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Double thermoelectric power factor of a 2D
electron system
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Two-dimensional electron systems have attracted attention as thermoelectric materials,

which can directly convert waste heat into electricity. It has been theoretically predicted that

thermoelectric power factor can be largely enhanced when the two-dimensional electron

layer is far narrower than the de Broglie wavelength. Although many studies have been made,

the effectiveness has not been experimentally clarified thus far. Here we experimentally

clarify that an enhanced two-dimensionality is efficient to enhance thermoelectric power

factor. We fabricated superlattices of [N unit cell SrTi1−xNbxO3|11 unit cell SrTiO3]10—there

are two different de Broglie wavelength in the SrTi1−xNbxO3 system. The maximum power

factor of the superlattice composed of the longer de Broglie wavelength SrTi1−xNbxO3

exceeded ∼5mWm−1 K−2, which doubles the value of optimized bulk SrTi1−xNbxO3. The

present approach—use of longer de Broglie wavelength—is epoch-making and is fruitful to

design good thermoelectric materials showing high power factor.
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Currently, more than 60% of the energy produced from
fossil fuels is lost as waste heat. Thermoelectric energy
conversion, which is the process where waste heat is

transformed into electricity by the Seebeck effect, is attracting
attention as a potential energy harvesting technology1–4. The
performance of thermoelectric materials is generally evaluated in
terms of a dimensionless figure of merit,

ZT ¼ S2 � σ � T � κ�1; ð1Þ

where Z is the figure of merit, T is the absolute temperature, S is
the thermopower (Seebeck coefficient), σ is the electrical
conductivity, and κ is the sum of the electronic (κele) and lattice
thermal conductivities (κlat) of a thermoelectric material.

There are two strategies to improve ZT of a thermoelectric
material. One is to reduce κlat. Recently, state-of-the-art nanos-
tructuring techniques have reduced κlat significantly through
phonon scattering by nanosized structural defects5–8. Such tech-
niques have realized high-performance thermoelectric materials
with a large ZT of 1.5−2. The other strategy is an enhancement of
the product S2∙σ, which is called power factor (PF). However, it is
extremely difficult to enhance PF due to the trade-off relationship
between S and the carrier concentration (n). Therefore, PF has a
local maximum value in three-dimensional (3D) bulk systems.

In a two-dimensional electron system (2DES) such as
metal/insulator superlattices, electron carriers are confined within
a thin layer (thickness thinner than the de Broglie wavelength,
λD). 2DES is an efficient strategy to achieve an enhanced PF. The
effectiveness of 2DES was theoretically predicted by Hicks and
Dresselhaus9; 2DES in extremely narrow layers exhibits an
enhanced S without reducing σ because the density of states
(DOS) near the bottom of the conduction band increases as the
2DES layer thickness decreases. These layers are narrower than
the λD,

λD ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 �m� � kB � T
p ; ð2Þ

where h, m*, and kB are Planck’s constant, effective mass of
conductive electron or hole, and Boltzmann constant, respec-
tively9–13.

Many experimental studies have been made to clarify the effec-
tiveness of 2DES to enhance PF using PbTe/Pb1−xEuxTe multiple-
quantum-well10, electron-doped SrTiO3-based superlattices14,15,

SiGe-based superlattices16,17, and Bi2Te3-based superlattices18.
These 2DES layers showed enhanced S. However, total enhance-
ment of PF was very small because of the insulator layer thickness.
Thus, the effectiveness of 2DES has not been experimentally
clarified thus far.

Here we experimentally clarify that an enhanced two-
dimensionality is efficient to improve thermoelectric PF. We
fabricated superlattices of [N unit cell SrTi1−xNbxO3|11 unit cell
SrTiO3]10—there are two different de Broglie wavelength in the
SrTi1−xNbxO3 system. The maximum PF of the superlattice
composed of the longer de Broglie wavelength SrTi1−xNbxO3

exceeded ~5mWm−1 K−2, which doubles the value of optimized
bulk SrTi1−xNbxO3. The present approach—use of longer de
Broglie wavelength—is epoch-making and is fruitful to design
good thermoelectric materials showing high PF.

