normalization method that was chosen by TCGA
Consortium for RNA-Seq data (RNA-Seq V2 pipeline), based on data quantified
using RSEM>3. Genes listed as such in these files are 20,531 per sample (level 3 of
the RNA-Seq data published by TCGA Data Portal). Then, subtypes were aggre-
gated based on two criteria: (i) correlation among the expression values of their
samples and (ii) number of samples available. Specifically, the correlation was
evaluated as follows: (a) the expression values of all genes of this platform are
averaged inside each subtype. At the end of this procedure, the vectors obtained are
Vs, Vi, Vp, and Vg, for the subtypes Basal, Classical, Primitive and Secretory,
respectively, each having 20,531 elements; (b) Pearson’s correlation coefficients are
calculated among all possible (i.e., six) couples of these four vectors; (c) the two
highest and mutually exclusive Pearson’s correlation coefficients are used for
aggregating these subtypes: at this stage, it is found that the Basal subtype has its
closest similarity with the Classical subtype and the same happens between the
Primitive and Secretory subtypes. Then, the information about the number of
samples per subtype was used for deciding in which order they would be displayed
in each heat map (HM), unless differently specified, so that the two subtypes with
most samples are plotted at the two HM sides and the other two are displayed in
the middle: at this stage, it is defined that the first potential aggregate of subtypes is
Classical-Basal (CB, left side of the HM) and the second is Primitive-Secretory (PS,
right side of the HM).

Analysis of RNA-Seq data: identification of a set of representative genes. In
this hybrid analysis, genes were considered (i) differentially expressed between CB
and PS, (ii) heterogeneously expressed across the available samples and (iii) qua-
litatively satisfactory when: (a) their median has an appreciable change between CB
and PS samples. Specifically, after determining which, between CB and PS samples,
has the largest and smallest median, the relative variation between CB and PS is
calculated with respect to the smallest between these two values (precisely, (max-
imum-minimum)/(minimum + MATLAB epsilon (eps function))). This ratio
expresses the relative variation of the median for a gene and the same gene is
selected when this variation strictly belongs to the top 50% across all genes; (b) they
have a “calculable” p-value according to the MATLAB implementation of the
Wilcoxon rank sum test (i.e., a p-value different from ‘Not a Number’ (NaN),
which is the output of the MATLAB function performing this statistical test when
all values of the first and second group are identical) < 0.01 and, at the same time,
whose p-value is considered ‘relevant’ for multiple hypothesis testing (the only
genes included are those having a number of values > 0.5, across the four subtypes,
>60% of the total sample number (therefore > 209, since there are 348 samples in
this dataset)); c) their associated g-value (according to Storey’s method®?, for
“calculable” and “relevant” p-values) < 0.01; (d) their median value is strictly
greater than the first octile value of the ranked set of median values of the full gene
list; (e) their standard deviation strictly belongs to the top 50% across all genes.

Analysis of RNA-Seq data: genomic dissimilarity among subtypes. After
performing the gene selection above described, it was assessed that the ‘genomic
dissimilarity’ for RNA-Seq data between the two subtypes located at the two sides
of this heat map (i.e., Classical and Secretory) is the maximum among the six
possible cases (one-to-one comparisons among four subtypes). This genomic dis-
similarity was measured as follows: (1) for each gene g; and each subtype s; it was
calculated the mean, named m(g;, s;) = m;. So, for j that belongs to {Classical (C),
Basal (B), Primitive (P), Secretory (S)}, the four vectors considered are: {m;c},
{mi g}, {m; p}, and {m; s} (with 1 <i <4291, since the heat map of hybrid differential
expression has 4291 genes); (2) the six possible city-block distances between the
vectors of the four subtypes were calculated. For example, the city-block distance
between {m; c} and {mi g} is: d({m;c}, {mip}) =Z; < i < 4201 |Mic - m;p; (3) the
maximum among these six city-block distances, which corresponds with the couple
Classical-Secretory, was used to establish that these two subtypes have the largest
genomic dissimilarity. This analysis confirmed that, also in this data subset: (a) the
closest subtype to Classical, using this subtype-to-subtype distance, is Basal, and (b)
the closest subtype to Secretory is Primitive.

Analysis of RNA-Seq data: visualization of the clustered expression matrix.
Selected genes were log2 transformed, mean centered, hierarchically clustered
(similarity metric: correlation (uncentered), clustering method: average link-

age) using the version 3.0 of Cluster (open source clustering software)®>>® and
visualized with the Java-based program TreeView"’, in order to assess similarities
and differences among their expression patterns. Here and in other heat maps
utilized, genes with a null normalized expression value are log-transformed and,
therefore, are assigned to a Not-a-Number (NaN) value, which TreeView displays
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as a gray rectangle. The hierarchically clustered expression matrix, with respect to
the genes (matrix rows) has 4,291 rows and 348 columns.

Analysis of RNA-Seq data: definition of the upper and lower portion of the
clustered expression matrix. Keeping the four LUSC subtype in this order (i.e.,
(1) Classical, (2) Basal, (3) Primitive, (4) Secretory, from left to right) grants an
interesting computational feature: namely, after splitting the matrix of gene
expression into two halves (each with 2145 genes, so excluding the gene # 2146,
which is exactly in the median position) and (i) calculating how many values are,
for each gene and each subtype, above the mean for that gene, as a percentage and
(ii) calculating the average of these means for the first half and the second half,
separately, for each subtype, it turns out that in the upper half this value grows
from left to right, while in the lower half it drops from left to right. This defines a
clear gradient of gene expression and, for this reason, as well as for the genomic
dissimilarity assessments, the above-mentioned subtype order was permanently
selected. Due to the use of these data for multiple computational tasks, each
independent of the other, the sample order inside each subtype was defined at the
beginning of our analyses according to the sequence found in the original TCGA
files (that relies on the TCGA sample barcodes) and to the availability of sample
subtypes. Notably, this sample order was changed only in our analyses concerning
the immunome signature (see section “Analysis of the immune cell types: scoring
of different infiltrates”). In order to perform a batch analysis of survival data (see
section “Survival data analysis based on tumor subtypes, clinical stage and
expression levels for selected genes”) for selected genes associated with hyper-
expression (see below) in PS, we focused on the intermediate portion of the HM
(precisely, from gene 1900 to 2400) and looked for a gene that could be algor-
ithmically defined as the last of the upper HM portion. Specifically, for every gene
we (1) assessed the percentage of samples hyper-expressing that gene (i.e., having
an expression, for that gene, > gene mean across the 348 samples) per subtype, (2)
calculated the average of these two percentages for CB (Average(%C, %B)) and PS
(Average(%P, %S)), and (3) determined the difference between these two values (A
(CB, PS) = Average(%C, %B) - Average(%P, %S)). Since when 1900 < (gene order #
in HM) <2273 it follows that A(CB, PS) <0 and when 2274 < (gene order # in
HM) <2400 it follows that A(CB, PS) > 0, except for patterns of maximum three
consecutive genes that do not meet the inequality requirement for A(CB, PS) in the
defined range of genes, we included in the batch analysis for survival all genes from
1 to 2274 (upper portion of RNA-Seq HM for survival analysis purposes).
Therefore, both the maximum of the first interval (2273) and the minimum of the
second interval (2274) were used for this analysis. Notably, the precise gene where
the HM is split turned out to be not critical, since the last gene having statistical
relevance for survival in the upper HM portion is gene #2261 (TKTLIL).