Results
Hypothesis. In order to enhance total PF of 2DES, two-
dimensionality should be enhanced. Use of longer λD should be
effective if the electron carriers are confined within a defined
thickness layer (Fig. 1). Very recently, we observed a steep
decrease in m*/me at x ~ 0.3 in SrTiO3–SrNbO3 solid solution
system, SrTi1−xNbxO3 (x is ranging from 0.05 to 0.9; Fig. 2)19.
The ratio x of SrTi1−xNbxO3 can be divided into two regions,
region A (x is <0.3) and region B (x is >0.3). The origin of the two
regions is most likely due to the difference in the overlap
population between the Ti 3d and Nb 4d orbitals (rTi3d is 48.9 pm
and rNb4d is 74.7 pm)20. We calculated λD values of SrTi1−xNbxO3

using the Eq. (2). The λD value in region B is ~5.3 nm, which is
27% longer than that in region A (~4.1 nm). One can expect that
S-enhancement factor in region B is much higher than that in
region A because of higher two-dimensionality. Therefore, we
hypothesized that SrTi1−xNbxO3-based 2DES can be used to
clarify the effectiveness of 2DES to enhance PF experimentally.

We fabricated [N uc SrTi1−xNbxO3|11 uc SrTiO3]10 super-
lattices (N is ranging from 1 to 12, x is ranging from 0.2 to 0.9) by
a pulsed laser deposition (PLD) technique on insulating (001)
LaAlO3 (pseudo-cubic perovskite, the lattice parameter, a is 3.79
Å) single-crystal substrates using dense ceramic disks of a
SrTiO3–SrNbO3 mixture and SrTiO3 single crystal as the targets.
The thicknesses of different layers were monitored in situ using
the intensity oscillation of the reflection high-energy electron
diffraction (RHEED) spots. (See Experimental Section.) High-
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Fig. 1 Thermoelectric effect of a 2D electron system. a Schematic illustration of thermoelectric Seebeck effect in a 2DES. A thermoelectric power output
(S·ΔT·I) can be obtained when ΔT is introduced. b The hypothesis that a 2DES with longer de Broglie wavelength (λD) shows a larger enhanced factor of
thermopower
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resolution X-ray diffraction (XRD) measurements revealed that
the resultant superlattices were heteroepitaxially grown on (001)
LaAlO3 with cube-on-cube epitaxial relationship with superlattice
structure. Atomically smooth surfaces with stepped and terraced
structure were observed by an atomic force microscopy (AFM).

Microstructure and electronic structure. Figure 3a summarizes
the atomic arrangements of the [1 uc SrTi0.4Nb0.6O3|11 uc
SrTiO3]10 superlattice. Rather bright bands are observed near
each SrTi0.4Nb0.6O3 layer in the Cs-corrected high-angle annular
dark-field scanning transmission electron microscopy (HAADF-
STEM) image. In the magnified image, the #4 atom in the B-site
column is brighter than the nearby atoms. However, there is no
obvious difference in the A-site column, indicating Nb substitu-
tion occurs for the #4 atom in the B-site column. The electron
energy loss spectroscopy signal of #4 is broader than that of the
nearby atoms, implying the coexistence of Ti4+/Ti3+ in the
SrTi0.4Nb0.6O3 layers21. Therefore, in our superlattice fabrication,
Nb ions are successfully confined into 1 uc of SrTi0.4Nb0.6O3

layers22.
In order to clarify the 2DES formation, the electronic band

structures of the [1 uc SrNbO3|10 uc SrTiO3] superlattices were
calculated based on the projector-augmented wave (PAW)
method (Fig. 3b). The EF is located on the higher-energy side
of the conduction band minimum for the first and second
nearest-neighbor SrTiO3 layers (Ti first NN and Ti second NN)
together with the 1 uc SrNbO3 layer (Nb). The electron carriers
can seep from the SrNbO3 layers into the SrTiO3 layer. Delugas
et al.23 have also predicted theoretically that for lower Nb
substituted samples, it is much easier for the electrons, especially
in the dxz and dyz bands, to spread out to the neighboring SrTiO3

layers, reducing the two-dimensionality. However, as the Nb
content increases, the minimum thickness of the barrier layer
may be reduced to 5 uc in the SrNbO3 case. There is no doubt
that the electron diffusion cannot be removed thoroughly in
superlattice structure, but diffusion effects can be effectively
suppressed by the high Nb substitution. From the band
calculation, 2DES in our work is mainly confined to the 1 uc

SrTi1−xNbxO3 layers and should contribute to the S
enhancement.

In order to further confirm the superlattice structure, we
measured the κ of the [1 uc SrTi0.4Nb0.6O3|11 uc SrTiO3]10
superlattice along the cross-plane direction by time-domain
thermal reflectance (TDTR) method. The total κ could be
suppressed to ~3.3Wm−1 K−1, similar to the minimum value of
CaTiO3/SrTiO3-based superlattices (κ ~ 3.2Wm−1 K−1) reported
by Ravichandran et al.24. From these results, we judged that our
[N uc SrTi1−xNbxO3|11 uc SrTiO3]10 superlattices (N is ranging
from 1 to 12, x is ranging from 0.2 to 0.9) are appropriate for
us to clarify the effectiveness of 2DES to enhance PF.