Analysis of RNA-Seq data: gene-based statistical analyses. The statistical
significance (1) of RNA-Seq data of the genes CD14 and F13A1 (presence of
samples above and below the median for each subtype) was calculated using the
binomial test (R); (2) for comparisons of gene expression levels across the four
LUSC subtypes of the RNA-Seq data for the genes CD14, CCL2, CCL3, CSF1, and
TNFa was assessed using one-way analysis of variance (ANOVA) on log-
transformed data; (3) of the correlations (measured by the Pearson’s coefficient)
between CD14 and CCL2, CCL3 and CSF1 was calculated using a t-statistic t*, with
346 (=348 — 2) degrees of freedom. The formula used for #* is: t* = [r-sqrt(n—2)]/
[sqrt(1—7%)], where r is Pearson’s correlation coefficient (calculated on non-
transformed data), n is the number of samples (348) and sqrt stands for “square
root”. For this computational step, we exploited the relatively large number of
subjects of the TCGA LUSC dataset. These results were confirmed also using the
Spearman’s rank correlation coefficient. Finally, the p-values of point 1 (two sets of
p-values) and of the genes CD14, CCL2, CCL3, CSF1 of point 2 (1 set of p-values)
were used for calculating the corresponding false discovery rate (FDR) according to
Benjamini and Hochberg®®. The ANOVA test of point 2 was used assuming its
robustness as for the normality requirement®® and checking the data homo-
scedasticity across the four subtypes, for each gene. For this task, we used the
Brown-Forsythe test (p-value threshold: 0.05) and the criterion of Dean and Voss
about the ratio between the maximum and minimum variance among the sub-
types®’. Additionally, the results of the ANOVA test for these five genes were
confirmed through the Kruskal-Wallis test.

Gene ontology analysis of RNA-Seq data. With the aim to be more selective for
gene ontology (GO) purposes, we changed the point (e) of the section ”Analysis of
RNA-Seq data: identification of a set of representative genes” into the following
point e’: the standard deviation of selected genes has to strictly belong to the top 1/
3, in the set of genes originally considered (i.e., 20,531 genes). The smaller list of
genes so obtained (2972 genes total) was re-clustered as described (see section
“Analysis of RNA-Seq data: visualization of the clustered expression matrix”) and
further split into a top (1423 genes) and bottom (1549) portion, checking which
was the ‘splitting point” in the sequence of averages (calculated excluding missing
values, which correspond to null values in the untransformed gene expression
matrix) of log2 transformed, mean centered by gene and hierarchically clustered
values in the Secretory subtype. We define as a “splitting point” in a sequence of
real numbers a couple of consecutive values of that sequence such that they have
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opposite sign (positive and negative or vice versa) and such that the sequence does
not revert back to its previous sign for at least five couples of consecutive values
following that “splitting point”. Moving from top to bottom in the HM, when we
detected a “splitting point”, we included the last value with a positive sign (first
gene of the “sliding couple”) as the last gene of the Top portion (that mostly
contains genes having positive averages) and the following genes were all attributed
to the HM Bottom portion (that mostly contains genes having negative averages).
Notably, this simple mathematical rule splits the HM into two identical parts either
using the Secretory subtype or the PS aggregate as a reference (i.e., the “splitting
point” of the sequence of averages does not change going from Secretory to PS).
For this reason and for brevity, we refer to genes significantly up-regulated shown
in the HM Top portion as genes characterizing the Secretory subtype, and to genes
significantly up-regulated displayed in the HM Bottom portion as genes of the
Classical subtype. The GO analysis that was selected relies on the Expression
Analysis Systematic Explorer (EASE) score (a p-value obtained through an adjusted
Fisher’s exact test)®! and was performed using DAVID Bioinformatics Resources®?;
the selected background was “Homo sapiens”. Each GO category was considered
for further analyses only when fulfilled these three criteria: (1) is referred to GO
biological processes (BP); (2) has two or more gene members inside the list of genes
of the Top HM portion; (3) has a p-value < 0.001.

Ingenuity pathway analysis of RNA-Seq data. Using ingenuity pathway analysis
(IPA) (http://www.ingenuity.com/products/ipa) of the genes (n = 403) that are
generally hyper-expressed (see the definition of hyper-expression given in section
“Analysis of RNA-Seq data: definition of the upper and lower portion of the
clustered expression matrix”) in the Secretory subtype (more precisely, of the genes
shown in the portion of the RNA-Seq HM defined as “upper” in section “Analysis
of RNA-Seq data: definition of the upper and lower portion of the clustered
expression matrix”) and also have statistically significant p-values ( < 0.05) for
overall survival (see section “Batch survival data analysis based on gene levels”), we
assessed for the most significant biological themes in terms of “Disease or Func-
tion”. The displayed network is focused on the most significant biological function
(“Leukocyte Migration”) and shows all genes belonging to it. The levels of statistical
significance for these genes (in terms of survival analysis) are displayed on a color
scale (gray: least significant, red: most significant); genes are clustered (using
colored ovals) according to specific leukocyte categories (e.g. IMs, Macrophages)
based on previously described immune subset markers?’. Using the same gene set
(n=403), we also utilized IPA to perform the “upstream regulator analysis” (URA)
to identify which were the most significant upstream regulators inside this gene
network. We utilized the Cytoscape software for the network visualization of IPA
results®®. Finally, the sub-cellular and extra-cellular ‘locations of the genes shown
in the URA graph were assigned using IPA software.

Survival data analysis based on tumor subtypes, clinical stage and expression
levels for selected genes. The survival of distinct experimental groups according
to subtype, clinical stage and expression levels for selected genes was assessed using
the log-rank test (a.k.a. Mantel-Cox test)®*. These tests had 1 degree of freedom
(df) for comparisons of two groups, and 3 for comparisons of four groups. When
the comparison was based on expression levels, it was either performed using the
median as a splitting point (see below) or lower, middle, and upper quartile (here
intended as dividing points for the population). All the comparisons involving (a)
subtypes, (b) subtype aggregates (see section “Analysis of RNA-Seq data: definition
of a spectrum of gene expression among the subtypes”), (c) clinical stages, (d)
CD14, CCL2, CCL3, CSF1, and TNFa were analyzed using the computational
implementation of this statistical test that is built-in in GraphPad Prism (http://
www.graphpad.com/scientific-software/prism/). The FDR>® was used for the
multiple hypothesis testing correction of the statistical tests concerning CD14,
CCL2, CCL3, and CSF1.

Batch survival data analysis based on gene levels. A broader screening of
survival values for differentially expressed genes in the above-mentioned LUSC
subtypes (see section “Analysis of RNA-Seq data: identification of a set of repre-
sentative genes”) was achieved through an in-house MATLAB (https://www.
mathworks.com/products/matlab/) script that calculates the hazard ratios (HR)
and log-rank test p-values using the “coxphfit” function for each gene selected®
(see the script contained in the file survival_analysis.docx). This analysis, on a gene
by gene basis, splits samples depending on their being above or below a specific
threshold; then, HR are calculated for two sample populations, one defined as
{Samples whose gene expression is > gene median} and one defined as {Samples
whose gene expression is < median}.

Modified immunome signature. Based on the paper of Bindea et al.>’, which
describes “a compendium of mRNA transcripts” of genes whose expression is
strongly associated with specific immune cell types, we put together a list of genes
for which the following variables are known: (1) type of immunity (innate or
adaptive), (2) immune cell type(s) (cell type(s) of the immune system characterized
by that gene); (3) gene aliases. This gene list was made more comprehensive by
adding selected genes of known function of the immune system and that were not
already present in this file (IMs: CD14, CCL2, CCR2, CCL3, CSF1R, CSF1; M2
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macrophages: TGFB, VEGFA, 1L10, CD206, VCAM1, CD163, ICAMI1, IL1RA,
CSF3R; M1 macrophages: TLR2, TLR4, CD80, CD86, CCR7, CCL5, CXCL9,
CXCL10, CXCL11). Finally, we completed this list by adding other immune-related
genes described by Charoentong et al.?%, who build upon the work of Bindea

et al.?7, for the following immune cell types: regulatory T-cells, activated DCs,
myeloid-derived suppressor cells, neutrophils, and plasmacytoid DCs. The
matching between gene identifiers of the immunome signature and of RNA-Seq
data was based on Entrez gene identifiers (https://www.ncbi.nlm.nih.gov/sites/
gquery); immune-related genes without a match based on these identifiers were
discarded. Notably, at the end of this procedure, each gene of the modified
immunome signature (598 total) belongs either to one or two immune cell types
(572 genes have a unique and 26 have also a second immune cell type).

Analysis of the immune cell types: scoring of different infiltrates. Due to the
importance of CD14 for the survival of LUSC patients (as an unfavorable prog-
nostic factor), we generated analyses of the mRNA levels of 29 immune cell types
where (i) samples were preliminarily ordered according to the expression levels of
CD14 and (ii) immune cell type markers (i.e., the genes identified in the previous
section) were used to assess the levels of immune cell type density. Specifically, in
order to understand the role played by heterogeneous immune infiltrates, we
created a scoring system, which determines the immune cell type density of each
sample using the immune cell type markers, through the following steps: (1) the
expression values of the immune cell type markers are, individually, ranked from
the lowest to the highest levels using a score that goes from 1 to 348 (total number
of samples analyzed); (2) when there is a tie (equal expression value of a gene in n
samples) the final rank for the tied samples is the average among these n ranks,
similarly to what happens in the Wilcoxon signed-rank test®; (3) for every sample,
these ranks are averaged across the immune cell type markers (i.e., by columns of
the expression matrix) of the chosen immune cell type, consistently with the
previous point; (4) a cell type density score is assigned to each sample by using
these rank averages. Of course, this procedure (a) assigns to each sample as many
immune cell density scores as the analyzed immune cell types and (b) is inde-
pendent of the preliminary CD14-based reordering of the samples, which is instead
used for assessments concerning the survival of the immune cell types. Addi-
tionally, this ranking procedure is unambiguous, with the only exception of two
samples, which have the same normalized RSEM expression levels of CD14.
However, the presence of these two samples does not introduce any relevant bias in
the analyses here described, since both patients belong to the group that over-
expresses CD14 and even share the same subtype (Classical). Altogether, this
semiparametric procedure (steps 1-4) is similar to what was previously described®”
for calculating immune gene signatures, but is preceded by the non-parametric
steps 1 and 2. This approach is different from deconvolution methods such as
CIBERSORT®® and TIMER® because, in theory, with our algorithm, a sample can
be relatively enriched with respect to the broadest range of immune cell types (from
none to all). It also differs from ssGSEA”?, since it assesses the under- and over-
representation of the genes that belong to a gene set working across the samples
(i.e., relatively to them).

Analysis of the immune cell types: computational visualization of the CD14 +
infiltrates. Individual genes of the 9 CD14 + populations (i.e., aDC, DC, iDC, IMs,
M1, M2, Macrophages, MDSC and Neutrophils) were also hierarchically clustered,
after the gene expression values were log2 transformed and median centered (see
section “Analysis of RNA-Seq data: visualization of the clustered expression
matrix”); genes belonging to two distinct immune cell types were used for the HMs
of both.