Thermoelectric properties. The electrical conductivity (σ), car-
rier concentration (n), and Hall mobility (μHall) of the
superlattices were measured at room temperature by a con-
ventional d.c. four-probe method with a van der Pauw geometry.
S was measured at room temperature by creating a temperature
difference (ΔT) of ~4 K across the film using two Peltier devices.
Figure 4a summarizes the n-dependent S of [N uc SrTi1
−xNbxO3|11 uc SrTiO3]10 superlattices (N is ranging from 1 to
12, x= 0.2, 0.3, and 0.8) along with bulk (~100-nm-thick SrTi1
−xNbxO3 films, x= 0.2, 0.3, and 0.8, respectively) values for
comparison. The bulk S for x= 0.2 was −143 μV K−1, x= 0.3
was −73 μV K−1, and x= 0.8 was −19 μV K−1. The n value was
measured based on the total thickness of the 2DES, which
includes the insulating SrTiO3 layers. All the 2DES sam-
ples show enhanced thermopower (−S) with a reduced N.
Compared to the bulk samples at a similar n, a much higher −S
is observed in superlattices as N is reduced below 3 uc.

To confirm the increasing two-dimensionality with x, the S-
enhancement factors (S2DES/SBulk) were plotted versus the N
values (Fig. 4b). For 2DES with x= 0.2 and 0.3, the highest S2DES/
SBulk values are around 4 and 5, respectively, whereas that for the
x= 0.8 counterpart is ~10. As hypothesized, the enhanced S2DES/
SBulk should stem from the increasing λD with x. In our
experiment, S2DES/SBulk for the x= 0.2 and 0.3 2DESs are
saturated around 11 uc, which is consistent with λD in region A
(~4.2 nm indicated by dashed line λDA). As λD increases in region
B, the saturation position for the x= 0.8 2DES has a thickness
larger than the λD (~5.2 nm indicated by dashed line λDB). As a
result, a significantly enhanced two-dimensionality is achieved in
the x > 0.3 region B, which fits well with our hypothesis and
suggests that region B has the potential to further enhance the
thermoelectric PF.

Based on the conclusions above, we have enhanced the
thermoelectric PF in [1 uc SrTi1−xNbxO3|11 uc SrTiO3]10
superlattices by adjusting x between 0.2 and 0.9. Figure 5
summarizes the n dependences of the thermoelectric properties of
[1 uc SrTi1−xNbxO3|11 uc SrTiO3]10 superlattices at room
temperature along with the reported bulk values for compar-
ison19. Following the bulk values, σ increases almost linearly with
n (Fig. 5a), indicating that n dominates σ. In the SrTi1−xNbxO3

system, carriers are mostly due to Nb substitution. The high n
also induces a highly Nb substituted region with a superiority in
σ. However, σ for the superlattices remains lower than the bulk
value due to the coexistence of 11 uc SrTiO3 insulating layers.

μHall for lower x of 2DESs (x ≤ 0.5) fluctuates around
3–5 cm2 V−1 s−1, while for higher x 2DESs (x ≥ 0.6) values are
~6 cm2 V−1 s−1 (Fig. 5b). Usually, μHall is controlled by the
conduction band of materials along with the effects of crystal
defects such as impurities and grain boundaries. In the bulk
samples, μHall sharply increases due to the transition of the
conduction band from Ti 3d to Nb 4d as x increases into the
highly Nb substituted region19. This pattern is also observed in
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Fig. 2 SrTiO3–SrNbO3 solid solution: a model system having two different
λD. x-dependent effective mass (m*/me, white symbols) and λD (gray
symbols) for SrTi1− xNbxO3 solid solutions. m*/me exerts a decreasing
tendency with x, resulting in an increased λD. Sharp changes in both m*/me

and λD are detected around x= 0.3 due to the conduction band transition
from Ti 3d to Nb 4d. The properties of SrTi1− xNbxO3 solid solutions can be
divided into two regions based on the conduction bands (Ti 3d→ region A
and Nb 4d→ region B). Inset: schematic illustrations of conduction
electrons at regions A and B. At region B, λD is ∼5.3 nm, while it is ∼4.1 nm
at region A

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04660-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2224 | DOI: 10.1038/s41467-018-04660-4 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Intensity (a.u.)

B-site A-site

HAADF-
STEM

B A

N
b/

T
i

450 460 470

Energy loss (eV)

In
te

ns
ity

 (
a.

u.
)

3

4

5

6

7

Ti L2,3

t2g

eg
t2g eg

SrTi0.4Nb0.6O3

SrTiO3

–0.2

0

0.2 Nb

–0.2

0

0.2 1st NN

–0.2

0

0.2 2nd NN

–0.2

0

0.2 3rd NN

–0.2

0

0.2 4th NN

–4 –2 0 2 4
–0.2

0

0.2

Energy (eV)

5th NN

P
ar

tia
l d

en
si

ty
 o

f s
ta

te
s 

(1
/e

V
/f.

u.
)

Nb

Ti 1st NN

Ti 2nd NN

Ti 3rd NN

Ti 4th NN

Ti 5th NN

Ti 5th NN

Ti 4th NN

Ti 3rd NN

Ti 2nd NN

Ti 1st NN

B-siteEF

10–4 10–3 10–2 10–1

Integral DOS (1/f.u.)

Nb

Ti 1st NN

Ti 2nd NN

Ti 3rd NN

Ti 4th NN

Ti 4th NN

Ti 3rd NN

Ti 2nd NN

Ti 1st NN

a

b

1

2

5 nm

1

2

3

4

5

6

7
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the superlattice counterparts. A higher μHall (≥6 cm2 V−1 s−1) is
observed in samples with x ≥ 0.6 than that for x ≤ 0.5
(3–5 cm2 V−1 s−1). Compared to the bulk samples, all the
superlattices exert a much lower μHall, which may result from
an insufficient crystal quality or electron diffusion into the pure
SrTiO3 barrier layers. Regardless, a conduction band transition
from Ti 3d to Nb 4d is recognized in our superlattice systems.
Due to the high overlapping population of the Nb 4d orbital, a
superior electron transport property is realized in higher x
of 2DES.

Figure 5c plots the S values for all the superlattices versus n
along with the reported bulk values19. The solid line depicts the
overall tendency. In the diagram, the superlattices have a
significantly enhanced –S compared to bulk samples at similar n
values. As indicated by the solid lines, the experimental points for
2DES and bulk show different slopes of –300 and –200 μVK−1

per decade, respectively. The relationship between –S and neff can
be expressed by Eq. (3)

�S ¼ �kB=e � ln 10 � A � log nþ Bð Þ; ð3Þ

where kB is the Boltzmann constant and e is an electron charge. A
and B are the parameters that depend on the type of materials and
their electronic band structures. Bulk shows a 3D electronic band
structure with a parabolic shaped DOS near EF, where the A
value= 1 and the slope reflects a constant value of −kB/e·ln10
(−198 μVK−1). On the other hand, the slope of the 2DESs may
reach −300 μVK−1 per decade, indicating that the A value= 1.5.
Therefore, the 2DESs work well to enhance the S even for the
whole superlattice, including SrTiO3 insulating layers.

Finally, we calculated PF of the [1 uc SrTi1−xNbxO3|11 uc
SrTiO3]10 superlattices (x is ranging from 0.2 to 0.9) using the
observed S and σ values (Fig. 5d). PF is doubly enhanced for x=
0.6 (5.1 mWm−1 K−2 at n ~ 8 × 1020 cm−3). Since the PF values
are scattered due to the rather large distribution of μHall (3–6 cm2

V−1 s−1), we calculated PFs using the relationship between S and
n (c) at constant μHall (6 cm2 V−1 s−1). The optimized PF of the
2DES should be ~5 mWm−1 K−2 at n ~ 8 × 1020 cm−3, which
doubles that of bulk SrTi1−xNbxO3 (PF ~ 2.5 mWm−1 K−2 at n ~
2 × 1021 cm−3).

Discussion
The present 2DES, [1 uc SrTi1−xNbxO3|11 uc SrTiO3]10 superlattices
(x is ranging from 0.2 to 0.9), has several merits to enhance PF as
compared with other 2DESs such as PbTe/Pb1−xEuxTe multiple-
quantum-well10, SiGe-based superlattices16,17, and Bi2Te3-based

superlattices18, which are already commercialized thermoelectric
materials. This is because SrTi1−xNbxO3 can be deposited with 1 uc
layer accuracy by PLD. Therefore, we can easily reduce the 2DEG
thickness to ~0.4 nm (1 uc layer). Further, there are two different λD
in SrTi1−xNbxO3; ~4.1 nm in the low conducting region and ~5.3
nm in the high conducting region. For enhancing PF, both S and σ
play important roles. The present research implies that high con-
ducting region is effective to enhance the thermoelectric PF in the
2DES. Herein highly Nb substitution are revealed to have the
coexistence of both a high electron transport (high n and μHall) and a
high two-dimensionality (large λD).