Analysis of the immune cell types: correlations among immune infiltrates and
survival analysis based on the density of the CD14 + cell types. Immune cell
type density scores are used for two main purposes: (i) evaluating the level of
correlation between the 29 immune cell types, in order to understand their coor-
dinated biological action in these patients; (ii) calculating, for the 9 CD14 +
populations, the differential in survival of samples having “high” (> median) vs.
“low” (< median) cell type density scores. The correlations among cell types are
measured using the Spearman correlation coefficient and displayed in a heat map
where these coefficients, after being hierarchically clustered in both dimensions
(i.e., across matrix rows and columns) without neither data transformation nor
row/column centering, are coded by a gradient of colors whose extremes are,
respectively, minimum and maximum of the entire matrix of correlation coeffi-
cients. Clearly, this heatmap/matrix a;; is symmetrical with respect to its main
diagonal (a;«j» = aj- ). The above-mentioned survival analysis was based on the
log-rank test and, for every test, p-value, HR and +95% confidence interval (CI) of
the HR were calculated. Thereafter, (i) p-values and (ii) CD14 scores vs. HRs were
separately plotted. We have defined the CD14 scores of these nine cell types as the
rank of the ratios between the average cell type density score in the high vs. low
CD14 groups of samples (with respect to the median expression level of CD14
itself). These scores are used to assess the level of density of each cell type as a
function of CD14 expression. Specifically, y = 9 when this ratio is the highest and y
=1 when this ratio is the lowest. Notably, HR > 1 for each of these nine cell types,
since when their density is “high” the prognosis, collectively speaking, is always less
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favorable (even though sometimes in a minor or negligible way, like in particular it
happens for the M1 macrophages) than for LUSC patients, who have a “low”
density of these immune cell types.

Analysis of gene sets. In order to deal with the level of ‘sparsity’ of the gene
expression matrix and with the specific type of signal of TCGA RNA-Seq data, a
number of gene expression rows were trimmed from the expression spreadsheet of
LUSC patients before running a gene-set based analysis; this pre-processing step
prevents the inflation of positive results. Specifically, all those genes either (i) that
had an average expression value strictly in the lowest 1/8 of the dataset or (ii) that
had a standard deviation strictly in the lowest 1/8 of the dataset, or iii) for which
samples having a signal (defined as a value > 0.5) were strictly in the lowest 1/8 of
the dataset, were disregarded. Then, Gene Set Enrichment Analysis (GSEA)”! was
run using this trimmed matrix of gene expression (with 17,398 genes) after splitting
(inside the categorical class (cls) file) the samples of the four subtypes into the two
groups CB (208 samples total) and PS (140 samples total). As previously men-
tioned, these two aggregates were created based on the correlations among their
genes and ordered based on the gene expression gradient of their constitutive
subtypes (see section “Analysis of RNA-Seq data: definition of the upper and lower
portion of the clustered expression matrix”). GSEA was directly run using the gene
symbol identifiers and the number of sample label permutations was set at 1,000.
Additionally, the cutoff thresholds for gene set sizes were 15 and 500, respectively
at the upper and lower end, and the ‘metric’ used for ranking the genes was the
signal-to-noise (S2N). The gene matrix transposed (gmt) file, which was curated by
the Molecular Signatures Database (MSigDB) (http://software.broadinstitute.org/
gsea/msigdb/) and allows defining the gene sets that are tested for enrichment, is
C7-Immunologic Signatures v.5.0; this file contains 1,910 immune-related gene
sets. Due to the exclusion values above defined and to the sizes of these gene sets,
all of them were included in the analysis. The enrichment score (ES) of a gene set
measures the level of enrichment found in the ranked list for that gene set; for our
analysis, the ranking gave the highest priority to the genes of the PS aggregate. We
considered statistically significant gene sets having a FDR < 0.05; this significance
threshold is considerably lower than the value (i.e., 0.25) originally suggested by the
Authors of the GSEA method and provides a high degree of selectivity. Among the
selected gene sets, we performed a further refinement (context-based) according to
their relationships with the biological findings described in this article. In con-
sideration of the gene expression gradient of the four subtypes from Classical to
Secretory and for the sake of brevity, the word Classical is (extensively) used, in the
figures of this article, as representative of CB, while the word Secretory represents
the PS ensemble.

Microarrays-based analysis of the gene expression of a mouse model of lung
squamous carcinoma. The Affymetrix Mouse Gene 2.1 ST Array (http://www.
thermofisher.com/us/en/home.html) was used for measuring the gene expression
of a) normal murine bronchial epithelial cells (MBEC), b) the KLN205 murine lung
squamous (parental) cell line, and ¢) its sub-clone LN4K1. The CEL file processing
was performed using the Affymetrix Expression Console; background adjustment,
quantile-normalization and summarization were accomplished using the Robust
Multichip Analysis (RMA) algorithm’2. Later, the set of RNA probes that are
included in this array (41,345) was split into two distinct sets. The list of probes
used for this analysis, together with the available Affymetrix annotation, is reported
in Supplementary Data 12. After these bioinformatics steps, the differential analysis
is based on two sequential computational procedures. In the first procedure, genes
are selected when (i) are differentially expressed between MBEC (4 replicates) and
KLN205 (three replicates), or (ii) are differentially expressed between MBEC and
the metastatic-derived cell line LN4K1 (three replicates) or (iii) fulfill both (i) and
(ii). At this stage, a gene is considered differentially expressed between two groups
of replicates when a) its expression levels are strictly higher or lower than in the
other group for each replicate used (combinatorics-based implied p-value: 0.0286);
(b) the difference between the means of the two groups is = 50%; c) its range is in
the top 75% in the entire set of genes. The second procedure allows defining which
genes follow a gradient of expression (growth or reduction) going from MBEC to
KLN205 parental to the sub-clone LN4K1 (hence moving from “normal” to
“primary tumor” to “metastasis”), so that this expression gradient is sustained
across all the replicates of the three experimental conditions. For each gene, the
growing pattern (pattern A) is sub-divided into two sub-patterns, namely A-1 and
A-2, which are not mutually exclusive. The sub-pattern A-1 is based on the fol-
lowing requirements (which are extensively described for more easily allowing
assessing the level of overlap with the sub-pattern A-2): (i) all the LN4K1 samples
have a strictly greater expression than all the KLN205 samples; (ii) all the
KLN205 samples have a strictly greater expression than all the MBEC samples; (iii)
the average expression for the LN4K1 samples is strictly greater than the average
expression for the KLN205 samples. The sub-pattern A-2 is based on the following
requirements: (i) the expression of each LN4K1 sample is strictly greater than the
average expression across all the samples considered (10 =4+ 3 + 3); (ii) the
expression of each KLN205 sample is strictly lower than the average expression
across all the samples considered; (iii) the expression of each MBEC sample is
strictly lower than the average expression across all the samples considered.
Similarly, for each gene, the dropping pattern (pattern B) is sub-divided into two
sub-patterns, namely B-1 and B-2, which are also not mutually exclusive. The sub-
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pattern B-1 is based on the following requirements (extensively described, as for A-
1): (i) all the LN4K1 samples have a strictly lower expression than all the
KLN205 samples; (ii) all the KLN205 samples have a strictly lower expression than
all the MBEC samples; (iii) the average expression for the LN4K1 samples is strictly
lower than the average expression for the KLN205 samples. The sub-pattern B-2 is
based on the following requirements: (i) the expression of each LN4K1 sample is
strictly smaller than the average expression across all the samples considered; (ii)
the expression of each KLN205 sample is strictly higher than the average expres-
sion across all the samples considered; (iii) the expression of each MBEC sample is
strictly higher than the average expression across all the samples considered.
Overall, a gene is selected when is differentially expressed and follows either gene
pattern A or B. These selection steps generated a gene expression spreadsheet
containing 2368 genes. Finally these genes are displayed in a HM, where selected
genes are hierarchically clustered after their data have been log2 transformed and
mean centered (see section “Analysis of RNA-Seq data: visualization of the clus-
tered expression matrix”).

Determination of gene ontology biological processes shared between the
LUSC mouse model and LUSC patients. In order to understand which biological
processes are potentially involved in LUSC progression while being micro-
environment-independent, we used an analysis inspired by the work of Xu et al.32,
Preliminarily, we discarded entries of the murine array without a gene symbol.
Then, for every gene of the Affymetrix array that had multiple entries, we selected
(a) one of them, indifferently, when the numerical values were identical for all
samples, due to repeated annotation/listing of the same gene or (b) the entry
having the highest standard deviation across these two sets of murine samples.
Then, orthologous genes between mouse and human and that were defined as
differentially expressed between MBEC and LN4K1 samples (see the previous
section) were included in the matched list of TCGA LUSC differentially expressed
genes when: (a) had a percentage of presence across the samples of the Classical
and Secretory subtypes greater than 60%; (b) the Benjamini-Hochberg FDR>®
calculated on the Wilcoxon rank sum test p-values between Classical and Secretory
(after passing the previous gene filter) was < 0.00005. The choice of these two
subtypes was based on their highest level of genomic dissimilarity (see section
“Analysis of RNA-Seq data: genomic dissimilarity among subtypes”). Genes of
these two subtypes were split according to having the ratio median(Classical)/
median(Secretory) above or below 1 and clustered, as for the TCGA LUSC RNA-
Seq data, in two separate heat maps, as described in section “Analysis of RNA-Seq
data: visualization of the clustered expression matrix”. Then, the corresponding
murine genes of the MBEC and LN4K1 samples of the Affymetrix arrays were
aligned to the human genes and displayed through two additional heat maps (for
ratios of the medians above and below 1 as well), using the visualization style
adopted in the main analysis of our mouse model of lung squamous carcinoma (see
the previous section). Genes of these two groups were used for two separate GO
analyses (see section “Gene ontology analysis of RNA-Seq data”), with “Homo
sapiens” as background species and selecting GO-BP terms whose p-values were <
0.001 and, at the same time, containing at least 10 genes of either of these two
groups.

ELISA assays. Murine CCL2 protein levels were quantified by ELISA using the
DuoSet Immunoassay kit (R&D Systems DY479-05 and DY008) according to the
manufacturer’s protocol. To assess secretion of CCL2 in vitro, 344SQ, KLN205, and
LN4K1 were seeded at a density of 400,000 cells per well in 3 mL of media in 6-well
plates. Supernatant was collected 48 h later and stored at —80 °C. For analysis of
plasma CCL2 levels, blood (approximately 200 uL per mouse) from 3 to 5 mice per
group was obtained 1-week prior to sacrifice via submandibular bleed using a
Goldenrod lancet (4 mm). Blood was collected into Vacutainer Blood Collection
Tubes with anti-coagulant. Tubes were centrifuged at 25,000¢ at 4 °C for 5 min,
then plasma was collected and stored at —80 °C until assay. Samples were assayed
in triplicate and data represents the mean concentration.

Proliferation assays. KLN205 and LN4K1 cells were seeded at a density of 25,000
cells per well in 6-well plates in triplicate and counted on a hemocytometer using a
Trypan Blue counterstain.

Monocyte fibrin cross-linking protocol. Low (25k) and high (100k) density of
monocytes were incubated with unfractionated or Peak 1 fibrinogen (Enzyme
Research Laboratories, South Bend, IN), in the absence and presence of T101
(Zedira, Darmstadt, Germany) for 15 min at 37 °C. Clotting was triggered with
thrombin (Enzyme Research Laboratories, South Bend, IN) and CaCl, (1 U/mL
and 10 mM, final, respectively) and clot formation proceeded for 2 h. Samples were
then dissolved in 50 mM dithiothreitol, 12.5 mM EDTA, and 8 M urea at 60 °C for
1h, diluted 120-fold in 6 x reducing SDS sample buffer (Boston Bioproducts,
Ashland, MA), boiled, separated on 10% Tris-Glycine gels (Bio-Rad, Hercules,
CA), and transferred to polyvinylidene difluoride membranes (Invitrogen, Carls-
bad, CA). Membranes were blocked for 1h at room temperature with Odyssey
Blocking Buffer (LI-COR Biosciences, Lincoln, NE), incubated overnight at 4 °C
with primary anti-human fibrinogen polyclonal antibodies (Clone A0080, Dako,
Glostrup, Denmark), and then incubated with Alexa Fluor®-488 fluorescence-
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labeled anti-rabbit secondary antibodies (Immunoresearch, West Grove, PA) for 1
h at room temperature. Membranes were scanned on a GE Typhoon FLA-9000
Imager (GE Healthcare, Pittsburgh, PA). Fibrin(ogen) bands were quantified by
densitometry (ImageJ 1.48 v). Band intensities of fibrin y-y dimers and high
molecular weight cross-linked fibrin species were normalized to the fibrin(ogen)
Bp + B-chain before normalizing to time zero.

Invadopodia assays. LN4K1 cell lines (50,000) were mixed with 200 ug/mL
Fibronectin, 2mM CaCl, with 2 mg/mL unfractionated fibrinogen or Peak 1
fibrinogen. Coagulation was induced with 2.5 U/mL thrombin by incubating at 37 °
C for 30 min. Clot-embedded cells were incubated with MEM medium supple-
mented with 10% FBS at 37 C in cell culture incubator. The images were captured
on clot-embedded cells at 24 h by using phase contrast or fluorescence microscopy.
Elongated or stellate structures of cells were classified as invadopodia, whereas
others (round shaped cells) designated as negative for the formation of invado-
podia. Percent Invadopodia were calculated as invadopodia-forming cells divided
by a total number of cells in each of six fields.