In summary, we have experimentally clarified that an enhanced
two-dimensionality of 2DES is efficient to improve thermoelectric
PF. We measured the thermoelectric properties of 2DESs [N uc
SrTi1−xNbxO3|11 uc SrTiO3]10 superlattices (N is ranging from 1 to
12, x is ranging from 0.2 to 0.9) because there are two different λD
in this 2DES (x > 0.3: λD~5.3 nm; x < 0.3: λD~4.1 nm). The S-
enhancement factor S2DES/SBulk of the 2DES (N= 1) for x > 0.3 were
~10, whereas those for x < 0.3 were 4–5. Maximum PF of the 2DES
(N= 1, x= 0.6) exceeded ~5mWm−1 K−2, which doubles the
value of optimized bulk SrTi1−xNbxO3 (PF ~ 2.5 mWm−1 K−2).
The present 2DES approach—use of longer λD—is epoch-making
and is fruitful to design good thermoelectric materials showing high
PF.

Methods
Fabrication and analyses of the 2DESs. A series of superlattices with the che-
mical formula of [N uc SrTi1−xNbxO3 | 11 uc SrTiO3]10 (N is ranging from 1 to 12,
x is ranging from 0.2 to 0.9) were fabricated by a PLD technique using dense
ceramic disks of a SrTiO3–SrNbO3 mixture and a SrTiO3 single crystal as the
targets. The substrate was insulating (001) LaAlO3 (pseudo-cubic perovskite, lattice
parameter, a is 3.79 Å, the surface area: 1 cm × 1 cm). The growth conditions were
precisely controlled; the substrate temperature was 900 °C, the oxygen pressure was
~10−4 Pa, and the laser fluence was ~1.2 J cm−2 per pulse. The thicknesses of
different layers were monitored in situ using the intensity oscillation of the RHEED
spots. Details of our PLD growth process of the superlattices are reported
elsewhere14,25.

Crystallographic analyses of the resultant superlattices were performed by XRD
(Cu Kα1, ATX-G, Rigaku Co.), AFM (Nanocute, Hitachi Hi-Tech), and STEM
(200 keV, JEM-ARM 200CF, JEOL Co. Ltd). TEM samples were fabricated using a
cryo ion slicer (IB-09060CIS, JEOL Co. Ltd). HAADF images were taken with the
detection angle of 68–280 mrad. Electron energy loss spectra were acquired in
STEM mode with the energy resolution of 0.8 eV.

Measurements of the thermoelectric properties of the 2DESs. Electrical con-
ductivity (σ), carrier concentration (n), and Hall mobility (μHall) were measured at
room temperature by a conventional d.c. four-probe method with a van der Pauw
geometry. S was measured at room temperature by creating a temperature differ-
ence (ΔT) of ~4 K across the film using two Peltier devices. (Two small
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thermocouples were used to monitor the actual temperatures of each end of a
superlattice.) The thermo-electromotive force (ΔV) and ΔT were measured
simultaneously, and the S values were obtained from the slope of the ΔV–ΔT plots
(the correlation coefficient: >0.9999).

Cross-plane thermal conductivity (κ) was measured by TDTR (Picotherm Co.)
method. Mode-locked fiber pulse lasers with 1550 and 775 nm wavelengths were
used for heating and measuring, respectively. Both lasers are with the repetition
frequency of 20MHz and pulse duration of 0.4 ps. Before measurement, Mo film
with a thickness of 100 nm was first deposited on the surface of the sample as the
transducer. During measurement, time-dependent transient thermoreflectance
phase signal of Mo transducer was measured, from which κ was further simulated.
Time-domain thermoreflectance was measured based on amplified laser systems (5
kHz and ~200 fs centered at 1030 nm). Degenerate pump and probe photons were
separated by the cross polarization, and a polarizing filter was employed before the
lock-in detection. A mechanical delay stage was used for time scan up to 1.5 ns.
Pump to probe intensity ratio was >15, and the size ratio was around 6.

Energy band calculation of the 2DES. Band structure for the [1 uc SrNbO3|10 uc
SrTiO3] superlattice was calculated based on the PAW method26, as implemented
in the VASP code27,28. We adopted the Heyd–Scuseria–Ernzerhof hybrid func-
tionals29–31 and a plane-wave cutoff energy of 550 eV. 6 × 6 × 6 and 6 × 6 × 2 k-
point meshes were employed in the total-energy evaluations and geometry opti-
mization for the perovskite unit cells of SrTiO3 and the superlattice cell, respec-
tively. The in-plane lattice constant of the superlattice cell was fixed at the
optimized value of SrTiO3 while the out-of-plane lattice constant and the atomic
coordinates were fully relaxed.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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