Invasion assays. LN4K1-GFP (50,000 cells) and bone marrow-derived IMs
(100,000 cells) were mixed with 200 ug/mL Fibronectin, 2 mM CaCl,, and either 2
mg/mL unfractionated fibrinogen, Peak 1 fibrinogen or BD Matrigel (total final
volume of 50 pL) on top of a Boyden 8 pm migration chamber. Coagulation was
induced with 2.5 U/mL thrombin by incubating at 37 °C for 15 min. Clot-
embedded cells were incubated with serum free MEM medium (100 pL), and
MEM + 10% FBS was used as a chemoattractant in the bottom chamber. Invasion
was assessed 24 h later. For experiments using T101, a concentration of 50 uM was
used.

Analysis of NFkB-dependent CCL2 induction. LN4K1 cells were subjected to NF-
kB subunit p65 silencing or IKKp inhibition by transfecting with 25 nM p65-
specific or non-specific control siRNA using Lipofectamine RNAiMAX (Invitro-
gen, Carlsbad, CA) or by treating with 5 uM Compound A, an IKKp inhibitor, for
5 h. Twenty-four hours after siRNA transfection, the medium was replaced, after
which the cells were incubated for an additional 24 h and then treated with 100 ng/
ml recombinant TNF for 2 h. After all treatments, the cells were harvested in RNA
lysis buffer and subjected to RT-qPCR analysis.

Western blotting. After treatments, cells were lysed by scraping in RIPA buffer
(ThermoFisher, cat no. PI89901) containing 1 mM PMSF, 1 mM NaVO,, 1 mM
dithiothreitol, and 1 x protease inhibitor cocktail. Equal amounts of lysates (20-30
ug of total protein) were run on 10% SDS-PAGE gels, after which protein was
transferred to nitrocellulose membranes (BioRad, Hercules, CA). Membranes were
blocked in 5% BSA/Tris-buffered saline-Tween 20 (TBS-T) for one hour at room
temperature prior to probing with primary antibodies overnight at 4 °C. Primary
antibodies included anti-phospho-p65 (Ser 536, clone 93H1, #3033) and anti-p65
(clone D14E12, #8242) from Cell Signaling Technology (Danvers, MA), and anti-
vinculin (clone hVIN-1, #V9131) from Sigma. After probing with primary anti-
bodies, membranes were washed three times in TBS-T and then probed with the
appropriate horseradish peroxidase-conjugated secondary antibodies (anti-mouse
(#115-035-003) or anti-rabbit (#111-035-003) from Jackson ImmunoResearch).
Then, the membranes were washed four times in TBS-T and developed using
Clarity Western ECL substrate (BioRad, #1705060). Membranes were visualized
using a BioRad ChemiDoc MP system (BioRad, Hercules, CA).

Flow cytometry. Blood, Bone marrow and tumors were collected for flow cyto-
metry analysis. Lung tissues were washed and mechanically minced using a sterile
scalpel in low glucose DMEM and digestion media (1 mL collagenase at 2 mg/ml,
and 15 uL DNase at 1 mg/mL). Tissue was digested into a single cell suspension by
light shaking in digestion media for 30 min at 37 °C and was then filtered through a
40-uM cell strainer, pelleted, treated with ACK lysis buffer at room temperature for
2 min, and then pelleted again. Cells were re-suspend in FACS buffer (0.5% BSA
and 2mM EDTA in PBS) at a concentration of ~10° cells/100 pL. Samples were
incubated with Fc block (10uL/100pL) on ice for 15 min and then with the fol-
lowing antibodies: CD45 (APC-conjugated, #103112 Biolegend), CD11b (PE/Cy5
conjugated, #101210 Biolegend), Ly6C (PE/Cy7-conjugated, #128018 Biolegend),
NK1.1 (PE/Cy7-conjugated, #108714 Biolegend), Ly6G (PE-conjugated, #127608
Biolegend), CD25 (PE/Cy7-conjugated, #102016 Biolegend), CD49b (PE-con-
jugated, #108908 Biolegend), CD8a (FITC-conjugated, #100706 Biolegend), TCR f
chain (PE-conjugated Cat#109208 Biolegend), Siglec-F (BV421-conjugated,
#562681 BD bioscience), F4/80 (FITC-conjugated, #123108 Biolegend), MHCII
(PE-conjugated, #107608 Biolegend), CD11c (PE/Cy7-conjugated, #117318 Biole-
gend), CD4 (APC/Cy7-conjugated Cat#100414, Biolegend), CD206 (BV785-con-
jugated, Biolegend, clone C068C2), gdTCR (BV605-conjugated, Biolegend, clone
GL3) and LIVE/DEAD® Fixable Violet Dead Cell Stain (# L34963 ThermoFisher
Scientific). Approximately 0.2 g of antibody was used for every 10° cells. Cells
were incubated with antibody for 30 min on ice, in the dark. Cells were then
washed two times with FACS buffer and taken for flow cytometry analysis on an
LSRFortessa. The collected data were analyzed using FlowJo software V10. When
performing FACS on lung tissues, Siglec-F positive cells were included with dead
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cells to remove alveolar macrophages and/or eosinophils. IMs were identified as
CD45 + /CD11b + /Ly6CHigh/Ly6G- cells, RMs as CD45 + /CD11b + /Ly6CLo%/
Ly6G-, granulocytes as CD45 + /CD11b + /Ly6C-/Ly6G + and gated on CD11b.
TMAs as CD45 + /Gr1-/TCRb-/SiglecF-/CD11b + /F480 + /MHCII 4+ and CD206
was used to distinguish high and low subsets, DCs as CD45 + /Gr1-/TCRb-/
SiglecF-/CD11c + /F480-/MHCII +, natural killer cells as CD45 + /TCRb-/NK1.1
+/CD49 +, CD4 + T-cells as CD45 + /TCRb + /CD4 + /CD25-, CD8 + T-cells as
CD45 + /TCRb + /CD8 + and regulatory T cells as CD45 + /TCRb + /CD4
+/CD25 +.

Quantitative real-time PCR. For mRNA quantification, total RNA was extracted
from cells using the Quick RNA MiniPrep Zymo Research Kit (Genesee Scientific).
Using 1000 ng of RNA, cDNA was synthesized using an iScript cDNA Synthesis
Kit (Bio-Rad) as per the manufacturer’s instructions. Analysis of mRNA levels was
performed on a StepOnePlus Real-Time PCR System (Applied Biosystems). Spe-
cific primers for [CCL2 (murine) (forward)-AGCACCAGCCAACTCTCACT,
(reverse)-TCATTGGGATCATCTTGCTG; CCL3 (murine) (forward)-
CCTCTGTCACCTGCTCAACA, (reverse)-GATGAATTGGCGTGGAATCT;
CSF-1 (murine) (forward)-CGAGTCAACAGAGCAACCAA, (reverse)-
TGTCAGTCTCTGCCTGGATG; RelA/p65 (murine) (forward)-
GCTCCTGTTCGAGTCTCCAT, (reverse)- TTTGCGCTTCTCTTCAATCG;
F13al (murine) (forward)- GAGCAGTCCCGCCCAATAAG, (reverse)-
CCCTCTGCGGACAATCAACTTA; VEGFa (murine) (forward)- AACGAT-
GAAGCCCTGGAGTG, (reverse)- GACAAACAAATGCTTTCTCCG] were used
for SYBR Green-based real-time PCR, and 18 s rRNA was used as a housekeeping
gene. PCR was done with reverse-transcribed RNA, 1 uL each of 20 uM forward
and reverse primers, and 2 x PowerUp SYBR Green Master Mix in a total volume
of 25 pL. TagMan Assays (Applied Biosystems) were used for TNFa expression
(Mm00443258), and GAPDH (Mm99999915_g1) was used as a housekeeping
gene. PCR was done with reverse-transcribed RNA, 20 x TagMan probe, and
TagMan Universal Master Mix II as per the manufacturer’s instructions. For both
SYBR and TagMan-based PCR, each cycle consisted of 15 s of denaturation at 95 °
C and 1 min of annealing and extension at 60 °C (40 cycles). Reactions were run in
triplicate.

mRNA microarray. Total RNA was extracted from MBECs, KLN205, and
LN4K1 cells using the Quick RNA MiniPrep Zymo Research Kit (Genesee Sci-
entific). RNA purity was assessed by a Nanodrop (Thermo Scientific) spectro-
photometric measurement of the OD260/280 ratio, with acceptable values falling
between 1.9 and 2.1. The RNA integrity number (RIN score) was determined using
an Agilent TapeStation 2200 with acceptable values considered to be above 7.5.
Total RNA (250 ng) was used to synthesize fragmented and labeled sense-strand
cDNA and hybridize onto Affymetrx arrays (Affymetrix Mouse Gene 2.1 ST 16-
Array Plate (902139)). The Affymetrix HT WT User Manual was followed to
prepare the samples. Briefly, the WT Expression HT Kit for Robotics (Ambion)
was used to generate sense-strand cDNA from total RNA. Following the synthesis
of sense-strand cDNA, the cDNA was fragmented and labeled with the Affymetrix
GeneChip HT Terminal Labeling Kit. The Beckman Coulter Biomek FXP
Laboratory Automation Workstation with the Target Express set up was used to
prepare the samples with these two kits. Fragmented and labeled cDNA was used to
prepare a hybridization cocktail with the Affymetrix GeneTitan Hybridization
Wash and Stain Kit for WT Arrays. Hybridization, washing, staining and scanning
of the Affymetrix peg plate arrays was carried out using the Affymetrix GeneTitan
MC Instrument. Affymetrix GeneChip Command Console (AGCC) Software was
used for GeneTitan Instrument control.

Immunostaining. Staining was performed in formalin-fixed, paraffin embedded
tumor sections (8 pm thickness). After deparaffinization, rehydration and antigen
retrieval, 3% H,0, was used to block the endogenous peroxidase activity for 10
min. Protein blocking of non-specific epitopes was done using 5% normal horse
serum + 1% normal goat serum in TBS-T for 20 min, 2.8% fish gelatin in TBS-T
minutes, or for monoclonal mouse anti-mouse antibodies, an Avidin/biotin kit
(Vector Lab SP-2001) and Vector MOM immunodetection kit (BMK-2202) were
used for blocking. Slides were incubated with primary antibody for KRT5 (rabbit
anti-mouse, 1:500, Dako Z0622), p63 (monoclonal mouse anti-mouse, 1:100,
Biocare CM 163), CD-31 (rat anti-mouse, 1:400, Pharmingen 553370), TTE-1
(monoclonal mouse anti-mouse, 1:200, Dako M3575), or Ki-67 (rabbit anti-mouse,
1:200, Abcam ab15580) overnight at 4 °C in blocking solution. After washing with
PBS, the appropriate amount of horseradish peroxidase-conjugated secondary
antibody was added and visualized with 3,3’-diaminobenzidine chromogen and
counterstained with Gill’s hematoloxylin #3. Light field images were obtained using
a Nikon phase microscope. To quantify microvessel density (MVD), we examined
5-10 random fields at 100 x magnification for each tumor (5 tumors per group)
and counted the microvessels within those fields. A vessel was defined as an open
lumen with at least one adjacent CD31-positive cell. Multiple positive cells beside a
single lumen were counted as one vessel, and quantification was performed by two
investigators in a blinded fashion. Proliferation indices were determined using
three representative fields at 200 x magnification for each tumor (5 tumors per
group). All Ki-67 positive cells per high-powered field were enumerated. Ki-67
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expression was analyzed using CellProfiler 2.0 software”> to quantify the number of
positively staining cancer cells per high-powered field (200 x magnification). Tissue
microarray samples for lung squamous cell carcinoma cancers (previously cate-
gorized according to mRNA subtype)® were obtained and prepared following
institutional review board approval for UNC Chapel Hill. Working with UNC’s
tissue pathology laboratory, the tissue microarrays were stained for CD14 (Leica
Biosystems: mouse monoclonal anti-human CD14, #NCL-L-CD14-223, clone 7)
and cross-linked fibrin (Zedira, mouse anti-human cross-linked fibrin, A076,
1:1,500 dilution). For multiplexed staining, rabbit monoclonal antibody against
CD14, clone EPR3653, # 114R-14 was from Cell Marque (Rocklin, California),
mouse monoclonal antibodies were: anti-CCR2, clone 7A7, # ab176390, (Abcam,
Cambridge, MA), anti-CK, clone AE1/AE3, # M3515 (Agilent Technologies/
DAKO, Santa Clara, CA), anti-CD206, # ab64693, (Abcam, Cambridge, MA) and
anti-D-Dimers (cross-linked fibrin), # A079 (Zedira GmbH, Darmstadt, Germany).
Single IHC and triple IF (3plex IF) stains were carried in the Leica Bond-III fully
automated staining platform (Leica Biosystems Inc., Norwell, MA). Slides were
dewaxed in Bond™ Dewax solution (AR9222) and hydrated in Bond Wash solution
(AR9590). Epitope retrieval for all targets were done for 20 min in Bond-epitope
retrieval solution 1 pH6.0 (AR9661). The epitope retrieval was followed with 5 min
endogenous peroxidase blocking using Bond peroxide blocking solution (DS9800)
and 10 min protein blocking only for CK. For the 3-plex CD14-CCR2-CK
immunofluorescence stain the application order and incubation times of the pri-
mary and secondary antibodies and the TSA systems were the following: (1) CD14,
1:200, 2 h, Bond polymer (DS9800) 8 min, Tyramide Reagent Alexa Fluor™ 488
(1:50) 15 min (#B40953, Life Technolonogies), (2) CCR2- 1:400, 1 h, Bond post
primary (DS9800)- 8 min, Bond polymer-8 min, and TSA-Cy5 (1:50)-15 min
(#SAT705A001EA, Perkin Elmer), and (3) CK- 1:500, 1 h, Bond post primary- 8
min, Bond polymer- 8 min, and TSA-Cy3 (1:50)-15 min (#SAT704A001EA, Perkin
Elmer). Between the stains the appropriate antigen retrieval (10 min) and peroxide
blocking steps were inserted. Stained slides were counterstained with Hoechst
33258 (#H3569, Life Technologies) and mounted with ProLong® Diamond Anti-
fade Mountant (P36961, Life Technologies). Single stain controls were done for
3plex IF when one primary antibody was omitted to make sure that cross reactivity
between the antibodies did not occur. For single IHC stain D-Dimers antibody
(1:1500) was applied for 30 min and detection was done using Bond™ Polymer
Refine kit with 3,3’-diaminobenzidine (DAB) visualization and Hematoxylin
counterstain (DS9800). Stained slides were dehydrated and coverslipped. Positive
and negative controls (no primary antibody) were included for IHC and IF stains.
THC were digitally imaged in the Aperio ScanScope XT (Leica Biosystems Inc.,
Norwell, MA) using 20 x objective. High resolution acquisition of CD14-CCR2-CK
IF slides in the DAPI, AF 488, Cy3 and Cy5 channels was performed in the Aperio
ScanScope FL (Leica) using 20 x objective. Nuclei were visualized in DAPI channel
(blue), CD14 in AF 488 (green), CK in Cy3 (cyan) and CCR2 in Cy5 (red). Using
Aperio software, following color deconvolution, a previously described IHC scoring
criteria using Aperio software was utilized to obtain H-scores for CD14 and cross-
linked fibrin expression’, For automated scoring of multiplexed images, slides
containing fluorescently labeled TMAs sections were scanned in the Aperio
ScanScope FL (Leica Biosystems) using 20 x objective and images were archived in
TPL’s eSlide Manger database (Leica Biosystems). Cytokeratin staining was used to
digitally separate tissue cores into cytokeratin positive and negative regions (Tissue
Studio Composer; Tissue Studio version 2.5 with Tissue Studio Library version 4.2;
Definiens Inc., Carlsbad CA). Automated digital analysis of individual tissue cores
was run separately in these two regions. Tissue Studio software, specifically the
Nuclei and Simulated Cells algorithm in the IF Portal, was then used to detect and
enumerate cells that co-expressed biomarkers of interest in the annotated regions.
Briefly, nuclei were digitally detected by the presence of Hoechst stain (nuclear
counterstain). From these nuclei, a cell simulation was performed - cells margins
were grown out from nuclear boundaries. For this dataset, positivity thresholds for
CD14 + and CCR2 + were determined by measuring the average staining inten-
sities both inside and outside simulated cells. Once thresholds were set, the algo-
rithm evaluated each cell individually for the presence of CD14 and CCR2. Cells
that were negative for both markers or positive for CD14, CCR2 and both CD14
and CCR2 were enumerated by the algorithm.

Immunocytochemistry. Cells were centrifuged at 1,000 rpm for 5min in a
Cytospin 3 (Shandon). Cells were then fixed with 4% PFA for 15 min and per-
meabilized with 0.25% Tween 20 in PBS for 15 min at RT. Protein blocking was
done with 2% BSA and 0.25% Tween for 1h at RT. Slides were incubated with
primary antibody for CD11b (rabbit, 1:100, Abcam ab133357) and/or FXIII (sheep,
1:100, Enzyme Research Labs SAF13A-AP) in blocking buffer at 4 °C for 16 h. After
washing cells were incubated with appropriate secondary antibodies, goat anti-
rabbit (Alexa Fluor 488) and/or goat anti-sheep (Alexa Fluor 594), diluted 1:500 in
blocking buffer for 1h at RT. Hoechst (1:10,000) was used for nuclear staining.
Coverslips were mounted with Prolong Gold (Invitrogen). A Leica DMi8 inverted
microscope was used for fluorescent micrography. A Zeiss 710 confocal microscope
was used for confocal imaging. All image processing was done with FIJI software.

Statistical analysis for experiments and tissue microarrays. Between 5 and 10
mice were assigned per treatment group; this sample size gave approximately 80%
power to detect a 50% reduction in tumor weight with 95% confidence. Results for
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each group were compared using Student ¢ test (for comparisons of two groups)
and analysis of variance (for multiple group comparisons). For values that were not
normally distributed (as determined by the Kolmogorov-Smirnov test), the
Mann-Whitney rank sum test was used. A P-value less than 0.05 was deemed
statistically significant. Aggregated data of Supplementary Figure 4 were analyzed
through a two-tailed binomial test (CD206 + vs. CD206- cells in the population of
CD14 + /CCR2 + cells), with an expected frequency of 0.5 for each ‘trial’, using R.
All other statistical tests for in vitro and in vivo experiments were performed using
GraphPad Prism 7 (GraphPad Software, Inc., San Diego, CA). The multiple
hypothesis testing correction of these results was made using the FDR®®,

Online content. Supplementary and Source Data are available in the online ver-
sion; references unique to these sections appear only in the online version.

Data availability. The Affymetrix microarray data that support the findings of this
study have been deposited in the Gene Expression Omnibus (GEO) data bank,
accession code GSE112585.
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